
Initiating a commercial open source digital platform

Final project (15 ECTS) for

Master of IT Leadership and Management - Strategy & Architecture
IT University of Copenhagen, Denmark (ITU)

Author: Morten M. Christensen

Advisors: John Gøtze and Ahmad Ghazawneh

Date: 28 May 2016

NB: Public version with confidential case material removed!

mailto:mortench@gmail.com

2

Abstract (English)
This thesis is about starting a new commercial open source software project in the digital
platform category. The focus is on project initiation (before a community of external
contributors exists), where I will cover the concerns that a firm must address right from the
start if the project should have a good chance of eventual success. I define success as
depending on fulfilment of two conflicting goals: Obtaining a significant community of
contributors to the project AND profiting from the resulting software.

For its research this thesis uses a wide range of existing literature from different academic
areas and sources. For structure I use a new holistic approach looking at my research subjects
from 3 perspectives: a business perspective, a community perspective and a technical
perspective. A significant output of my research is a new holistic model for project
attractiveness that firms can use to evaluate the ability for a project to potentially attract
(rather then repel) a community of contributors.

Keywords: Open source, holistic, vendor sponsored, project initialisation, platform,
commercial, monetisation, business, strategy, IP, licensing, community, motivation, self-
determination theory, project attractiveness, barriers, marketing, plausible promise, MVP,
software architecture, plug-ins, benefits, challenges, control, dilemmas, case.

Resumé (Danish)
Denne afhandling omhandler opstart af et kommercielt open source software projekt i digital
platform kategorien. Fokus er på projekt initialisering (tiden før et fælleskab med eksterne
udviklere), hvor jeg vil beskrive de forhold, som et firma skal adressere fra starten af
projektet, hvis der skal eksistere en god chance for succes på sigt. Jeg definerer succes som
betinget af opnåelse af 2 modstridende mål: At få et signifikant fællesskab af bidragsydere til
projektet OG opnå profit fra den resulterede software.

Som undersøgelsesgrundlag bruger denne afhandling en bred vifte af eksisterende litteratur
fra forskellige fagområder og kilder. Som struktur bruger jeg en ny holistisk tilgang hvor jeg
ser på de forskellige emner fra 3 perspektiver: et forretningsperspektiv, et
fælleskabsperspektiv og et teknisk perspektiv. Et væsentligt resultat af mine undersøgelser er
en ny holistisk model af projekt attraktivitet, som virksomheder kan bruge til at evaluere om
et projekt potentielt kan tiltrække (frem for at bortskræmme) et fællesskab af bidragsydere.

Nøgleord: Open source, holistisk, firma sponsoreret, projekt initialisering, platform,
kommerciel, monetarisering, virksomhed, strategi, IP, licensering, fællesskab, motivation,
selvbestemmelseteori, projekt attraktivitet, barrierer, marketing, plausibelt løfte, MVP,
software arkitektur, plug-ins, fordele, ulemper, kontrol, dilemmaer, eksempel.

3

Contents

Abstract (English) ... 2

Resumé (Danish) .. 2

Contents .. 3

Glossary of key terms ... 5

1. Introduction ... 6

2. Problem formulation .. 8
2.1. Delimitation.. 8

3. Approach and methodology ... 9
3.1. A holistic approach with three perspectives .. 9
3.2. Identifying literature .. 9

4. Overview of literature and theories .. 11

5. Digital platform case... 13

6. Open source from a community perspective ... 14
6.1. Who are the open source contributors .. 14
6.2. Types of open source communities ... 15
6.3. Social participation architecture of communities ... 15
6.4. Motivation of individual OSS contributors ... 16

6.4.1. Theoretical motivation theories .. 17
6.4.2. Studies on motivation software developers in general... 21
6.4.3. Studies specifically on motivation of open source developers ... 23

6.5. Motivation of corporate contributors .. 26
6.6. Attraction of contributors from a social perspective ... 27

7. Open source from a technical perspective ... 30
7.1. A plausible promise of a product and the MVP .. 30

7.1.1. Views from the open source community on up-front code in initial release .. 30
7.2. Technical participation architecture of communities ... 35
7.3. Attraction of contributors from a technical perspective .. 38

8. Open source from a business perspective ... 41
8.1. The commercial market and adoption of open source .. 41
8.2. Innovation and open source ... 41
8.3. Copyrights and licensing of open source .. 43
8.4. Naming and associated intellectual property rights .. 44
8.5. The business side of participation architecture for communities .. 45

8.5.1. Revisiting software modularity from a business standpoint ... 45
8.6. Open source, monetisation and business models ... 46
8.7. Attracting contributors from a business perspective .. 49
8.8. Open source community marketing .. 50
8.9. Benefits of open sourcing for a commercial vendor ... 53
8.10. Challenges of open source development .. 54
8.11. Open source project success rates .. 55
8.12. The central dilemma of commercial open source ... 56

4

9. Open digital platforms, ecosystems and open source .. 58
9.1.1. Platform strategy ... 58
9.1.2. Platforms and open source .. 60

10. A holistic view on contribution decisions by the community.. 61

11. Revisiting the digital platform case ... 64

12. Conclusion .. 65
12.1. Contributions to existing literature .. 68

12.1.1. New holistic view of open source project initiation .. 68
12.1.2. New and comprehensive model of open source project attractiveness.. 68

12.2. Limitations and critique of this thesis ... 68
12.3. Opportunities for further research ... 69

13. Literature ... 70

Appendix A. CAR-MASPIOSSD study results .. 78

Appendix B. Term definitions for Matthew Aslett’s framework ... 79

Appendix C. Obligations of open source licences ... 80

Appendix D. Large open source projects ... 81

Appendix E. Detailing extrinsic motivations .. 82

Appendix F. Governance of open source projects.. 83

5

Glossary of key terms

Term Description References

API API is short for “Application Programing Interface” and represents “a
set of routines, protocols, and tools for building software and
applications”.

Wikipedia

Business model “The rationale of how an organization creates, delivers and captures
value.”

(Osterwalder &
Pigneur, 2010)

Commercial “Concerned with earning money”. Merriam-Webster
dictionary.

Digital platform A digital platform (aka software platform) is “The extensible code-base
of a software-based system that provides core functionality shared by
the modules that interoperate with it and the interfaces through which
they interoperate”. Examples include operating systems such as Linux
or Windows, mobile platforms such as iOS or Android and software
development environments such as Eclipse or Visual Studio etc.

(Ghazawne, 2015)

Open source A form of open innovation where a community of individual
developers, organisations or firms volunteer to work together in
creating software, which is shared at essentially no cost. Open source
consists of a development/production model, a licensing model and a
distribution model.

(Germain, 2015;
Meeker, 2015;
The451group,
2008)

(Open source)
Governance

“The means of achieving the direction, control, and coordination of
wholly or partially autonomous individuals and organizations on behalf
of an OSS development project to which they jointly contribute”

Markus, 2007, p.
152)

Participation
architecture

“The socio-technical framework that extends opportunities to external
participants and integrates their contributions.”

(West &
O’mahony, 2008)

(Platform)
Ecosystem

“A collective of organizations having a common interest in the
prosperity of a digital platform for leveraging their application
development.”

(Ghazawne, 2015)

Plug-in A plug-in (also called extension or add-on) is an independently
developed software module that provides additional functionality to a
core host system such as a digital platform, application or framework.
Plug-ins are similar to Apps in iOS and Android but typically less self-
contained in functionality and do not necessarily have an associated
user-interface.

(Lokhman,
Mikkonen,
Hammouda,
Kazman, & Chen,
2013; Wikipedia,
2016b)

Project initiation The first phase of a new software project. In an open source context
this phase occurs before the project is announced to the world and
before outside contributors join. For a firm, the project initiation phase
are staffed by their own resources only (there is no community yet).
What this phase contains is a subject of this thesis.

My definition

SDT SDT is short for “Self-determination theory”. A theory of motivation
predominantly used in open source studies.

(Deci, 2012; R. M.
Ryan & Deci,
2000):

(Single-) Vendor
sponsored
project

“Single-vendor commercial open source software projects are open
source software projects that are owned by a single firm that derives a
direct and significant revenue stream from the software” (aka
commercial open source project)

(Riehle, 2012)

Introduction

6

1. Introduction
This thesis is about project start of an open source digital platform viewed from a
commercial angle.

Open source is a form of open innovation where a community of individual developers,
organisations or firms volunteer to work together in creating software, which is shared at
essentially no cost. Prominent examples of large and successful open source software
projects include the Linux operating system, the Apache web server and the Eclipse
Integrated Development Environment (IDE).

In the physical world, platforms are something to stand on or build on. In a similar way, a
digital platform (aka software platform) provides common functionality in the form of a
common code base (aka core or foundation) that can be extended with new software
modules that provide new functionality (Economist, 2014; Ghazawne, 2015). Besides being
open source, Linux, Apache and Eclipse are all examples of open software platforms that a
user can extend with new functionality coming from any 3rd party. The new functionality
comes in the form of new applications/drivers in Linux, new modules in Apache and new
plug-ins in Eclipse.

In opposition to open source, a traditional business model used by vendors in the software
business is based on closed innovation. Internally created closed-source (aka proprietary)
software that is licensed to customers for a fee. Strategically and in regard to economic rents,
this can be an attractive1 business model for software firms because proprietary software is
generally well suited for high yield differentiation strategies and because of the good
defensibility of software products derived from legal protection of source code for software
that is secret, expensive and time-consuming to reproduce for a competitor.

While closed innovation has strategic and monetary benefits, it can also take an undue toll
on a firm's finances and resources. A small start-up company may not have the time,
resources or technical skills to develop (or buy) all its software. Even for established, well-
financed companies, some software projects are so massive measured in man-hours or
require so diverse a set of capabilities to complete, that few (if any) companies can finish
them by themselves. As exemplified by Vice President, Irving Wladawsky-Berge from IBM, “a
skyscraper is never built by a single company. Legions of small companies with specific
expertise work together under the guidance of a project manager to coordinate and execute
their specific tasks in the right order” (Merrill, 2011).

For a firm, commercial benefits of going open source may include increased rate of diffusion
by the market as well as sharing the costs of development and maintenance (Stürmer &
Myrach, 2015; The451group, 2008; West, 2003). Creating an open source project can be a
way to leverage a community for both increased adoption and for vast outside investments in
excess of its own initial investment. For example, IBM as the original creator of the Java-based
Eclipse IDE was able to amplify an initial internal investment of $40 million to a community
investment of estimated $1.7 billion by making Eclipse open source and attracting outside
innovators (Stürmer, 2009, p. 28). By 2005, after 4 years of being open source, adoption of

1 According to Michael E. Porter’s generic strategies model and five forces framework.

Introduction

7

Eclipse by users had skyrocketed, changing its market position from an unknown among
multiple proprietary incumbents to being the dominant Java IDE on the market (Geer, 2005).

For a firm, the main commercial challenge of open source seems to be related to strategy and
economic rents. On the surface, it appears challenging for a software vendor to monetise
something that is free, and even more difficult to get attractive economic rents from
investments without barriers for competitors that are all providing the same undifferentiated
software.

The reality is more complex, though, as I will cover in this thesis. For the well-informed and
well-prepared firm, there are various ways to monetise open source software, differentiate
and build competitive advantages. As will be discussed, the real challenge is to actually grow a
thriving open source community of significant size and to balance the need of that
community with the strategic/monetisation interests of the project-initiating firm.

Problem formulation

8

2. Problem formulation
The motivation for this thesis is partly born out of intellectual curiosity on the subject matter
and partly because of a concrete case. The case, which will be summarised in chapter 5, serves
as context and a concrete example only. The thesis is not a case study as such.

Generally, I believe that a company sponsoring a new open source based product has two
essential needs that must both be fulfilled as a condition for commercial success:

1. A viable open source community for the open source project.
2. Profit from the resulting open sourced software product.

As it turns out, the critical phase in an open source project, that determines a firm’s ability to
pursue both the above goals, is project initiation. More precisely the initial phase before the
project is even announced to the world and before outside contributors join. Decisions made
at this initiation phase are deterministic for the ability to attract a community and
deterministic for which business models and which sources of revenue are possible later on.

Therefore, the focus of this thesis is what a firm must do in the project initiation phase of an
open source project. In addition, I want to limit the scope of products to one specific category
that is digital platforms as in my case. Hence, the generalized research question is:

 What are the general concerns for a firm when initiating an open
source digital platform project?

2.1. Delimitation
This thesis is focused on the project initiation phase. Consequently, this thesis will not look at
how to actually manage an open source project or produce its software.

The dominant theme of this thesis will be open source. In that regard, the topic of digital
platforms plays a more limited supporting role as the product category used in my case.

I focus on code contributors, but open source communities have many forms of contribution
beyond coding, such as testing, localisation, documentation, evangelism, marketing and even
financing2 (OSSS.io, 2014a)

A specific case with a product idea is provided as in in chapter 5. It is intended for context and
example only. I will not analyse the product/business of the case strategically etc.

There are many subjects that can be discussed regarding business strategies but only those
that are strongly related to commercial open source and digital platforms will be covered in
this thesis. Consequently, this thesis will not look at general elements of strategic planning
such as for example SWOT-models, industry positioning, competitors, company resources,
detailed business plans etc.

2 For the Mozilla Firefox browser project, the community collectively financed a large ad in
New York Times at the launch of the product (OSSS.io, 2014a)

Approach and methodology

9

3. Approach and methodology
This study will answer the research question using existing literature and a holistic approach
involving a wide range of topics in different academic areas.

I had few pieces of relevant literature available in advance from previous ITU classes and
from my advisors. Therefore, my first major objective has been to research, identify and
gather potentially relevant literature.

I have prioritized academic literature, but in line with my holistic approach I also looked at
references from business literature, business professionals, market surveys,
analysts/researchers, venture capitalists, the open source community itself etc.

3.1. A holistic approach with three perspectives
In order to better structure and communicate my research, I have arranged the main research
topics and related analysis/discussions into 3 areas or perspectives as shown in Table 1.

Perspectives Main topics related to project initialization covered in this thesis

Business

Strategy, Market, Innovation, Monetisation/Economics,
Intellectual property rights and Licensing, Marketing, Vendor
benefits/challenges, Attraction of developers in a commercial
context, Dilemmas, Digital platforms.

Community

Intro to open source and open source communities, Social
aspects, Social participation architecture, Motivation of
developers, Social attraction of contributors.

Technical

Technology, product, pre-community production and a “plausible
promise”, Minimum Viable Product (MVP), Technical software
architecture for participation, Technical view of attraction of
contributors.

Table 1 The three research perspectives

The exact design of the 3 perspectives are my own choice, but the overall approach is heavily
inspired by a mix of the holistic approach of Enterprise Architecture (EA) and the
categorisation used in Andrea Bonaccorsi & Cristina Rossi’s motivation study (Bonaccorsi &
Rossi, 2006).

3.2. Identifying literature
I have used a hermeneutic method for research of available literature starting with my
initial preconceptions of open source which where translated into initial search terms for
various search engines. Reading (abstracts) or browsing the literature provided me with a
new understanding of the individual topics and an increased understanding of the subject
area as a whole, which lead to a new iteration of search terms and new literature. E.g. forming
a hermeneutic circle of deeper understanding and also an increased amount of material
(Boel & Cecez-Kecmanovic, 2010).

Approach and methodology

10

As search engines I used the ITU digital library, Google Scholar, plain Google and eventually
also YouTube. By combining my search terms with “open source” as a logical AND search
operator I was able to get workable results from search engines with an acceptable degree of
noise. The search keywords I used are shown in Table 2, which simplifies the many search
iterations by collapsing them into 4 stages.

 Table 2 Search terms and stages

Unlike a systematic literature review my general goal has not been to objectively identify all
material written – just the more recent, relevant, accessible and prevalent material… That
said, in a few instances where literature is very sparse, such as project attractiveness and
motivation of firms, I have attempted to identify all available literature.

Regardless of my general goal of finding just the most applicable literature, at the end of stage
two, I still had about 400 literature references collected, which I tagged, scanned looking at
abstracts and filtered according to apparent relevance. At this time I found that the important
topic of motivation had simply too much source material for this thesis. Hence, at stage 3, I
started a dedicated and successful search for literature reviews3 looking for an existing meta-
analysis of motivation studies etc.

Later, during the writing process, I occasionally needed additional specific literature outside
my collection, which I added during stage 4 until I had about 650 references tagged and
indexed (for searching) in my document manager4. Of these, I have for mundane reasons only
fully read and used a fraction. Key references are listed in chapter 4 and the full list is listed in
chapter 13.

3 Which in retrospect is something I should have done much earlier as literature reviews can
serve as good introductions to a research area and to its concepts. Reviews also provide a
vocabulary that is useful for searching (Boel & Cecez-Kecmanovic, 2010).
4 I have used the free “Mandeley reference manager”, which has allowed me to tag and
highlight documents, share them among devices and very importantly also search inside my
own document base for relevant material.

Stages Driver Search keywords (used in logical AND with “open source”)

1st Initial terms
known to me.

Commercial, motivation, business models, strategy, community, licensing,
collaboration, governance, fork, digital platform, marketing, success, failure,
starting, book, thesis, survey, study, report.

2nd New terms
suggested by
literature.

Monetisation, value extraction, ip modularity, dual licensing, gpl, self-
determination theory, attractiveness, trust, transparency, github,
bootstrapping, onboarding, network effect, open innovation, bazar, platform
economics.

3rd Information
overload.

Literature review

4th Specifics Adoption, diffusion, statistics, eclipse, “motivation of firms”, video.

Overview of literature and theories

11

4. Overview of literature and theories
Georg von Krogh and Georg Eric von Hippel write that the success of open source innovation
is an eye-opener for academic researchers, similar to the discovery of life under seemingly
impossible deep-sea environmental conditions (von Krogh & von Hippel, 2006).

Consequently, open source has attracted an abundance of research which they (as of 2006)
divide into three categories: motivation, governance/organisation/innovation, and
competitive dynamics (von Krogh & von Hippel, 2006). By including new literature I found
however, that in addition to these 3 mentioned categories, there are now also significant
amounts of literature that can be categorised as being about new categories such as licensing,
community building and adoption by end users etc.

In some areas of open source I have found that there is very little academic literature
available. Such areas include motivation of commercial firms, community marketing and what
makes an open source project attractive to contribute to. Here I could find mostly non-
academic literature.

Finally, in addition to academic literature mentioned above, I also found an abundance of
business literature, reports from analysts, articles in popular magazines, open source insider
articles, blog entries on the web and even relevant YouTube videos such as presentations or
panel discussions from open source conferences.

Table 3 lists only what I consider the most important literature used in the thesis. For a
complete list of my 140+ references refer to chapter 13.

Primary literature and theory (not a complete list):

Case

Strategic analysis of case:

 Prior ITU strategy & governance course paper “Strategiudvikling med open source” (strategy development for open
source) (Christensen & Jensen, 2015).

General (all perspectives/subjects)

About open source projects and communities and touches many relevant subjects:

 Book “Producing Open Source Software - How To Run A Successful Free Software Project”, latest version as of
December 2015 written by a well-regarded open source industry veteran (Fogel, 2015)

 The paper “Cathedral and the Bazar”, revision 3 of his famous/influential original essay from 1998. (Raymond, 2002).

 Thesis “Open source community building” (Stürmer, 2005)

 Conference panel discussion videos from OSSS.io, 2014 - Open Source Startup Summit (OSSS.io, 2014a, 2014b, 2014c)

Participation architecture:

 Paper “The Role of Participation Architecture in Growing Sponsored Open Source Communities” (West & O’mahony,
2008)

Business perspective

General forecasts, statistics and market research:

 Study “2015 - the future of OPEN source” (North bridge and Black Duck software, 2015) and “Open source by the
numbers” by Black Duck Software (Rich Sands, 2012)

 Presentations and conference keynote by Forrester research about open source (Hammond, 2009, 2010, 2014a, 2014b)

 Blog entries by data analyst Donnie Berkholz (Berkholz, 2013, 2014)

Innovation, attractiveness and commercial side of open source etc.:

 PhD. Thesis “How firms make friends: Communities in private-collective innovation” (Stürmer, 2009)

Overview of literature and theories

12

Strategy, business models:

 Research rapport “Open Source – Is not a business model” and the framework “Elements of an open source business
strategy” by 451 research group (Aslett, 2010, 2011; The451group, 2008)

Copyrights and licensing:

 The book “A practical Guide to Open Source Software Licensing” (Meeker, 2015)

 Presentation “Software licences” from Bird & Bird (Harris, 2015).

Marketing:

 Blog posting “Viewing Communities as Funnels”. (Lars Kurth, 2010)

Platform:

 Presentation “Digital Platforms & Ecosystems” (Ghazawne, 2015)

 Presentation "Platform Shift: How New Biz Models Are Changing the Shape of Industry” (M. Van Alstyne, 2015)

 Paper “Platform Strategy Survey” (Parker & Alstyne, 2014)

Community perspective

Demographics

 Paper “Open Source Participation Behavior-A Review and Introduction of a Participation Lifecycle Model” (Ehls, 2013)

Motivation:

 Self-determination motivational theory (Deci, 2012; R. M. Ryan & Deci, 2000)

 Meta-studies: “What Do We Know about Developer Motivation” (Hall, Sharp, Beecham, Baddoo, & Robinson, 2008) and
first part of “Carrots and rainbows: Motivation and social practice in open source software development” (Krogh, Haefliger,
Spaeth, & Wallin, 2012)

 Paper: “Comparing motivations of individual programmers and firms to take part in the open source movement: From
community to business” (Bonaccorsi & Rossi, 2006).

Attraction:

 “The attraction of contributors in free and open source software projects" (Santos, Kuk, Kon, & Pearson, 2012)

Participation architecture:

 Conference keynote video “Open Source Community Building” (Eaves, 2011)

Technical perspective

Up-front development before going open source and MVP:

 Key concept of “plausible promise” (Raymond, 2002)

 Paper “Performance of Open Source Projects” (Weiss, 2009)

 Summary of book “Lean Startup” (Ries & Hartman, 2011)

Participation architecture:

 Paper “The Impact of Modularity on Intellectual Property and Value Appropriation The Impact of Modularity on Intellectual
Property and Value Appropriation” (Baldwin & Henkel, 2012)

 Conference video: “Creating a Developer Community” about the Jenkins project experiences (Kawaguchi, 2012)

Attraction:

 Conference video and blog on “Patterns for Open Source Success” (S. R. Walli, 2013a, 2013b)

Table 3 Main literature and theory

Digital platform case

13

5. Digital platform case

This chapter is confidential and has been removed from the public version. Contact the author
for access to the content (may require signing a NDA).

Open source from a community perspective

14

6. Open source from a community perspective
Open source software projects are popular by users, businesses and developers. There is
currently estimated to exist 1.5 million5 open source software projects and the number of
projects is growing exponentially (North bridge and Black Duck software, 2015). By 2014,
80% of active software developers of all types used open source in their work (Hammond,
2014a).

As for what open source means it depends on who one asks. Because of politics there are
many possible definitions and variants. I will not enumerate the many different views here.
Instead, I will loosely refer to open source as a combination of an open
development/production model, an open licensing model and an open distribution
model (Germain, 2015; Meeker, 2015; The451group, 2008).

As a development model (aka production model) open source is about developers from many
places and organisations working together for a common goal. Ideally without central control
or planning as further described by Eric Raymond in his influential work “Cathedral and the
Bazar” (Raymond, 2002). As a licensing model, open source is about indiscriminative rights to
use, examine, write and modify source code as specified in detail by the Open Source
Initiative (OSI) (Open Source Initiative, 2007). Finally, as a distribution model, open source is
about access to source code at zero costs while allowing intermediaries to build, repackage
and distribute binaries for different target systems at a (nominal) charge.

6.1. Who are the open source contributors
Early on, the originators of open source and their motivations have puzzled observers such as
Glass who wrote in IEEE “I don’t know who these crazy people are who want to write, read
and even revise all that code without being paid anything for it at all,” (Ehls, 2013, p. 4 Citing
Robert L. Glass, 1999)

The majority of contributors to most open source projects are individual volunteers (Krogh
et al., 2012). Forrester has found that consistently, across their surveys, 70-75% of developers
write software in their own free time and of those 24% uses their free time to contribute to
open source projects (Hammond, 2014b). Their motivations will be covered extensively in
chapter 6.4. Demographics vary but, in general, studies suggest that individual contributors
are predominantly male aged 14-73, with a mean age of 27-32 years (Ehls, 2013). Studies also
suggest that a majority have a university degree (Ehls, 2013; Ke, 2010).

Beyond individual developers, a significant and increasing minority of contributors to open
source projects are from commercial firms. Leading IT companies such as IBM, Oracle,
Google, Apple and Microsoft6 are all involved in open source projects. 64% of large7

5 As discussed in chapter 8.11, I believe that statistics like this tend to be a bit overstated.
6 Microsoft has done a remarkable U-turn in regard to open source. In 2001 their previous
CEO, Steve Ballmer, associated open source with “cancer”. Now they have declared that “we
love open source” (Brodkin, 2010), they contribute heavily to Linux and they release key
technology of their own as open source (e.g. .NET Core, Visual Code etc.).
7 Defined here as having over 5000 employees.

Open source from a community perspective

15

companies already participate in open source projects and 87% expect to increase their
contributions (North bridge and Black Duck software, 2015). Relative participation of firms in
open source projects is 40% on average. For some projects even higher, like the Linux kernel
where 70% of project contributions now comes from paid developers (Kroah-Hartman,
Corbet, & McPherson, 2009; Krogh et al., 2012) or the Eclipse project where about 90% of
changes comes from paid developers (Watson & Boudreau, 2015). Motivations of firms to
contribute will be covered in in chapter 6.5.

The significant investment of firms in open source has changed the perception of open source.
As the analyst firm the451group, write in their open source report: “the idea of a community
of individuals sharing the development of software projects for the greater good has been
superseded by the image of a community of vendor employees sharing the development of
software projects to increase code quality and lower production costs” (The451group, 2008)

6.2. Types of open source communities
Open source communities can be divided into two categories: Autonomous (organic)
communities founded by individuals that evolve naturally around a software product, and
corporately sponsored (non-organic) communities, which are initiated, structured and
managed/dominated by a single vendor (The451group, 2008; West & O’mahony, 2008). In
terms of governance, autonomous projects are almost exclusively open, while firm sponsored
projects are mostly closed according to research done by 451group. (Ingo, 2011)

Because this thesis has a focus on initiation of open source projects by firms for commercial
purposes, my focus will be on sponsored communities. Examples of such corporately
sponsored communities include MySQL, Alfresco and SugarCRM (The451group, 2008; West &
O’mahony, 2008).

An extreme analogy of a community sponsored by a vendor is described by James Dixon, who
describes the vendor’s role as similar to the role of a “beekeeper tending to a community of
bees to ensure that that they produce honey that can be processed and then sold to paying
customers”. Just as “bees can leave the hive at any time”, developers can fork or abandon a
project at any time. The vendor must therefore balance the need for monetization with
keeping the community happy (The451group, 2008, p. 38). The illustrative example is
however only partially correct as a beekeeper has more control over a beehive then a vendor
has over a project’s external community.

6.3. Social participation architecture of communities
According to Joel West and Siobhán O'Mahony contributors’ participation in open source
projects correlates with openness. They define two distinct components of openness:
Transparency and accessibility. Transparency allows the open source community members
to access source code and watch communication and discussions being made. Accessibility
allows the open source community members to influence the project at the cost of control by
the sponsor (West & O’mahony, 2008).

Architecture of participation touches all 3 perspectives of this thesis but in a social context,
the architecture of participation is about open source production processes and the
governance of them. For production, transparency is “the ability to read code and observe or

Open source from a community perspective

16

follow” processes and accessibility is about the “ability to change code directly”. For
governance, transparency is when “observers can understand how decisions are made” and
accessibility is about the “ability to participate in governance” (West & O’mahony, 2008, fig.
Table 2). A summary of open source governance is provided in Appendix D.

For a company sponsor, the choice of the right participation architecture depends on what
benefits the company wants to gain. If it is outside contributions to development, the more
open the better. If it is marketing and adoption benefits the company wants to gain, then
openness is not so critical. (West & O’mahony, 2008)

Another more socio-technical aspect of participation architecture is that (open source)
software projects should design for cooperation rather then collaboration as formulated by
David Eaves. Collaboration requires different parties working closely together in a
coordinated fashion and that the all parties can come to a common agreement. Eaves states
that collaboration is suited to solve complex problems that no party could solve themselves,
but is difficult, has high transaction costs and is time consuming. Cooperation is when work
can be partitioned so individuals can work independently, in a simple and efficient way that
has low transaction costs. (Eaves, 2011, pt. 19:30)

When architecting problems for cooperation, one accomplishes what Eaves describes as the
“genius of open source” where individuals can pick up a piece of a problem, solve it, easily put
their solution back into the software and make it all work - without the need for working
together with other people and without asking for permission. Architecting for cooperation is
what makes open source work. The alternative, that everybody works on the same thing or
agrees on everything, will never work (Eaves, 2011, pt. 20:00). The technical side of how to
architect for cooperation is detailed in chapter 7.2.

6.4. Motivation of individual OSS contributors
There are many definitions and no consensus in literature about the concept of motivation,
but if a synthesis is attempted, the various definitions are according to Steers “all principally
concerned with factors or events that energize, channel, and sustain human behaviour over
time” (César, 2014, p. 21). Alberto César argues that (work) motivation is distinct from, but
related to, (job) satisfaction, which can happen after an isolated action while motivation
occurs before the action. Motivation is thus future oriented and is about an individual’s
perceptions of work and its characteristics. This is unlike satisfaction, which is about the past
and is based on a broader set of elements that is not limited to the work itself. Both concepts
reinforce each other. Past satisfaction form people’s perception about their world-view and
their prior experiences which in turn influence their future motivation (César, 2014).

Because this thesis has a focus on project initiation rather than project management, my
emphasis is on motivation rather then satisfaction. It should be noted, however, that while a
precise definition of the concepts of motivation and satisfaction is beneficial, much literature
is rather imprecise in this regard. For instance in some literature the concept of (work)
motivation overlaps with (job) satisfaction.

Regardless of the context in which software developers work, such as open source, traditional
commercial setting etc., understanding what motivates developers is a key success factor for
projects and companies. Only motivated people will do their best. Alberto César writes (citing

Open source from a community perspective

17

reports from Tracy Hall and others) that motivation of software engineers have the “single
largest impact on productivity and software quality management” of all human aspects
(César, 2014, p. 15). Conversely, lack of motivation is a major reason for software projects to
fail: As Ikram Asghar and Muhammad Usman writes, “research shows that (poor) motivation
is amongst the most frequently highlighted causes of software projects failure.” (Asghar &
Usman, 2013, p. 1)

Specifically for an open source context, Karl Fogel also stresses the importance of motivation
and writes that “understanding people's true motivations will help you arrange things so as to
attract and keep (contributors)” (Fogel, 2015, p. 160) and that “understanding developers'
motivations is the best way—in some sense, the only way—to manage a project.” (Fogel,
2015, p. 9)

6.4.1. Theoretical motivation theories
Two major types of general motivation theories exist. Content theories, also called need
theories, focus on the individual’s needs, their relative importance and how their goals are
for seeking satisfaction of their needs. Process theories are about the processes of how
motivation actually happens and are concerned with behaviour and dynamic components of
motivation. (Hall, 2008; Soós, Takács, Krasz, & Villám, 2013). Reward-wise, process theories
are mostly about external rewards (salary, praise etc.) while content theories are non-
monetary and about a person’s internal rewards (personal growth etc.).

An overview of the general motivation theories covered by this chapter (and this thesis) is
provided in Figure 1. Shapes with dotted lines indicate that the theory will be mentioned but
not detailed. Emphasis will be on self-determination theory (SDT), as this theory translates
well to an open source context and is commonly used in open source motivation studies.

Figure 1 Motivation theories mentioned in this chapter

Open source from a community perspective

18

Self-determination theory (SDT)
The popular theory in open source studies is Edward L.
Deci and Richard M. Ryan’s self-determination theory
(SDT). It says that we have three universal needs that
when satisfied allow individuals to function and grow
optimally (Deci, 2012; R. M. Ryan & Deci, 2000):

- Autonomy
- Competence

- Relatedness

Autonomy is the need to control the course of our lives
ourselves and to act in agreement with our feeling of self. Competence is the need to be able
to deal with our environment and the tasks we get. It is the desire to know what actions to
take and what the results of those actions will be. Relatedness is the need to interact with,
connect to and foster close relationships with other people.

Deci and Ryan’s self-determination theory distinguishes between types and quality of
motivations based on what gives rise to action. From Frederick Herzberg’s famous two-
factors (motivator-hygiene8) theory they inherit the notion of intrinsic and extrinsic work. If
the reason for doing work is that it is inherently interesting, enjoyable or something that you
value then the motivation is of intrinsic nature. If the reason for doing work is because of
some favourable outcome, then the work is of extrinsic nature (R. Ryan & Deci, 2000).

In terms of Abraham Maslow’s famous hierarchy of needs theory9, extrinsic motivators are
generally those addressing the basic 3 categories of needs (physiological/basic survival needs,
safety/security needs and the need for belonging and love). Intrinsic motivators are
generally those addressing the top 2 categories of needs (self-esteem and self-actualization)

Intrinsic motivation is the truest form of autonomous motivation. An individual performs a
task of his/her own choice because he/she finds it interesting/challenging/fun and he/she
values what needs to be done. Unlike externally controlled motivation, autonomous
motivation is authentic in the sense that it is self-authored/endorsed. Autonomous
motivation promote creativity, problem solving, persistence, positive performance and
physical and psychical health (Deci, 2012; R. M. Ryan & Deci, 2000).

The concept of internalization describes how motivation can range from being unwilling
(not motivated) to compliance and to being truly motivated. Increasing internalization means
increasing motivation and commitment leading to increased persistence and engagement.

8 While the classification of intrinsic/extrinsic motivation is the same as Herzberg’s, SDT has
no concept of motivation versus hygiene factors. These are interesting concepts but has failed
to be validated or invalidated by studies (Christina M. Stello, 2014).

9 Maslow’s popular theory is mentioned here to put extrinsic/intrinsic motivation into
perspective only. Empiric research has failed to support Maslow’s theory with clear and
consistent support (César, 2014)

Figure 2 SDT and universal needs
(source: Wikipedia)

Open source from a community perspective

19

Table 4 shows a summary of the types of motivation in SDT, how the person affected
experiences them and (in my own terms) both their internalization strength and their
corresponding long-term effectiveness as a motivator. For an explanation of the different
types of extrinsic motivation refer to Appendix E.

Types of motivation Experienced as Internalization Long term
effectiveness

A) Extrinsic motivation by

- External regulation Controlled Lowest Most ineffective
- Introjection Semi-controlled Low-medium Ineffective

- Identification Semi-autonomous Medium Semi-effective

- Integration Autonomous Medium-high Effective

B) Intrinsic motivation Autonomous Highest Most effective

Table 4 Types of motivation in SDT and their effectiveness

Fulfilment of the universal needs for Autonomy, Relatedness and Competence promotes
internalization. In particular, autonomy plays a vital role. Without autonomy, regulations can
not be integrated but at most just introjected (R. Ryan & Deci, 2000).

One cannot simply motivate other people, only provide autonomy support that may help
with self-motivation: “Don’t ask how you can motivate others! Ask how you can create the
conditions within which others will motivate themselves”. (Deci, 2012, sec. 13:20).

A way to promote autonomy is to take the perspective of the individual, providing people with
a choice and engaging them, encourage people to initiate action and provide a meaningful
rationale for decisions, so that individuals can adopt a value/belief. Also useful is facilitating
communications and feedback that promote feelings of competence during work without
forfeiting self-determination (R. M. Ryan & Deci, 2000)

Extrinsic incentives and rewards have positive effects only for manual routine-work
(quantity-typed tasks) that has low complexity and requires little cognitive investment. For
any kind of creative/conceptual work (quality-typed tasks) like those performed by
knowledge workers or software developers, extrinsic incentives and rewards do not work.
Even worse, extrinsic rewards can in many cases undermine intrinsic motivation10 and
negatively affect both quality and quantity of work (Cerasoli, Nicklin, & Ford, 2014; R. Ryan &
Deci, 2000)

Deci and Ryan’s self-determination theory have critics but their core ideas seem to be based
on a substantial amount of supporting research with according to the authors “over 100
studies that confirmed and extended their findings” (Karen McCally, 2010). However, many
details, like the exact relationship between intrinsic and extrinsic motivations, are still being
researched and debated (Cerasoli et al., 2014). Personally, I think that SDT’s focus on only
Autonomy, Relatedness and Competence as universal needs is bit simplistic and I have yet to

10 On the topic of monetary compensation and inner motivation, Daniel H. Pink argues that
higher payment than what is needed to “take the issue of money off the table” will lead to
poorer internal motivation and hence worse performance (Pink, 2010)

Open source from a community perspective

20

read a convincing argument for why there should not be other significant needs in play as
well.

A notable and well-communicated variant of SDT comes from the popular book ““Drive: The
Surprising Truth About What Motivates us“ by Daniel H. Pink. The author has the same notion
of intrinsic and extrinsic motivation but diverges from SDT by designating Autonomy,
Mastery and Purpose as the 3 universal needs. In Drive, purpose is a common goal that
individuals can identify with and strive for in order to be part of a larger cause beyond
themselves. Similar to competence in SDT, Mastery is the urge to improve skills and
understanding, to get better and to do one’s best (Hoerr, 2010; Pink, 2010). Pink’s book
underscores that SDT’s exact universal needs can be challenged while still adhering to the
overall premise.

In an open source context, the theory suggests that open source projects may be very
motivating to the individual developers that participate precisely because of the strength of
personal motivations and pure autonomy. In the words of open source veteran Karl Fogel,
“people are much more successful when they have their own motivations for wanting to
succeed than when they are merely fulfilling management requests in return for a paycheck”
(Fogel, 2015, p. 160).

Process theories
The process theories operate with payment, favourable consequences and other external
rewards. They also appear to assume some control or leverage, as present in a typical
manager/employee-relationship, which is absent from an (non-firm) open source setting
where payment is zero and people are free to decide if they want to contribute or not.

Few aspects of process theories are directly transferable to an open source situation and for
that reason I will only briefly mention two process theories that raise concrete points of
interest.

One key process theory is B.F. Skinner’s theory of reinforcement. This theory is essentially
the controlled carrot and stick approach to motivation, which is in many ways the
opposite11 of what Deci and Ryan’s self-determination theory (SDT) says. Reinforcement
theory says that behaviour depends on the consequences of past actions. Future behaviour
can be formed by applying positive or negative reinforcement like rewards and punishment
(Soós et al., 2013).

In an open source context, the sole (and rather obvious) learning point from reinforcement
theory is that thanking individual developers for making good contributions to a project is a
good idea not only to be polite but also to increase the chance for additional contributions in
the future by applying positive reinforcement.

Another process theory is John Stacey’s equity theory, which states that people are
motivated if they perceive to be treated equally and receive fair payment. People compare
their contributions (input) and benefits/rewards (output) with others. If they consider their
ratio of input/output to differ, they will be motivated to adjust their input (Soós et al., 2013).

11 According to SDT, (positive) reinforcement makes sense only for quantity-typed tasks like
manual routine-work.

Open source from a community perspective

21

In an open source context, the learning point from equity theory is that treating contributors
equally is essential for motivation. Thus when evaluating outside contributions or making
decisions in an open source project, it should be done in the open and done fairly so there is
no suspicion that some contributors are treated better then others or have more say in
decisions. According, open source literature stresses the need for transparency and fair voting
(Fogel, 2015).

6.4.2. Studies on motivation software developers in general
In their study of motivation of software developers, “What Do We Know about Developer
Motivation” (WDWKADM) from 2008, researchers Tracy Hall, Helen Sharp, Sarah Beecham,
Nathan Baddoo, and Hugh Robinson Web analysed 92 studies on software development from
1980-2006 (Hall et al., 2008) .

The authors suggest that while developers have characteristics in common as a professional
group, the individual developers vary in their motivations. Both individual personality
characteristics and environment/context/demographics affect how strongly the general
motivators affect the developer’s ultimate motivation. The authors have created a model for
how individual motivation is shaped. Their model is shown in Figure 3 (direct copy of their
illustration), which shows how general motivators/needs at the bottom of the illustration is
influenced by individual characteristics and context at the right, producing an ultimate set of
motivating aspects for the individual developer at the top.

Figure 3 How individual developer motivation is shaped. Source WDWKADM (Hall et al., 2008)

The study proceeds to summarize the motivators from an analysis of the 92 different studies.
Citing Herzberg’s notion of intrinsic and extrinsic motivations, they then arranged reported
motivations in these two categories. Figure 4 shows their findings (direct copy of their
illustration). The term SE is short for software engineering. Some motivators are a bit vague.
“Development needs addressed ”indicates an opportunity to widen skills or specialize. Change
means dynamic work. Beneficial means to benefit others or own well-being.

Open source from a community perspective

22

Figure 4 Motivators of software developers. Source WDWKADM (Hall et al., 2008)

For corporate settings where a developer is paid to contribute to an open source project, all
the motivators from Figure 4 should be relevant.

For individual volunteer contributors to an open source project there are no bosses, no
management, no payment, no job and no company involved, so some motivators from Figure
4 are not relevant. In this case, all intrinsic motivators inherent in SE and most other intrinsic
motivators appear to be transferable. Only a few of the extrinsic motivators remain relevant
though.

The motivating factors seem to validate SDT’s identification of Autonomy, Competence
(Change and Development needs addressed) and Relatedness (Team working and sense of
belonging). There is no explicit mention of Purpose, though, from Daniel H. Pink’s theory of
Autonomy, Mastery and Purpose (although providing a benefit might indirectly provide one).
The study does make it clear, though, that SDT’s and Pink’s sole emphasis on 3 universal
factors is rather shallow as it only represents a small window from a wider range of
motivating factors that influence motivation of software developers.

The meta-study of WDWKADM is interesting not only because it nicely accumulates findings
from many prior studies, but also because it is one of the few studies I have seen which
emphasises that developers have different characteristics and contexts, which strongly
influence their motivation.

As an example the authors suggest that “a young developer trying to buy a house or start a
family will likely be more motivated by money and less by challenge, whereas a seasoned
developer established and secure in his or her job will likely be more motivated by challenge
and recognition for quality work” (Hall et al., 2008, p. 93). In other words, a challenging open
source project (without pay) is more likely to motivate the established developer than the
young developer buying a house or starting a family.- A point which I believe has merit.

Open source from a community perspective

23

However, a key critique of the study that I can make from my own experience in the software
business is that the motivating factors are rather incomplete although the study does not say
so. For example, quality12 (and technical debt) is not shown to be a factor. Another example is
the size and type of audience for the software (Lerner & Schankerman, 2010; Stürmer, 2005).
If the developer is using the software himself, or the software is generally useful to a great
many people (incl. other developers), then the motivation ought to increase. If the software is
only useful in an isolated setting that is disconnected from the personal world of the
developer then the motivation ought to decrease.

6.4.3. Studies specifically on motivation of open source developers
A large number of scientific studies have been made on motivation factors of open source
developers, which are based on Deci and Richard M. Ryan’s self-determination theory (SDT)
and its notions of intrinsic, internalized extrinsic and extrinsic motivations (Krogh et al.,
2012).

In the first part of their paper “Carrots and rainbows: Motivation and social practice in open
source software development" (CAR-MASPIOSSD) from 2012, Georg von Krogh, Stefan
Haefliger, Sebastian Spaeth, and Martin W. Wallin performed a broad meta-analysis of
existing literature, reviewing 40 empirical papers and summarised their findings (Krogh et al.,
2012). A direct copy of their table relating motivation factors to studies is presented in
Appendix A. A summary of their identified motivation factors is shown in Figure 5 (direct
copy of 3rd party presentation (Stürmer, 2015)):

Figure 5 Summary of factors identified by CAR-MASPIOSSD study - source: (Stürmer, 2015)

The findings from CAR-MASPIOSSD vary from study to study suggesting that many factors
influence motivation, depending on developer and project. The factors (explained in more
detail in the above paper) are listed in Table 5. The table also indicates factors in this study
that are new to open source in a sense that cannot be mapped to motivation factors
mentioned in the general study of software developers (WDWKADM).

12 In my experience, the quality aspect makes greenfield development inherently more
motivating that maintaining or extending old and buggy legacy software

Open source from a community perspective

24

CAR-MASPIOSSD study
motivation factors (Krogh
et al., 2012):

OSS
specific?

Description

Intrinsic:
- Ideology Y Some developers adhere to the (rather religious)

Free/Libra movement and are often driven by
ideology. Ex. Believing that “running software that
a user cannot inspect, modify, and share is
considered immoral.” (Krogh et al., 2012, p. 3)

- Altruism Some developers are motivated by social
improvement goals or selfless concern for others

- Kinship Being part of a community motivates some
developers

- Fun Y Some developers are motivated by an inherent fun
and enjoyment of the work – it is their hobby

Internalized extrinsic:
- Reputation Some developers contribute because the status it

gives them in the community (peer reputation)
and outside the community such as perspective
employers (outside reputation).

- Reciprocity Y Some developers want give something back to the
community in return for the benefits they get (a
gift in return for a gift).

- Learning Improving their skills in the course of contributing
motivates some developers. The detailed feedback
that some contributions get can be a good learning
experience

- Own use Y Some developers benefit from their contributions
because they are using the software themselves
and need a specific project/feature/fix
themselves. By participating developers “scratch
their itch” (Raymond, 2002)

Extrinsic:
- Career Some developers are motivated by the career

opportunities their contributions may bring
because of their increased experience, status etc.
For them participating in open source is a way to
signal their talent to prospective employers.

- Pay Some developers are motivated because some
entity is paying them to contribute to open source.

Table 5 Open source motivation factors from CAR-MASPIOSSD study.

According to SDT, when extrinsic motivations are present they ought to crowd out intrinsic
motivations. However, so far studies (incl. the CAR-MASPIOSSD study) do not support the
theory in that regard, with the sole exception that pay has been shown to negatively affect
own use motivation (Krogh et al., 2012; Roberts, Hann, & Slaughter, 2006). Contrary, some

Open source from a community perspective

25

studies show that extrinsic motivation can increase intrinsic motivations (possibly as a
booster/maintainer of interest) (Roberts et al., 2006).

Other studies stress that the hybrid factors, combinations of the motivation factors that
reinforce each other, are more influential than individual intrinsic or extrinsic factors (Mair et
al., 2015) Hence, motivation should be understood not as influenced either by one stable
factor or another but as a “complex continuum of intrinsic, extrinsic, and internalized
extrinsic motives … that evolve” as tasks characteristics change over time (Mair et al., 2015).

As shown in Table 5, the motivation factors that are stated as unique to open source are:

 Personal ideology
 Having fun developing software
 Giving something back to the community.
 Opportunities for using the contributions themselves (own use)

The study does not address relative strength of each factor and I have seen no overall
consensus in the literature about which factors are most important. Instead there is a
multitude of contradicting individual studies, each suggesting this or that set of factors to be
most important.

Importance of own-use
From a theory standpoint, SDT suggests that of the unique motivation factors for open source,
fun and ideology should be the strongest. Compared to those, own-use motivation should be a
weak motivation factor. However, I believe that own-use motivation is a strong (not weak)
motivation factor from an economics standpoint and based on literature by another kind of
source, namely the open source community.

From an economics standpoint, motivation of contributors is derived from own-use. Making a
contribution solves a private need that adds to the own-use value of the whole project
(Lerner & Schankerman, 2010; S. Walli, 2007). Once a part of the public code base, future
versions is likely to continue to support that private need hereby obviating a costly task of
repeated merging of a private feature into a constantly evolving code base. As formulated by
Stephen Walli: “Individual projects behave as markets from one perspective, and code is
currency, the medium of exchange. Just like all economic exchanges, the contributor offers
something they value less (a fragment of code solving a particular need) for something they
value more ([own-use of] the functioning software package in its entirety). Nobody is working
for free in an economic sense” (S. Walli, 2007)

Support for own-use is prominent in literature from the open source community:

 “Every good work of software starts by scratching a developer's personal itch.”
(Raymond, 2002, p. 2). Raymond write “personal itch”, but general the “itch” can be
both personal and institutional (Fogel, 2015).

 “The essential condition is that the producers of the software have a direct interest in
its success, usually because they use it themselves or work directly with people who
use it” (Fogel, 2015, p. 23)

Hence, I would argue that own-use (in its broadest sense that include institutional use and use
by people in the immediate vicinity of a developer such as family use) is highly likely to play a

Open source from a community perspective

26

key role in an individual’s choice of contributing to a project. Being a contributor bears
opportunity costs, so there is a limit to what a developer has time to do.

Even if another motivation factor is dominant, like for example the wish to learn about new
technology, there are plenty of ways to learn about new technology, which do not involve
open source development. There are currently 1.5 million projects to choose from (North
bridge and Black Duck software, 2015) so the choice of joining a particular project is unlikely
to be random.

There must be a reason why a particular project is selected and not another. Hence I postulate
that, regardless of other motivations, the reason a contributor chooses to participate in a
specific open source project is very likely to be influenced by own-use fit and the overall
attractiveness of that project as further argued in chapters 6.6, 7.3, 8.7 and 10

6.5. Motivation of corporate contributors
The motivations of contributing companies are very different from the motivations of
individual developers. Likewise, the theories that can be used to explain their motivations are
different too. They are not from motivational theory but are related to economics, business
strategies and open innovation. In general, a reasonable premise is that the overall reason
that commercial companies contribute to open source is for business reasons such as
achieving competitive advantage (Andersen-Gott, Ghinea, & Bygstad, 2012).

Compared to the studies of individual developer motivation, there are far fewer studies on
motivations for commercial companies to contribute to open source projects.

Andrea Bonaccorsi and Cristina Rossi classify motivation of both individuals and firms into
the 3 main categories of economic motivators, social motivators and technological motivators.
In their study, “Comparing motivations of individual programmers and firms to take part in
the open source movement: From community to business” (CMOIPAFTTPITOSM-FCTB),
they compare the motivations of 146 Italian open source firms with individual Linux
developers. Somewhat unsurprising they find that while individuals are motivated by a mix of
intrinsic and extrinsic motivations in all 3 categories, companies are motivated not by
social/idealistic values but by economic and technological motivations (Bonaccorsi & Rossi,
2006). Most significant motivations identified by the study were:

 Economics:
o Independence of price/license policies of large software companies

 Technology:
o Community contributions/feedback useful to improve software and fix.
o Reliability and quality of open source software.

A study of 90 Dutch high-tech firms active in open source products and services offers few
direct insights on motivation but suggests that firms with foreign sales and/or focus on
product/service development/innovation contribute most to open source projects. They also
detail that most firms combine open source and proprietary offerings. (Stam & Joode, 2007)

A small study by Morten Andersen-Gott, Gheorghita Ghinea and Bendik Bygstad of 3
commercial IT service companies, identified the 3 main drivers for contributing to open
source as selling of complementary services, greater innovative capability and cost reduction

Open source from a community perspective

27

through outsourcing to the open source community (open sourcing) (Andersen-Gott et al.,
2012).

In a study of relationships between open source and companies, Linus Dahlander and Mats G.
Magnusson summarize literature findings about the rationale (motivation) for firms to
contribute using the same taxonomy as the CMOIPAFTTPITOSM-FCTB study. They identified
the following motivations theorized by literature:

 Economics:
o Pace development and gain competitiveness
o Using open source business models
o Cutting cost

 Social
o Sharing code with community
o Perception that software want to be free

 Technological
o Exploiting feedback
o Diffusion and win adoption
o Promoting standard

In summary, the limited literature and the few available studies point to a range of economic,
technological and to a limited degree also social reasons for companies to contribute to open
source. Rational reasons such as cutting costs, maximizing product adoption (West, 2003),
selling complementary products, achieving higher degree of innovation, quality
improvements etc.

6.6. Attraction of contributors from a social perspective
In the literature it is common to assume a direct link between motivation and the act of
making contributions but it appears there are other external factors as well that encourage
or constrain contributions (Krogh et al., 2012). Factors that are external to the individual
developer/firm and outside their influence have an impact whether they decide to make
contributions or not. This section will look at those external factors that are suggested by
literature with a focus on social factors that a project initiator can influence.

Before looking at external factors it is important to note, as observed by Jason Tsay, that open
source software projects and developers “operate with an unprecedented degree of
transparency” (Tsay, 2015, p. 3). On Github, Sourceforge and similar environments along
with their forums, outside users and developers can in detail observe all project activity,
communication, team arrangement, source code and deliverables. Outsiders can also follow
team members and discover who does what and what other projects each contributor is
associated with (Tsay, 2015).

Outsiders can easily spot if an open source project has problems either because of a direct
observation or because of missing information. An example of a direct observation that
indicates problems could be the existence of many recent unprocessed bugs in a bug database.
Examples of missing information include silence or lack of answers in response to questions
asked in forums (Corbet, 2010). Another example is missing data on code contributions over a

Open source from a community perspective

28

significant time, which indicates the project has stopped or been abandoned13. As noted by
Tsay, the transparency of open source projects yields a number of cues or signals that
outsiders can use to evaluate how mature and healthy the project is (i.e. how attractive the
project is). For example, by looking at the list of contributors and their relative activity, an
observer can judge if the community is large enough to survive14 independent of any
individual or founding firm (Fogel, 2015). Such input and analyses are likely to influence
developers’ decision to contribute or not (Tsay, 2015).

In particular activity cues are important when judging if a project is being maintained. A sign
of steady activity (like a heartbeat) is ideal. If a project has not been updated for a year, then
most people would consider it dead and lose interest (Allen, 2015). The activity should also
reflect frequent releases: “Regular and frequent software releases are advantageous because
they implicate high activity in the community and thus progress” (Stürmer, 2005, p. 68)

It is also easy to observe from forums if a community itself is dysfunctional such as its
members not answering questions, members being dismissive against newcomers, if the tone
is not constructive or the community has “poisonous” members. All of which are unattractive
signs of an unhealthy community15 (Corbet, 2010; Turk, 2013). A healthy (and therefore
attractive) community maintains good communication behaviour, is “honestly friendly” and
includes a high responsiveness where questions and bugs are addressed quickly (Stürmer,
2005). Right from the start16, the founding developers need to carefully set the wanted
discussion tone and establish the right culture. By insisting that newcomers follow such
rules, the community you get will be like-minded people (Collins-Sussman & Fitzpatrick,
2007)

The only significant literature available on external factors appears to be a narrowly scoped
study on ~4500 open source projects from 2006-2008 called "The attraction of contributors
in free and open source software projects" by the authors Carlos Santos, George Kuk, Fabio
Kon and John Pearson. The authors classify the external factors of influence as “project
attractiveness” which covers what actions a project makes and what characteristics a
project has, that are aimed at attracting new contributors. They find that users and
contributors “gravitate around only a few projects (in each application domain) because of
their tendency to select the ‘attractive’ project” (Santos et al., 2012, p. 15). Hence their
concept of project attractiveness is important as it decides which of competing projects win or
lose in getting contributors in each product segment (application domain).

Key factors that the above study found to be related to project motivation include project
stage (maturity), type of open source licence and popularity (number of hits, downloads
and members etc.). Specifically for project stage they found that projects at initial planning

13 A major concern, considering the high failure rate of open source projects as discussed in
section 8.11.
14 Related to “Truck Factor” or “Bus Factor”, which is the number of people that can be
unexpectedly removed from the project without the project collapsing (Wikipedia, 2016a)
15 A notable community initiative that promote inclusive and healthy open source
communities is the Contributor Covenant (Contributor-covenant.org, 2014)
16 “Building a supportive Community later in the game is extremely hard - You should start
day 1” (Widenius, 2016)

Open source from a community perspective

29

stages (planning, pre-alpha and alpha) impact attractiveness negatively while later stages
(beta, production, mature) increasingly enhance attractiveness.

Santos, Kuk, Kon and Pearson argue that, although not examined by them, community trust
in the project and its sponsors is likely to be key factors for project attractiveness (Santos et
al., 2012) Authors Margit Osterloh and Sandra Rota support that trust is important. In their
paper "Trust and Community in Open Source Software Production", they argue that new
contributors will only be willing to join a trusted project. In open source they related trust17 to
having the existing community adhere to accepted norms of open source conduct such as
reciprocity. Trustworthiness of a project requires a sufficient amount of intrinsically
motivated members as extrinsically motivated members will only contribute and behave
appropriately as long as it is in their own best interest. Potential new contributors can
estimate trustworthiness by observing the behaviour of a community. For example, they can
see if members offer mutual support on forums, help each other and answer questions
(Osterloh & Rota, 2004). For more trust and sponsorships refer to chapter 8.7.

Related to trustworthiness, the act of proper attribution of contributions is important in
growing a community. Project leaders should make sure new contributors to a community are
recognizably successful. Then other people would like to join too (Allen, 2015)

A fun community that people want to be part of is also an attractive parameter. As further
discussed in 7.1.1, Eric Raymond states that in order to attract a community for a project, one
needs to provide in advance a “plausible promise” in form of running software (Raymond,
2002). Forrest J. Cavalier writes that the promise is not just technical but also about
sociological benefits contributors will gain and about making a case that a sizable community
will come to be: “What both (of Raymond’s) projects (Fetchmail and Linux) did have was a
handful of enthusiasts and a plausible promise. The promise was partly technical (this code
will be wonderful with a little effort) and sociological (if you join our gang, you'll have as
much fun as we're having) (Cavalier, 1998).

Finally, some motivational incentives require an audience. Some developers will therefore be
attracted to work on popular projects with a large number of other programmers and/or
users. (Lerner & Schankerman, 2010)

17 “Swift trust” to be precise, because open source participants rarely have the chance to
develop “trust” in each other based on long term personal relationships and mutual control.
Swift trust can be based on encapsulated interests where it is believed that it is in the best
interest of the other party not to deceive. It can also be based on cognitive trust, which is
estimated personal characteristics of the other person (Osterloh & Rota, 2004).

Open source from a technical perspective

30

7. Open source from a technical perspective
In the technical perspective, open source initiation is about what must be produced before a
project is announced (pre-community), how technical architecture may facilitate
participation and what constitutes an attractive project in technical terms.

7.1. A plausible promise of a product and the MVP
How much software, if any and of which quality, needs to be written up-front by the project
initiator before efforts to recruit an open source community of co-contributors can be
successful? Is running code needed (and of a certain quality?) or is it enough to state a vision
or design that would-be open source contributors can rally around? This is a key question, as
the answer has significant impact on the project initiator firm’s costs, initial resource needs
and the timing on when to go open source with a new project

Unfortunately, I have found no scientific research done on this exact subject. I will therefore
examine the question in two ways. First by analysing what the open source community says
about this question. Secondly by involving learn start-up literature on a comparable subject,
the concept of a minimal viable product (MVP).

7.1.1. Views from the open source community on up-front code in initial release
Eric Raymond is of the opinion that the project initiator must have a showcase in form of
running software before releasing software as open source. The software does not need to be
of particular high quality though. Raymond writes in his famous paper “The Cathedral and the
Bazaar“ that in order to start building a community for a project one needs to provide in
advance a “plausible promise”, elaborating, “Your program doesn't have to work particularly
well. It can be crude, buggy, incomplete, and poorly documented. What it must not fail to do is
(a) run, and (b) convince potential co-developers that it can be evolved into something really
neat in the foreseeable future” (Raymond, 2002, p. 16).

Karl Fogel writes in his recently updated book “Producing Open Source Software - How To
Run A Successful Free Software Project” that “There is an on-going debate in the free software
world about whether it is necessary to begin with running code, or whether a project can
benefit from being announced even during the design/discussion stage.” (Fogel, 2015, p. 35).
He states that he once thought that running code was critical to attract serious developers but
has since changed his mind due to successful cases of Subversion and Mozilla that started
with design documents and without running software. Ultimately, however, he does conclude
that “Running code is still the best foundation for success, and a good rule of thumb would be
to wait until you have it before announcing your project” (Fogel, 2015, p. 35).

Michael Weiss expands in his paper on open source projects performance patterns, on the
work of both Raymond and Fogel. In his “Credible Promise” pattern, he emphasises the need
to provide a core set of the functionality up-front as developers will otherwise lack incentive
to join the project – not too much, though, as contributors should be left with unresolved
challenges (Weiss, 2009, pp. A5–3). He concludes with the advice “Build a critical mass of
functionality early in your project that demonstrates that the project is doable and has merit”
with the stated sole exception that “projects without running code can attract developers
when their creators have a high reputation” (Weiss, 2009, pp. A5–3). Citing Fogel, Weiss

Open source from a technical perspective

31

elaborates “For some projects the biggest attraction for other developers is not the
functionality (all that exists may be a specification), but the reputation of the project
founders” (Weiss, 2009, pp. A5–1)

Matthias Stürmer quotes in his thesis an interview with Gregor Rothfuss, a core developer
from the Xaraya project stating “It’s always better if there is already code available instead of
just ideas. In SourceForge there are many ideas that never catch on. If some code is already
available it’s much easier to find people because usually nobody has time to study ideas and
plans. You can’t submit patches for ideas. There are so many other things to do, so it must be
attractive” (Stürmer, 2005, p. 49).

Regarding the quality of the initial version Stürmer quotes an interview with Bernhard
Bühlmann, a community member of the Plone project “You should publish a software only
when its quality is sufficient” making reference to the case of Magnolia that got into a good
start because developers “were immediately amazed by the beauty of the code” (Stürmer,
2005, p. 50). Compared to Raymond, this suggests a much stronger emphasis on quality.

Stürmer refers to the importance of feature strength for the initial release by referring to the
success of TYPO3 with the following quote from an interview with Daniel Hinderink a
marketing leader from the TYPO3 project “I believe it was the sophisticated user interface and
the availability of a large range of functionality like a simple address book and a small
shopping system. There were about ten plug-ins that came along with the system. Compared
to other PHP projects at that time the code quality was very high. Maybe the worst example is
PHPNuke, which started out small but many people joined and then control got lost. [...]
TYPO3 was different because Kasper had already prepared a lot before publishing it. It was
much more complete than other PHP projects (Stürmer, 2005, p. 50). Same interviewee also
emphasised the importance of a stable (high quality) API in initial version (for a software
platform).

Jeremy Ruston, Head of Open Source Innovation at BT and founder of the TiddlyWiki open
source project, argues that without code you are really trying to form a standards group – not
an open source project. Upfront code is absolutely required to get traction. Enough code so
people can see and understand the vision of the project, but not so much code that it is too
late for other people in the community to influence the project in unforeseen ways. (Ruston,
2007) Similar to Ruston, John Mark, open source ecosystems manager at Red Hat, stresses
that outsiders are not going to contribute to projects that are too well polished: “leave some
loose ends” (OSSS.io, 2014a, pt. 15:50)

Pascal Finette, formerly director of Mozilla Labs, argues that his most important learning
point from the Firefox project was that “Superior Products Matter” and that “Mediocrity is
boring and exhausting … people don’t care” (Finette, 2012, pt. 16:48). In the absence of
massive amount of marketing (like for Coca-Cola), the only way to make people care and the
only way to attract contributors to an open source project is having a great product18. The
product must inspire people and represent something that people want to be a part of.
(Finette, 2012)

18 Great in the eyes of the community – not simply in the eyes of the inventor.

Open source from a technical perspective

32

Table 6 summarizes the different stated opinions/cases regarding the requirements on code
and quality of the initial release. The answers vary but most sources agree that some amount
of code of undetermined quality is needed.

Summary – Opinions on
strength of initial release

No quality requirement
explicitly stated

Quality a stated requirement

No running code required
(enough with design
documents)

Karl Fogel as of 2015 (Mozilla and
Subversion cases)

Michael Weiss (only if creators
have a high reputation)

-

Running code required –
promising feature set

Karl Fogel (his previous opinion)

Eric Raymond (plausible promise)

Stürmer / Rothfuss (Xaraya case)

Michael Weiss (critical mass
but not more)

Jeremy Ruston (enough code
but not too much)

Stürmer/ Bühlmann (Plone case)

Running code required
with strong feature set

Pascal Finette (Firefox)- Stürmer/ Hinderink (Typo3 case)

Table 6 Summary of stated OSS opinions on strength of product in initial release

My own opinion is that context determines the need for quality and running code. I view these
properties as very important, but ultimately only two of many factors that determine project
attractiveness. If the project has other strong and differentiating attractors, then a concrete
showcase and/or high quality may be less important than if the project has no other
remarkable attractors. My view is thus a generalized form of Weiss’s view that the need for
running code depends on the reputation of funders (Weiss, 2009, pp. A5–1).

Lean start-up’s Minimum Viable Product concept and starting an open source project

In this section I will discuss the popular theoretical concept of a Minimum Viable Product
(MVP) from Lean Startup and assess if it might be transferred to an open source project
initiation context. Can the concept of a MVP help to answer how much work should be done
up-front by the project initiator in order to attract a community of contributors?

In his famous and influential book, “The Lean Startup”, Eric Ries
describes an iterative method that companies can use to learn
how to end up with products that reflect what customers really
want rather then guessing. Companies set up their products and
development activities in a way so they continuously can collect
and act on data/feedback from customers during development

Figure 6 Lean Start-up cycle (source:
LeanStartup.com)

Open source from a technical perspective

33

(Ries & Hartman, 2011). The development cycle he suggests is illustrated in Figure 6.

The first cycle starts with a MVP, which according to Ries is the result of a minimum
development effort/time that is required to jumpstart, the build-measure-learn loop. The
goal of the MVP is to facilitate learning as soon as possible and thus avoid making mistakes
such as producing products that customers do not want. MVP begins the learning process but
does not end it. Specifically, it is the first step in continuous testing of major business
hypotheses made by the creator. As such it goes beyond simply answering predetermined
technical/design questions from a prototype (Ries & Hartman, 2011).

A key part of a MVP is allowing or facilitating feedback from potential customers, which may
involve the creation of special instrumentation in the software. Apart from this measuring
aspect of experimentation, the MVP should contain just enough features or promise that it
makes sense for a real customer and allow that customer to start giving valuable feedback.
Therefore, a MVP is not supposed to be perfect in any way nor does it contain all essential
features – it does not even have to actually run as working software. Depending on context,
MVP’s can be simple landing pages, paper prototypes, video demonstrations, an explicit or
hidden human replacement for a digital service or even early working prototypes with both
features and bugs (Ries, 2011). According to Reis, there is no common rule for deciding how
complex a MVP should be (although most people overestimate it): “Deciding exactly how
complex an MVP needs to be cannot be done formulaically. It requires judgement” (Ries, 2011,
p. 95)

Reis further argue that an MVP should care little about quality, because at the MVP stage little
is known about what attributes of a product the customer values and without that knowledge
quality cannot be defined: “If we do not know who the customer is, we do not know what
quality is” (Ries, 2011, p. 107). He further argues that a low quality MVP does not hinder an
eventual high-quality product and if customers perceive the MVP as low quality then this
should be considered a learning opportunity to identify customer’s quality attributes (Ries,
2011).

Iterative processes and MVP’s are difficult to get right. Figure 7 is a copy of a famous
conceptualization of development cycles by Henrik Kniberg, which has since gone viral,
appearing in numerous places in literature and on the web. Kniberg argues that the MVP to
the left, and subsequent results of each development cycle must provide increasing, useful
value for the customer. Parts of a car has no value for the customer but a skateboard and
various other types of vehicles has value (Kniberg, 2016).

Figure 7 How to start with the right MVP … or not (source: Henrik Kniberg)

Open source from a technical perspective

34

Despite its popularity, Kniberg’s illustration has one major flaw, which makes his “Like this!”
example (in 2nd row) almost as problematic as the first example and serves to underscore how
difficult iterative processes and MVP’s can be to get exactly right. The problem is that product
and customer segment change at each iteration. The customer that is in the market for a car is
not likely the same customer that is in the market for a skateboard. Accordingly, product
feedback from a kid using a skateboard MVP is unlikely to be relevant for a future adult
making purchasing decisions on a car (Helen Walton, 2015).

Lean start-up and MVP’s have attracted a fair amount of criticism which has been summed up
by Jan Heitmann (Heitmann, 2014). Criticism includes:

 Essentially no real scientific evidence that the lean start-up methodology is
advantageous.

 A focus on engineering over marketing, sales and revenues, which can cause a start-up
to run out of money.

 Focus on early adopters that do not represent the whole market.
 A bad first impression from an inferior MVP can be difficult to work around.
 Game changes and highly ambitious products like

planes or spaceships need to be presented in total
in order to be convincing for a start-up: “Usually, in
order to change the world, you need to hit the market
with force, at some point. The world doesn’t beat a
path to your door just because you built a better
mousetrap.” (Mougayar, 2013 Attributed to Marc
Andreessen).



According to established ux/designer Andy Budd, MVP can largely be seen as an approach to
maximizing the interests of people that fund a start-up such as cheaply finding out if a
business is viable, if there are customers that will pay money for a product etc. An MVP is not
designed to maximize the interest of users/customers. Hence, the lean start-up cycle and
MVPs tend to miss or impair design aspects that make products delightful and desirable: “It’s
really easy in minimal viable products to actually design the delight out of them” (Budd &
Traynor, 2013)

In our open source context, the “customers” and target of the MVP are potential contributors
to the software project that the project initiator needs to convince people to join the project.
The price an open source contributor pays is not monetary but the time spent on the project
(an opportunity cost (Lerner & Schankerman, 2010)). Thus, in an open source project,
contributors “pay” their opportunity cost for participating in development but using the
resulting product is effectively free. This is different from a typical commercial lean start-up
setting, where customers pay for the product/service they receive and the start-up funders
and outside investors pay for development.

Also different in the two contexts are the amount of payment and risk. What contributors are
asked to risk and “pay” is much higher than what a customer is asked for in the MVP examples
mentioned by Reis in his book. Relatively speaking, open source contributors are effectively
asked to make a non-trivial and potentially lengthy investment of their time. It therefore
makes sense that contributors’ need for reassurance (measured in product features and

Open source from a technical perspective

35

quality) is higher than for a customer that, based on a MVP, agrees on one occasion to try out a
new product or service for a trivial monetary amount.

For all its flaws and dangers, incorporating some aspects of MVP thinking is attractive when
resources are scarce such as for a small start-up initiating an open source project. In
particular, I think Reis makes a convincing argument that quality is in the eye of the beholder
so that optimizing early for quality makes little sense before there are real contributors and
users to optimize quality for.

One should keep in mind however that the real goal is to attract contributors, which is not the
focus of a MVP. For example, if one is building an open source software equivalent of a smart
new car, can a YouTube video MVP or a skateboard MVP serve to persuade rational minded
software developers that the project is worthy of their time and does such a MVP help instil
confidence that the project is likely to succeed (and they thus get a return on their
investment19 of time and effort)?

7.2. Technical participation architecture of communities
Carliss Y.Baldwin and Kim B.Clark argue that software architecture of an open source
project is largely decided by the initial designers of a software solution. Designers can use
software architecture to make participation easier and therefore affect developers’
incentives to contribute to a project. Specifically, they argue that software architectures that
have high software modularity combined with high option value is especially suited for open
source projects and will positively affect participation and effort by outsiders (Baldwin &
Clark, 2006).

Modularity is about independently designed parts that work together to support a whole
(Baldwin & Clark, 2006). Modularity decomposes the software into smaller modules, which
can be understood and managed independently, along with standards for how modules
interoperate. The modularity of software thus enables division of labour, reduces cognitive
complexity and acts as an enabler for distributed innovation allowing different people, units
or organisations to work independently on different modules of the same software product20
(Baldwin & Henkel, 2012).

Option value is about being “tolerant of uncertainty” and welcoming to experimentation or
more precisely the ability to adapt the software to new or unforeseen requirements. Options
are about rights and abilities but not about obligations. Options are generated by modularity
(Baldwin & Henkel, 2012, p. 1117).

A common way to provide modularity and option value in software is to support plug-in
modules (also called extensions or add-ons) to extend a common application, framework or

19 From the view of a contributor to an open project, the act of making a contribution can be
seen as similar to making a financial investment in a risky business: “When developers join
they need to make an investment in your project, something they lose if your project fails”
(Weiss, 2009, pp. A5–3).
20 In addition, modularity has a positive effect on quality as shown by a study of 100 open
source projects that established a clear relationship between quality and high modularity
(Aberdour, 2007).

Open source from a technical perspective

36

platform. Plug-ins are similar to Apps in iOS and Android except that Plug-ins are typically
less self-contained in functionality and do not necessarily have a user-interface in itself. To
support plug-ins the product core/framework must provide a well-defined plug-in API,
document rules for using the API correctly and provide some way to host, install and run/stop
plug-ins. Plug-ins must in turn call into the common plug-in API to provide their features. For
plug-ins, the application/platform/framework is in charge and the plug-ins can only do what
is permitted. As for Apps, plug-ins can be added and updated at any time by 3rd parties, while
changes to the underlying system core/framework/operating-system requires central
planning and control.

Kohsuke Kawaguchi, the founder of the successful Jenkins project, describes plug-ins as giving
each developer their own “sandbox to play with” and argues that plug-ins represent “the
single most important requirement for building a developer community” (Kawaguchi, 2012,
pt. 13:40). To be more precise, the benefits that positively affect participation according to
literature include:

 Lower barriers to entry because a plug-in contributor need only to understand how
to leverage the relatively small plug-in API – he/she does not need to understand the
way the core system is implemented (Stürmer, 2005). In particular he/she does not
need to understand other plug-ins. Developers are sheltered from “crappy code” of
others (Kawaguchi, 2012, pt. 15:00)

 Uncontrolled yet simple and safe innovation. Plug-ins “encourages innovations
without your making risky bets” (Kawaguchi, 2012, pt. 15:15) and allows simple
cooperation (instead of complex collaboration) as mentioned in chapter 6.3.
A successful example, mentioned by David Eaves, is add-ons to the Firefox browser.
Before add-ons in Firefox, every individual feature required negotiation with a module
owner and subsequent integration into Firefox’s main source code. An elaborate
process which was painful. The introduction of the add-on mechanism in Firefox
turned a complex collaboration problem into a much simpler cooperation problem. By
following a set of simple guidelines, add-on developers could now create and deploy
new features without anyone’s permission. (Eaves, 2011, pt. 21:05)

 Facilitating contributors with different skillsets/knowledge without compromising
the quality of the underlying system core. According to Jeremy Ruston, Head of Open
Source Innovation at BT and founder of the TiddlyWiki project, projects with
monolithic architectures (without plug-ins) are often presented with patches
(contributions) of low quality that cannot be integrated in a common code base
(Ruston, 2007).

 People feel a sense of ownership/stake in their plug-in (Kawaguchi, 2012, pt. 15:00)
 Reducing the official code base of the project. Statistics show that as the code base of

an open source project increases, the activity and number of contributors decrease
(Rich Sands, 2012). In that regard it is therefore beneficial for an open source project,
that the main core of the project stays small and code is moved to plug-ins, that do not
need to be part of the main project.

 Economics of scale in overall software production because a fixed investment in
common design decisions regarding architecture, interfaces and standards in the core
can be reused across many plug-ins (Vilen, 2013)

While plug-ins constitute a safe, easy and uncontrolled place of innovation suitable for a large
number of contributors, the core software foundation needs to be of high quality and thus

Open source from a technical perspective

37

under more strict control. The core should be maintained by a much smaller set of core
contributors that have all the required skills and knowledge (Ruston, 2007).

In a plug-in bases system, the increased technical complexity and governance of the core
should not be a major problem, as the core is not going to attract many developers: “It is
actually only a very small amount of people who typically innovate at the core... Thinking that
thousands of developers are going to come and innovate your core is really not the way open
source works. If you can create opportunities for people to add value through API’s and
through ways to contribute around the fringes (such as plug-ins) that is when you get the big
multiplier effect (of open source)” (OSSS.io, 2014b, pt. 14:45 Andi Gutmans, Co-Founder
Zend). Daniel Hinderink, a marketing leader from the open source TYPO3 project, voices a
similar viewpoint: “[Most contributions are] definitely in the extensions. There were some
donations but most of the activity is in the extension area... When … introduced into the
TYPO3 project the community actually exploded” (Stürmer, 2005, p. 53).

Figure 8 summarizes how plug-ins can be used to promote participation and innovation with
a wider community.

Figure 8 Plugin modularity and innovation in the community

I see one downside of plug-in modularity being that design of the plug-in API is non-trivial
requiring a wide range of architecting, design, programming and security skills that in my
experience, few software developers possess. Also, a plug-in API means that additional work
is needed in form of a plug-in repository/store, plug-in update mechanism, documentation
and more. I also view it difficult (in some cases even impossible) to properly isolate execution

Open source from a technical perspective

38

of plug-in code so that serious bugs, misuse of shared resources and even malicious21 code
does not negatively affect other plug-ins or the core system itself. Without proper isolation
systems are insecure, difficult to debug and won’t scale safely with many plug-ins. I suspect
the above downsides explain why many software projects that could benefit from plug-ins
may lack plug-in support (at least initially)

For new contributors, plug-ins may also make it almost too easy to add functionality, which
may result in some low-quality plug-ins. The community can help here by providing reviews
and ratings etc. (Stürmer, 2005). Another potential problem with plug-in-based ecosystems
is duplicated work and losing track of contributions. Ecosystems with plug-ins thus need a
“center of gravity” that sustain a coherent project as a whole, enables sharing/reuse and
helps attracting new core developers (Kawaguchi, 2012, pt. 15:45)

7.3. Attraction of contributors from a technical perspective
Fundamental in the discussion of the technical factors that encourage or constrain potential
contributors in making contributions, is the concept of a “plausible promise” discussed in
chapter 7.1. In other words, a convincing and working showcase of the product vision is part
of what attracts contributors.

Unlike the details of what motivates developers, there seem to be a consensus in the literature
that the road to contributing to a project starts with using (or evaluating) the software first
(Aberdour, 2007; Nakakoji, Yamamoto, Nishinaka, Kishida, & Ye, 2002; Riehle, 2014; S. R.
Walli, 2013b). As remarked by Stephen Walli, “People don’t go trolling across the Internet
thinking I need me an open source project to contribute to today” instead people (developers
or not) are initially users looking to address a need with a piece of software (S. R. Walli,
2013b, pt. 11:28).

Related to needs, the discussion of motivation in 6.4 notes own-use as an important extrinsic
motivation factor of an individual. However, own-use as motivation can only come into play if
there is a fit between what the project’s software does and what the potential contributor
needs. The degree of fit depends on both the individual’s needs and the project’s software. It
therefore follows that project attractiveness must be influenced by the (partly) external factor
of functional (and non-functional) fit between the needs/requirements of the contributors
and the project’s existing software and/or its goals.

In addition, in the event of a fit between need and the project, I believe that the strength of the
need (urgency, importance or frequency etc.) is likely to influence the attractiveness of
making a contribution. I strongly suspect that open source projects that produce tools that are
used daily by developers (or in production) are much more likely to receive contributions
than projects with output that are useful on special occasions only. I have no direct references
to literature that addresses this point in an open source context, but I do find my claim

21 An example of security problems with plug-ins is a recent security research paper warning
about Firefox add-ons/plug-ins (Buyukkayhan, Onarlioglu, Robertson, & Kirda, 2016). Firefox
does not always isolate individual add-ons which is ”opening millions of end users to a new
type of attack that can surreptitiously execute malicious code and steel sensitive data”
(Goodin, 2016)

Open source from a technical perspective

39

supported by the fact that all extra large and large open source communities listed in
Appendix D are of the type that are likely to be routinely used.

Because successful usage comes before potential contributions, attractiveness of a project
must include concepts like ease of installing, configuring, building and running the
software (S. R. Walli, 2013b). If the user finds these tasks hard it is likely he/she will give up
on the project (Harding, 2014; S. R. Walli, 2013b). In a similar way to selling products, it is
important to make it “super easy”22 for people to use one’s product by providing ready to use
executables and automated installers that are easy to find (Kawaguchi, 2012; OSSS.io,
2014c; S. R. Walli, 2013b). In addition, user attractiveness is facilitated by documentation
targeted at users (FAQs and How-to) along with a communication platform that users can
go to for support and for reporting bugs. (S. R. Walli, 2016). For more coverage of user
attraction from a marketing standpoint see chapter 8.8.

A related external factor to ease of using the software is how easy the project makes it for
potential contributors to experiment with the software and to develop and deliver an actual
contribution to a project. Here it is important that the benefit outweighs the opportunity
cost of making a contribution: “Donators are more willing to contribute if the private
opportunity costs are not too high” (Osterloh & Rota, 2004, p. 15).

In terms of construction support, the low hanging fruits of attractiveness of contributing are
about publishing the complete source code in an accessible way and to automate building
and testing for developers. In terms of community support, low hanging fruits of
attractiveness are a clear mission23 statement, concrete contribution guidelines and a
useful communication platform for discussions, code management etc. (S. R. Walli, 2016).
Finally, good documentation that supports a gradual learning curve has been shown to be
responsible for attracting developers (Aberdour, 2007).

In relation to construction support, Kohsuke Kawaguchi argues that developers like to work
in their “own sandbox” without having to look at the code of others (Kawaguchi, 2012). As
discussed in chapter 7.2, this implies a modular architecture with API’s and plug-ins.

Overall quality of code is also indicated to influence project attractiveness. On general
adoption of open source, a recent survey by Forrester found better quality software to be the
most important factor of all (user) adoption drivers (Hammond, 2014a). In support Stürmer
quotes in an interview with Bernhard Bühlmann, a community member of the Plone project,
Bühlmann stating that the Magnolia project got into a good start because outside developers
“were immediately amazed by the beauty (quality) of the code” (Stürmer, 2005, p. 50). Finally,
Michael Widenius, the founder of MySQL, argues that good quality creates the confidence in
the product for people to contribute and therefore every release (even alpha versions) should
be of high enough quality for people to use it in production: “People will first use your product

22 Same as the old rule that commercial software must be easy to use to be successful: “In the
early days of PC-based software (in the early '90s) there was the 5-Minute Rule (or 10-Minute
Rule depending on who you consulted) that said if the software didn't install and do
something useful [very] quickly it became shelfware” (S. R. Walli, 2013a)
23 The mission statement should be carefully scoped. If it is too broad the wrong contributors
will be attracted, if it is too narrow there will be little or no community interest. Non-goals are
also a good way to clarify the mission (Collins-Sussman & Fitzpatrick, 2007).

Open source from a technical perspective

40

and only start extending when they believe in it and it's easier to extend it for their own needs
than move to something else.” (Widenius, 2016)

Developers cluster around specific technologies/techniques/tools, often with strong feelings
for/against using certain technologies, tools and techniques (Stackoverflow Survey, 2016).
Most developers are unlikely to switch to a new programming language or technology
platform just because an otherwise interesting project is using it. As remarked by Paul Glen:
“Technologists are more loyal to their technology than they are to their industry, enterprise,
manager, or group. They are attracted first and foremost to technique.” (Glen, 2003, p. 20).
Hence, in terms of project attractiveness, I believe technology and infrastructure choices are
strong influencers.

The project must choose a suitable project infrastructure that can support the social and
development needs of the community. Projects should not try to force tools, especially
proprietary tools on the community. Instead “go where they are already” (OSSS.io, 2014a, pt.
21:18). The project initiator must “learn, live and love” what the larger community already
uses (OSSS.io, 2014a, pt. 21:10). A key infrastructure choice area is project hosting where
github.com completely dominates as the most popular hosting solution for new open source
projects (Rich Sands, 2012). For communication mechanism, a multi-channel approach is
needed. Given a varied, distributed community in different time zones “most communities
require like 5 different (communication) tools” (OSSS.io, 2014a, pt. 20:50)

On the topic of technology choice, Stürmer quotes von Krogh stating “some computer
languages are widespread and can attract a large number of potential contributors, while
others are known by few, and thus raise contribution barriers” (Stürmer, 2005, p. 44).
However, while he is supported by a majority of projects having been written in either Java or
in the C/C++ family of programming languages (and increasingly also JavaScript), the usage of
programming languages is increasingly fragmented24 among different groups of developers
(Berkholz, 2014; Rich Sands, 2012). It should be noted that programming language choice is
closely associated with development platform choice.

Other technology related design choices are what tools and code libraries the project depends
on. Costly proprietary dependencies or just a high number of complex dependencies can
make it most difficult for potential contributors to develop for the project. (Corbet, 2010)

24 In other words, some open source developers prefer niche programming languages
compared to mainstream languages. According to my own personal experience, I find that
developers that use niche languages tend to have above average skills and/or a passion for
their choice that makes them willing to go to great lengths to use the language in practice
(which tends to be in their free time only). Hence, I speculate that the niche language usage
may represent a considerable opportunity to attract early adopter types of contributors
(while being a hindrance for scaling the community of contributors later on).

Open source from a business perspective

41

8. Open source from a business perspective

8.1. The commercial market and adoption of open source
Market penetration of open source software has reached 86% of all companies in non-
technical industries and probable 100% in technical industries (Volpi, 2014). Consequently,
100% pure proprietary software is essentially non-existing, as “all software categories use
(open source) or have dependencies on it” (North bridge and Black Duck software, 2015). In
particular, developers building new types of applications adopt open source to a high degree.
93% of cloud developers use open source, 92% of mobile developers and 78% of big data
developers use open source (Hammond, 2014b).

With the advent of open source becoming mainstream, there is a shift towards software
developers being decision makers in regard to software adoption in the enterprise according
to Forrester: “The path from developer to customer is getting shorter…. More than ever:
Developers can block – or significantly aid the adoption of software" (Hammond, 2009).

As illustrated in Figure 9, according to
Forrester, the adoption of open source
software by developers in the enterprise
is driven by a combination of lower
overall cost, adoption speed and
integration of new capabilities. In
particular, fast acquisition is perceived
as a major benefit in enterprises since
developers can use open source without
prolonged contact with a procurement25
department (Hammond, 2010). Forrester

furthermore sees unusual potential for
open source software to expand all three
elements of the iron triangle in
comparison to traditional situations where one must sacrifice either cost, schedule or
capability to expand the other elements (Hammond, 2010).

8.2. Innovation and open source
There are two principal models of encouraging innovation in organizational science: A
collective action model and a private investment model. (Hippel & Krogh, 2002; Stürmer,
2009)

In the collective-action innovation model, the output is non-rival, non-exclusive public goods
that can be used by anyone and with the related knowledge released to the public. Public
goods introduce the free riding problem, because 3rd-parties have the option of not

25 According to Jeffrey Hammond from Forrester, enterprise developers often find it so
troublesome and time-consuming to deal with their procurement departments that they first
try open source and only go for commercial products if they can prove that all open source
alternatives do not work (Hammond, 2014a).

Figure 9 Why developers drive adoption of open source
software – source (Hammond, 2010, 2014a)

Open source from a business perspective

42

participating in the work yet still benefit from the result of all the work of others. Therefore
governments often fund public goods themselves or motivate basic research by subsidising it.
Another motivator to overcome free riding, is increased reputation of contributors or a
culture of reciprocity and knowledge (Hippel & Krogh, 2002).

In a typical private investment model, companies generate economic rents from their
innovations through exclusive private goods protected by secrecy or intellectual property
rights like copyright, patents, licences etc. (Hippel & Krogh, 2002; Stürmer, 2009). For a
commercial software company, the ‘secret source’ of their business is the source code for
their digital products and services. In the software business, this model is also called closed-
source as revealing/sharing source code makes little sense when operating under a private
investment model, as it challenges exclusivity and hence the basis for generating significant
returns from investments.

Neither of the established innovation models above explains why a significant amount of
contributions to open source comes from commercial companies (or individuals with a profit
goal). Hence, the paper, “Open Source Software and the ‘Private-Collective’ Innovation Model:
Issues for Organization Science” (Hippel & Krogh, 2002) introduces the new private-
collective compound innovation model .

The private-collective model explains the creation of public goods, such as open source,
funded by private means. The model assumes that both the public good and the creation
process itself produce benefits. By participating in the innovation process, the contributors
will gain tacit knowledge/expertise. Hence a contributor, by the very process of
contributing, will benefit more than a free rider. (Stürmer, 2009)

The doctoral dissertation “How firms make friends: Communities in private-collective
innovation” concludes that the success of a private-collective model requires a thriving
community (Stürmer, 2009). To create a prospering community, a company must both reveal
their knowledge, such as source code, and demonstrate a significant and credible long-term
commitment to working with outsiders in a community. In return a company may gain an
interorganisational competitive advantage, a “realm of friends”, created by long-term
network relationships with other firms and individuals that depend on mutual understanding
and trust. This is an advantage, which cannot be bought and is difficult to imitate, hence it
constitutes a valuable relational asset (Stürmer, 2009, p. 10).

Stürmer’s concept of a relational asset uses a new relational view of competitive advantage
as defined by Dyer and Singh (Stürmer, 2009) . A relational view is an alternative to
strategizing about industry selection and positioning in Porter’s industry-level structure view
and also an alternative to the resource-based view where competitive advantage derives
from efficient application of tangible/intangible company assets that are at best rare, valuable
and inimitable. (G. Johnson, Whittington, & Scholes, 2011; Stürmer, 2009)

According to Forrester, industry innovation is shifting to collaborative developer collectives
(aka communities) around open source. A shift where collectives act as “centres of gravity for
development going forward into the next decade” (Hammond, 2014b, pt. 19:00). Enterprises
can either be consumed by the generational changes that open source is part of, or restructure
and learn how to work with open source communities, build on top of their work and attract
talent from those communities. (Hammond, 2014b)

Open source from a business perspective

43

8.3. Copyrights and licensing of open source
Ownership of copyrights and the choice of open source licence are paramount for a company
that is planning to start an open source project. They influence community participation
and determine which business strategies and which business models are possible
(The451group, 2008). After engagement with the community has started and outside
contributions have been integrated into the code base, copyright law, the difficulty in
contacting all involved developers and the perceptions of the community make it hard to
change the license. Hence, a project initiator should “consider the choice of the open source
license very carefully because later on it becomes difficult to change without losses” (Stürmer,
2005, p. 46)

Open source licenses can be divided into permissive licences and various degrees of
restrictive licences (Harris, 2015). Permissive licences allow the licensor to use, modify and
distribute the software in almost any way without any obligations that are significant from a
business standpoint. Permissive licences are non-copyleft and allow private modifications to
the code. Prominent examples of permissive licences are MIT, BSD and Apache.

Restrictive licences are also known as reciprocal- or copy-left licences. They use copyright
law to force the licensor to make modifications of the code available under similar terms as
the original. Restrictive licences can further be divided into strong copy-left licences (GPL,
AGPL) and weak copy-left license (LGPL and Mozilla). In simplistic but slightly misleading
terms, GPL/AGPL has been called a viral license because it requires the licensor to open up
all their code that touches the GPL/AGPL code (Meeker, 2015). A viral requirement, which
some corporate users find highly unattractive/dangerous and which in turn can constitute
both a problem and leverage for the vendor.

Overall, the most popular licence is GPL when including older projects. However, its relative
share has been steadily declining over the recent years as projects are increasingly
permissively licenced (Aslett, 2012). On the market leading open source project site
github.com (Rich Sands, 2012), which contains most new projects, the MIT license is the most
common licence (Todorović, 2015).

Figure 10 shows a scale of how permissive/restrictive the 7 most popular licences are (Harris,
2015). A more detailed illustration that points out the possibilities and obligations associated
with each model is provided in Appendix C.

Figure 10 Open source licence spectrum – source: (Harris, 2015)

Open source from a business perspective

44

Generally, permissive/non-copyleft licences is about giving up control and instead maximize
participation, innovation and the possibility for monetization by any members of the
community. Starting a project under a permissive licence works well for companies that are
selling complements such as hardware companies (Germain, 2015; The451group, 2008). In
other commercial cases, permissive licences may be considered too much of a gift to
competitors and free riders (The451group, 2008).

In opposition, strong copyleft is used to maximize control. The free software communities use
strong copyleft to ensure that the project and all its deviations remain open and free. The
strong copyleft also works well for commercial vendors that use strong copyleft in
combination with copyrights26 to make sure only they can close-source and effectively
monetize the project (Aslett, 2012; Germain, 2015; The451group, 2008). For example, such a
vendor can sell commercial closed-source extensions to an open source core that it, as the
copyright holder, has exclusive rights to make (open core licensing). Another example is
leveraging the fear of a viral license to sell a product under an additional and more business
friendly license (dual-licensing). Finally, strong copyleft gives a vendor that is the copyright
holder the ability to “dictate the terms by which the code can be productized by potential
competitors” (The451group, 2008, p. 32).

In reality, I find it rare for a project to have all its code under a single license. Most projects
use code from other open source projects, resulting in a mix of different licences or different
versions of the same licence. Unfortunately, this leads to legal complexity because copyleft
licences can be combined one-way with certain permissive licences but not the other way
around. In addition some licences are entirely incompatible. For example, the GPLv2 licence
used by Linux cannot be used together with the Apache Licence or even with the more recent
GPLv3 (Fogel, 2015; Meeker, 2015).

Finally, the overall type of licence plays an important role in how attractive a project is for
contributors and for the type of contributors that the project can attract. First and foremost,
in order to be generally accepted as open source, the licence must be approved by the Open
Source Initiative (OSI). All the licences mentioned in this section (and this thesis) are OSI
approved.

Some vendors create special non-OSI approved licences, which restrict use, access or
distribution of the source. The result is gated open source, which open source developers
tend to strongly dislike. It is very rare that hobbyist contributors will contribute to gated
projects, leaving need-driven developers as the only contributors to such projects (Shah,
2006)

8.4. Naming and associated intellectual property rights
Besides licensing there are other forms of intellectual property (IP) that a firm must manage
or acquire during project initiation. First and foremost the firm must chose a good name for
the project that can help with adoption. A good name gives a good indication of what the

26 Copyright is here assured by having requiring contributors to sign Contributor Licence
Agreement (CLA) or by not accepting outside contributions at all. In both cases, outside
participation suffers (Fogel, 2015)

Open source from a business perspective

45

project does and should be a name that people can remember. In addition the name must not
be taken already by another project/entity at various online services such as social media
(Fogel, 2015).

After choosing a name, the firm should register the name at the chosen open source project
host platform (e.g. github), register the associated domain name and register
handles/accounts on social media and on other relevant online services such as Twitter,
Facebook, IRC etc. (Fogel, 2015).

In addition the company should consider acquiring trademarks for the name either for
defence or for making it difficult for competitors to offer services using the name of the
product.

After going public with the project, acquiring these names and rights might be too late, so it is
important to do so at the project initiation phase. Note that without first acquiring names and
rights, most of the marketing activities in 8.8 make little sense.

8.5. The business side of participation architecture for communities
The business side of participation architecture is mostly about intellectual property (IP) and
is decided by a combination of ownership and openness by licensing. In addition software
modularity plays a new role.

Transparency and accessibility, the key components of openness that determine the level of
participation by outsiders, are respectively about “rights to use code and access source code”
and “ability to reuse and recombine code in the creation of derived code” (West & O’mahony,
2008, fig. Table 2). Ownership is about copyrights to projects and potentially also derived
subprojects (West & O’mahony, 2008).

In regard to openness, vendor sponsored projects (that are truly open source) are much like
autonomous projects. However, in regard to ownership vendor sponsored projects are unlike
autonomous projects in that the vendor tends to keep ownership of the core project (West &
O’mahony, 2008). Dirk Riehle, states that this is an IP rights imperative: “Ensure that this firm
and only this firm has the relicensing rights for the software.” (Riehle, 2009).

8.5.1. Revisiting software modularity from a business standpoint
Modularity of software was discussed in chapter 7.2 as a technical way to promote
participation. There are, however, business reasons for looking beyond technical aspects of
software modularity and for defining module boundaries in ways that are different or
suboptimal in regard to the traditional technical perspective of software architecture. These
business reasons are related to strategic positioning against competitors and to IP rights.

Firstly, software modularity can make it easier for third parties to imitate or substitute
individual modules which can affect a firm’s competitive situation (Baldwin & Henkel, 2012).
As an example, API backed modularity was exploited in the early days of MySQL to win over
the incumbent mSQL database that had a position of strength because it was a part of the
standard Python programming language distribution. MySQL decided to emulate mSQL’s
exact API used by Python. With MySQL’s additional benefit of being more stable, MySQL could

Open source from a business perspective

46

then win over mSQL’s users (OSSS.io, 2014c Mårten Gustaf Mickos, CEO at MySQL 2001-
2008).

Secondly, software modularity can also be used to protect IP by keeping some parts open and
some parts closed. IP modularity is when technical module boundaries are aligned with IP
rights. Code that is differently open/closed or differently licenced are placed in different
modules even if it is suboptimal from a technical or community standpoint. For example
SugarCRM uses IP modularity to support two different configurations of their product: “we
purposely keep the modularity in such a way that we can easily create different [open source
and proprietary] editions. What we sell is based on IP modularity” (Waltl, Henkel, & Baldwin,
2012)

Since software architecture is difficult to change for existing software, a project initiator
should thus consider IP and defensive needs when designing the software architecture.
Hence, software architecture is too important to leave solely to developers.

8.6. Open source, monetisation and business models
On the importance of business models in an open source context, Bruno Lowagi reminds
developers that “Good (open source) engineers build great technology; great engineers also
create a sustainable business model.” (Lowagie, 2014).

There is plenty of literature about the concept “open source business model” but I take the
view of Mårten Mickos, Jim Whitehurst, Stephen Wallli and Matthew Aslett that there is in fact
no such thing. Open source is a production-, licensing- and distribution model. It is not a
business model. As exemplified by Mickos, using robots for manufacturing is a production
issue that is certainly not about how value is delivered or captured by an organisation.

Monetisation of open source is essentially about complements. For software vendors it is
not feasible to earn money from something that has been given away for free, but it is possible
to earn money on something extra, a complementary good or service that, when combined
with the free software, adds value to the combined offering. Hence, to monetize from open
source software, something must be added to it (Aslett, 2010; Germain, 2015). Frequent
examples of complementary offerings include additional software, additional hardware and
support services.

As illustrated in Figure 11, Matthew Aslett, analyst at the451group, has created an interesting
visual framework for analysing strategies of open source software vendors, which he has
applied to strategies of 300 software vendors (Aslett, 2010, 2011). Detailed definitions of the
terms used in his model are provided in Appendix B.

While not being as complete in coverage of elements of a business model as Alexander
Osterwalder’s canvas, Aslett’s model does cover the open source aspects of business models
very well and in much more detail then Alexander or any alternatives that I could find in
academic literature.

Open source from a business perspective

47

Figure 11 Elements of an open source business strategy – source (Aslett, 2011)

In Aslett’s model, the upper triangle (Revenue triggers - Copyright control - End user licensing)
drives customer relationships and the lower triangle (Software license - Copyright control -
Development model) drives community relationships. According to the topic of this section, I
will focus on the upper triangle.

Revenue triggers are the causes for “for users to hand over money in return for goods and
services not available with the open source code itself” (The451group, 2008, p. 8) and include
for example support subscriptions, a paid digital service built on the open source software or
complementary products (other products/services).

Copyright control specifies who owns the full copyright of the code, which is important as
ownership specifies who can make licensing decisions, which again are the key to any
monetization strategy. Examples include vendor owned copyrights and copyrights distributed
among the individual developer.

Notable examples of end user licensing from the model are the typical open source licence
(single), dual licensing (typical GPL + an business-friendly license) and open core licensing
where the core project itself is open source but plug-ins or additional features are available
under a separate closed-source license.

Different configurations of selected elements in each of the 5 areas in Aslett’s model translates
to different business strategies as illustrated in Figure 12.

Open source from a business perspective

48

Figure 12 Examples of open source business models – source: (Aslett, 2010)

Of the business strategies shown in Figure 12, I find that the dual licensing strategy (MySQL)
and the open core strategy has the potential27 to be commercially attractive because they
provide unique value to customers that competitors are unable to provide. With the right
product, the right overall business model and the right execution, these strategies should be
able to yield attractive economic rents (assuming they can attract the community they need).

My opinion is shared by industry veterans such as Mike Olsen who says “We have to have
reasons for (customers) to buy our products uniquely” (Olson, 2013) or Mårten Mickos who is
of the opinion that “most companies have concluded by now that you must have some
features that only the paying customers can obtain” (Mickos, 2011, pt. 01:22) or Mike Volpi
who argues that “The tenet of open source has always been to give away the “open core” for
free, and then charge for additional features.” (Volpi, 2014)

By contrast, the generic Linux vendor support strategy is commercially unattractive as it
suffers from minimal product differentiation, which in line with Porters business strategy
thinking of “a race to the bottom” limits companies’ bargaining power, negatively impacts
their competitive situation and hence ability to generate significant and stable revenue.
Hence, the open source support strategy generates only a tiny fraction of the revenue of

27 To make sure would require a broader analysis that takes into account the concrete
product, resources, competitors etc. As a starting point, Alexander Osterwalder’s business
canvas could be used.

Open source from a business perspective

49

licensing models used by commercial companies like Microsoft or Oracle. Consequently the
support business model has largely been a failure beyond Red Hat and even though Red Hat is
a successful company, its share of the success of Linux is disproportion small and its market
cap is very small compared to proprietary alternatives. (Levine, 2014; Olson, 2013)

8.7. Attracting contributors from a business perspective
This section discusses the business factors (from an open source vendor standpoint) that
encourage or constrain potential contributors in making contributions.

Ownership and governance models have also been found to play a significant role in
literature. Projects owned and governed by independent foundations are most successful in
attracting the highest possible amount of contributors, while single-vendor sponsored
projects are limited in growth. A study by Henrik Ingo, detailed in Appendix D, shows that all
of the largest open source projects with 1000+ contributing developers are owned and
governed by an independent foundation. Such extra large projects are roughly an order of
magnitude times larger than any of the large vendor sponsored communities (Ingo, 2011).

For governance in practice, the transparency about how discussions and decisions are made
is particularly important for project attractiveness. Weiss notes that transparency is a way to
build essential trust with the community (Weiss, 2009). Karl Fogel makes an even stronger
argument, effectively saying that openness and transparency are absolute requirements:
“Making important decisions in private is like spraying contributor repellent on your project.
No serious contributor would stick around for long in an environment where a secret council
makes all the big decisions.” (Fogel, 2015, p. 27) Openness includes for example asking the
community for feedback before major development decisions28.

As for impact of licence, the above study found that GPL restrictions decrease attractiveness
(Santos et al., 2012) but other studies dispute this (Sen, Subramaniam, & Nelson, 2009;
Stewart, Ammeter, & Maruping, 2006). My own understanding is that the answer depends on
whom you ask. For example it makes sense that corporate contributors will dislike GPL
restrictions because it restricts their ability to monetise from the software (Aslett, 2012;
Germain, 2015; The451group, 2008).

Undisputed in literature is that the licence should be truly open source. This is best assured by
selecting a proven OSI compliant licence (Collins-Sussman & Fitzpatrick, 2007). Projects
with licences that appear to be open source only on the surface, but are restricted in a way
that protects private ownership and control (gated open source), have a hard time attracting a
community (Krogh et al., 2012). For example, restricting source code access or making source
code hard to get or hard to modify will reduce participation (Corbet, 2010).

Open core approaches, where some components are proprietary, means that most of the
benefits of open source disappear from a community standpoint. It is also regarded as not
truly open source. Open core will therefore significantly reduce the community to a small
number that do not need the commercial extensions (Widenius, 2016). Similar approaches

28 As a side benefit, such open discussions generate activity, which in turn reassure the
community that the project is progressing and hence positively affect project attractiveness
(Allen, 2015).

Open source from a business perspective

50

such as keeping some proprietary rights and doing commercial re-licensing schemes is
also likely to negatively affect motivation (Fogel, 2015; Krogh et al., 2012).

The literature also points to the avoidance of “large amounts of legalese” (Corbet, 2010) and
that the selected license should be clearly stated on project website and in the code (Fogel,
2015).

Trust is important for attracting contributors. Trust can be built slowly over time by
adherence to open source norms such as reciprocity (Widenius, 2016). Another way to gain
trust is the backing of a well-known and respected sponsor. A developer rock-star (thought-
leader) is likely to positively influence project attractiveness (Yu, Yin, Wang, & Wang, 2014).
Indeed, “For some projects the biggest attraction for other developers is not the functionality
(all that exists may be a specification), but the reputation of the project founders” (Weiss,
2009, p. 1). It should be noted that not all sponsors are viewed alike and that commercial
sponsorships (with profit motives) in some cases reduce attractiveness for some developers
where non-market sponsorships do not (Stewart et al., 2006). Indeed for commercially
sponsored projects, a survey of contributors to Nokia’s Maemo project, attests that perceived
corporate creditability (expertise and trustworthiness) is a dominant factor in affecting
motivation of contributors (Stürmer, 2009).

Finally and all but ignored by academic studies I am aware of, I presume to state that it is
obvious that marketing and presentation of a project must influence its attractiveness. That it
is important that the target audience knows that the product exists29 and it is important that
the project presents itself in an appealing manner. As Karl Fogel writes about the presentation
of open source projects: “appearances matter … people cannot stop themselves from forming
an immediate first impression” (Fogel, 2015, pp. 11–12). Marketing of open source projects is
examined in more detail in 8.8.

8.8. Open source community marketing
“Solving an important project with useful code is only half the battle…. It's equally
important—and sometimes more so—‘to convince a significant number of people that your
project is the best solution to their problem’” (Asay, 2014). Marketing is just as useful and
necessary for open source projects as for commercial businesses, services and products
(Erway & Ruff, 2013).

The importance of marketing (and sponsorship) is supported by a comprehensive study of
liveliness (health) of open source projects by the company Black Duck, which concluded that
new projects are most likely to succeed if they “Have big backers and marketing behind them”
(Rich Sands, 2012). Although important, marketing is however a lot of work that can be
significantly more demanding and time-consuming then the development work (Marz, 2014;
Posted, 2014)

In the project initiation stage, marketing is the key activity that is designed to end initiation
and give life to the project. Unlike marketing towards potential customers, the aim with this
kind of marketing is to attract and grow a community. Hence the term community
marketing is sometimes used in literature.

29 “If no one knows you are there, then there you are” (Erway & Ruff, 2013, pt. 02:39)

Open source from a business perspective

51

Rules and tools of traditional marketing such as for example strategic planning, (web)
presence, market research, segmentation, channels, positioning, branding, alliances and
networking all apply to open source marketing (Erway & Ruff, 2013). Some models may need
a little adjustment though. As exemplified by Imed Hammouda, Timo Aaltonen and Petri
Sirkkala the classic marketing model, 7P’s of marketing mix30 (Product, Promotion, Price,
Place, People, Process, Physical Evidence), need only trivial changes such as product 
project, price31  license and physical evidence  perception (of the projects mission and
potential) (Hammouda, Aaltonen, & Sirkkala, 2008).

Marketers should keep in mind, however, that “code is king”, that the audience is fact focused
and that marketing alone cannot drive acceptance (Erway & Ruff, 2013; Glen, 2003). All
claims should be demonstrably true: “with open source activities, there is an unusually high
quantity of people with the expertise to verify claims” (Fogel, 2015, p. 101). Marketers should
also note that communities are not like markets for commercial products. Communities are
more like citizens that want to influence the project, have a stake in it and ultimately identify
themselves as being a part of the project. (Finette, 2012)

As discussed in chapter 6.6, the broader literature consistently points out that the path that
leads to being a contributor starts with being a user. Hence there are 3 major objectives
related to community growth that marketing must help with:

 Creating awareness among potential users.
 Expanding the user base.
 Encourage and convert32, 34 developers that use the product into contributors.

The three major objectives of community marketing can be seen in the community funnel33
illustrated in Figure 13. The concrete illustration originates from a presentation by Lars
Kurth, but I found several other similar funnels in open source literature. Like a sales funnel,
people travel through the community funnel from left to right, with most dropping out on the
way. In their journey, people assume a number of roles and perform a number of activities on
the way, which must be supported in order to keep people progressing towards contributing
to the project. (Lars Kurth, 2010).

30 A widely used model from 1960 that is now a bit dated, as it suffers from push mentality,
unlike modern marketing approaches that are more about engagement. (Chaffey, 2016)
31 I do not agree with the authors that open software has no cost. The time spent on making a
contribution is a cost. Hence, I think required development time or opportunity cost (possibly
in combination with license) would be a better translation for price.
32 According to Stephen Walli, there is anecdotal evidence from several large and small
projects that the conversion rate of users into contributors is about 1/1000: “for every 1000
user, you might see 100 bug reports, out of which 10 will send code that purports to fix said
bug, out of which 1 read your coding guidelines and really did fix the bug” (S. R. Walli, 2013a)
33 According to Lars Kurth, the funnel model is well understood by decisions makers (and
most other people). The funnel is thus highly useful for pitching funds and other activities
beyond sales/marketing of open source projects (Lars Kurth, 2010)

Open source from a business perspective

52

Figure 13 Communities as funnels – source: (Lars Kurth, 2010)

Marketing must identify the concrete activities that people go through and the concrete
actions that the project can take to support those activates according to the project goals and
resources. For example at the awareness stage, people can be supported by social media
buzz or by project presence at industry conferences while documentation and usability can
support people at the user stage. Outcomes of support actions can be measured and the
individual metrics (like for example media coverage, downloads or answered/unanswered
forum questions) can be combined to communicate health of the community and the
effectiveness of the marketing approach (Lars Kurth, 2010).

The specific marketing activities depend on the project, but they involve improving the factors
that make the project attractive as discussed in chapter 6.6. Generally, an early marketing
activity in a project’s initiation phase is the creation of informative and visually appealing
documentation of the project: “The (project) site's appearance signals whether care was
taken in organizing the project's presentation… The mere presence of certain standard
(documentation) offerings, in expected places, reassures users and developers who are
deciding whether they want to get involved. By giving off this aura of preparedness, the
project sends out a message: ‘Your time will not be wasted if you get involved,’ which is
exactly what people need to hear” (Fogel, 2015, pp. 11–12). Importantly, the documentation
should include a brief coherent project pitch and the concrete steps to “getting started” using
the project (Holman, 2011)

The written documentation is linkable, indexable and tweetable and therefore a highly
useful basis for further marketing activities (Holman, 2011), including key and inexpensive
activities such as:

 Ensuring searchability by making sure search engines can find the project and its
appropriate landing page. Here open source projects has an advantage in open source
directories which can help decidedly with ranking (Chalef & Mickos, 2008)

 Postings on blogs, social media, twitter etc.

Open source from a business perspective

53

People do not passively pass through the funnel. They are also looking for interaction. Users
and potential contributors use the response from the community to assess it: “the very first
touch that a person has on a project; that’s them testing you… They want to see how you
respond” (Allen, 2015, pt. 13:10). All questions – however trivial - signal interest in a project.
That very person that asked the question may end as a contributor or leader of the project.
Hence project members should prioritise to answer questions and should be welcoming to
newcomers. Some newcomers may even come in angry, frustrated annoyed because of bugs. A
project manager should not be upset or respond in the same way but give outlets, channel the
newcomer’s passion, turn it into activity and challenge the newcomer to do something
productive. (Allen, 2015)

The conversion of users to contributors is far from being just about support from marketers.
Conversion affects a wide range of areas that include project management, project releases
and documentation. For instance, the act of delegating and substituting people is not just
about “getting individual tasks done; they're also about drawing people into a closer
commitment to the project” (Fogel, 2015, p. 160). Similarly, making releases are not just about
adherence to existing plans but also about promoting recruitment by reprioritizing the
inclusion of bug fixes provided by newcomers (Stürmer, 2005).

8.9. Benefits of open sourcing for a commercial vendor
In general, the literature points to open source as having many strategic benefits that makes it
difficult for propitiatory development to compete. As stated by business professional Mike
Olson: “Open source innovates faster, spreads faster, does great work faster then any single
company can” (Olson, 2013).

Dirk Riehle has named a number of business function associated benefits for a vendor
sponsored project that derive from the engagement of a user community. His benefits are
listed verbatim in Table 7 (Riehle, 2012).

Riehle argues that by actively using customer-side champions, open source can be used as
an effective sales and marketing strategy by firms. In the sales funnel for commercial open
source, leads come from the existing community and the traditional “pre-sales-to-sale”
activities are replaced with a “user-to-customer” conversion34 process. Footholds by early
adopters (champions) that use the free software drive customer acquisition cost down and
reduce the risk of a later purchase in the eyes of the customer. (Riehle, 2012)

Business function Benefit for vendor

Sales More and easier sales due to customer-side champions

Marketing More believable and cheaper marketing through engaged
community

Product management Superior product thanks to broad and deep user innovation.

34 Actually, it is more a process of selling to customers that have the right mind set from the
start. “Some people spend time to save money, some spend money to save time”. The
customers are in the second category. Trying to convert people in the first category can be a
costly mistake. (Germain, 2015 Attributed to Mårten Mickos, PARC Forum Talk, 2010)

Open source from a business perspective

54

Engineering Superior product that is developed faster thanks to fast and
immediate community feedback.

Support Lower support costs thanks to self-supporting user community
Table 7 Benefits per business function for single vendor commercial open source – source: (Riehle, 2012)

For the sales and marketing functions, other sources generally state a increased technology
diffusion as a benefit of open source but without providing concrete benefits like Riehle
(Stürmer & Myrach, 2015; The451group, 2008; West, 2003).

In addition to Riehle’s customer-side champions, open source contributors in the community
play a key role too. As contributors they have vested investment in the project and are likely
to advocate for the project or at least create awareness and buzz in blogs, social media etc. As
noted by Kevin Efrusy, a venture capitalist, "The (open source) developers are the people who
bring you in; they're your salespeople" (Chalef & Mickos, 2008). Finally, open source users
also provide marketing support as mentioned by Mårten Mickos from MySQL who refers to
the user community as its best marketers (Chalef & Mickos, 2008)

As for benefits in innovation and product management, there are many sources that point to
the crowd being able to out-innovate individual firms. One documented example is the
group of diverse Foldit gamers that collectively solved the structure of an extremely difficult
protein in 3 weeks. A problem that scientists had been unable to solve in more then 10 years
(Akst, 2011)

As for the benefits in engineering, the literature points to increase quality and more cost-
effective production (Monty Widenius & Nyman, 2014) here exemplified by two quotes:

 “It is often cheaper and more effective to recruit self-selected volunteers from the
Internet than it is to manage buildings full of people who would rather be doing
something else” (Raymond, 2002, p. 22)

 “Linus’s law: Given enough eyeballs, all bugs are shallow.'' (Raymond, 2002, p. 6)
meaning that giving enough developers and testers just about any problem will be
found and fixed quickly35.

8.10. Challenges of open source development
A mistaken view of open source is that it is an easy way to cut development costs. Instead of
spending time and money on software development yourself, you just need to release an
initial version on the Internet as open source and then your work is done. Once on the
Internet legions of developers will soon find your code, like it, maintain it, fix your bugs and
extend the code for you with great new features (that you will all appreciate).

Instead, the literature suggests that going open source is a complex endeavour that will cost
more in the short term than doing the corresponding work in-house with your own resources
(Fogel, 2015). Going open source is a “huge commitment to a process that takes a lot of
cultivation and investment of time and resources” (OSSS.io, 2014a, pt. 11:40 Diane Tate,
Program Manager at Mozilla). Just community support alone can be a massive undertaking.

35 The problem however is that most projects are too small to have enough eyeballs (see
chapter 8.11. Linux’s law may work for Linux but not for open source projects in general.

Open source from a business perspective

55

For example, Michael Widenius, a founder of MySQL, “personally wrote 30,000+ emails during
the first 5 years to help people with using MySQL” (Widenius, 2016)

Small companies that do not have the money to work full time on their open source offerings
may have a hard time competing with proprietary alternatives (Widenius, 2016). If the
product is good but the pace is too slow there is always a risk that another entity decides to
create a fork (copy) of the project, possibly for competitive reasons (Levine, 2014). “The
complexities of defining and controlling a stable roadmap versus innovating quickly enough
to prevent a fork is vicious and complex for small organizations.” (Levine, 2014).

For an organisation, the changes of the software development process from internal and
proprietary to transparent and distributed open source ways of doing things are difficult and
time consuming to implement: “The change from proprietary to open is about on the same
order as going from waterfall to agile… Same degree of change in philosophy for developers.”
(OSSS.io, 2014a, pt. 15:55 John Mark, Open Source Ecosystems Manager at Redhat)

8.11. Open source project success rates
Failure to attract contributors has been a persistent challenge for most projects. In 2002
Sandeep Krishnamurthy researched the top 100 mature projects on then popular Sourceforge
and found that “most OSS programs (were) developed by individuals, rather than
communities.” with a median number of 4 contributors per project (Krishnamurthy, 2002). In
2013, Donnie Berkholz, examined yearly contributions to 50.000 active36 open source
projects and found that 51% had only 1 contributors and 87% had 5 or fewer contributors
(Berkholz, 2013). Controversially, of all active projects the percentages of successful projects
with a high number of contributors were merely 1% for 50+ contributors and 0.1% for 200+
contributors (Berkholz, 2013). Finally, even for projects with multiple contributors it is
common that most contributors make only one contribution, leaving the bulk of the work to
just a few contributors. (Stewart et al., 2006)

Another consideration is the high rate that open source projects fail (i.e. are abandoned)
which is “probably on the order of 90– 95%” (Fogel, 2015, p. 1). More specifically, a recent
study of projects hosted on github.com found that 98% of projects where unmodified after a
year (i.e. essentially abandoned) (Berkholz, 2014). Similar numbers were reported by a study
of 550,000 projects on Ohloh, which found that more than 95% of projects were unmodified
after a year (Rich Sands, 2012).

All these statistics indicate that initiating and running a successful open source project with
an active community of significant size is very difficult. Something I can attest to from
personal experience.

One should keep in mind, however, that developers might leverage open source infrastructure
for other reasons than (seriously) attempting to launch an open source project37. Creating
projects on open forges like in SourceForge or GitHub offer benefits like free version control
and source code backup that a developer may appreciate for his/her personal home-grown

36 I.e. excluding abandoned projects.
37 Which might help explain why most projects released on github have no license at all
(McAllister, 2013)

Open source from a business perspective

56

projects or experiments. Such projects are often not intended as serious open source projects
yet affect most statistics.

In addition, the above dismal statistics should not be confused with the chance of ’winning the
lottery’. Unlike a random lottery, the project initiator has influence over outcomes and can
significantly improve the chance of success (e.g. by working hard, by doing the right things at
the right time and by not making costly mistakes).

8.12. The central dilemma of commercial open source
Stürmer writes that “managing a largely independent open source community is a challenging
balancing act between exertion of control to appropriate value creation, and openness in
order to gain and preserve credibility and motivate external contributions” (Stürmer, 2009, p.
4).

By his remarks, Stürmer introduces the central dilemma of commercial open source.
Resolving the conflicts between the goal of making an innovation successful, for which a
striving community is needed, and the goal of profiting from the success of the innovation
(West, 2003). For a commercial firm success must be a combination of both. Failed innovation
that could have been monetized is just as unattractive for a firm as successful innovation
without the ability to monetize from it.

From an open source community viewpoint, I find that the literature points to 4 overall
reasons why some individual members of a community may dislike a vendor sponsored open
source project:

 The entire project may not be not entirely open source (open core models): The
existence of proprietary extensions to the open source project, without which the
open source version, might not be truly useful, removes much of the benefits of open
source (Widenius, 2016)

 Asymmetry in rights to monetise (dual licenses models etc.): “only one party has that
right, and other participants in the project are thus being asked to contribute to an
asymmetric result” (Fogel, 2015, p. 197)

 Closed governance model dominated by the vendor. A majority of vendor-sponsored
projects are not open enough in terms of transparency and accessibility as detailed in
chapter 6.3 (Ingo, 2011).

 Clash of ideology: Some community members are opposed to most kinds of
commercialisation with the possible exception of selling branded T-shirts, distribution
of CD’s, support and similar (undefendable) low-income models. An archetype of such
ideological driver members is Richard Stallman, the influential head of the free
software foundation. Stallman believes that commercialisation of software “is a
crime”, has contempt for closed software, is strongly against modern cloud/SaaS
solutions (a trap) and strives for “truth, beauty, or justice” over personal success
(Wikiquote, 2016).

Bruno Lowagie, the founder of the IText project, has a different perspective on the dilemma.
He is of the opinion that “Open source can be used to create value, but that will only work if

Open source from a business perspective

57

you also sustain that value”. He writes that the projects must have viable business models38.
Viable business models that ensure jobs and the ability for the project to assign the necessary
resources for continued innovation and quality control. According to Lowagie, the infamous
HeartBleed security bug in the OpenSSL project was due to the lack of an effective business
model that could fund the project. To avoid situations like this he recommends that users and
developers “stay away from any open source project that isn't supported by a healthy
business model” (Lowagie, 2014).

I think it is impossible to appease all types of community members, especially the ideological
ones. That said, community must still come first39. Governance and the chosen business model
must be acceptable to a large amount of potential contributors. I suggest an open core
approach should be careful not to cripple the open source version but only add proprietary
features that paying enterprises need, but the contributors do not need. I also suggest a dual-
license approach should consider decreasing the asymmetric relationship with its community
by sharing opportunities for monetisation with its community. Yet, another possibility would
be to choose a model that is not based on licensing but SaaS (Software As A Service).

Finally, I also suggest that proper communication of Bruno Lowagie’s key point about
healthy projects needing income is a vital part of resolving the dilemma. Commercial vendors
should explain to users and developers of a project upfront that there is a valid reason for
creating revenue from the project, that it does not weaken the open source bits and that they
will ultimately benefit in form of additional innovation and support (as opposed to a project
running out of steam).

38 Based on restrictive copy-left open source licences, unlike for example the Apache license,
which is permissive. “Based on my 15 years of experience in open source, I know that it's
almost impossible to create a sustainable business model based on the (permissive) Apache
Software License.” (Lowagie, 2014).
39 “Foster, develop, invest in your community like it is the difference between success and
failure… because it is…. If you don’t grow your community, if your community isn’t thriving,
whatever your product is, you are going to suffer” (OSSS.io, 2014c, pt. 16:50 Mark Brewer,
CEO Typesafe/Lightbend)

Open digital platforms, ecosystems and open source

58

9. Open digital platforms, ecosystems and open source
There are two major types of platforms used commercially: Internal (proprietary) platforms
that are used as a common foundation for a line of derived products in a single company and
external (open) platforms which act as a common foundation for an industry or group of firms
that can provide complementary products, extensions or services on top of the platform
(Gawer, A., Cusumano, Gawer, & Cusumano, 2012). In the rest of this section (and in this
thesis as a whole), I discuss open platforms. Such open platforms are used in many different
industries but the focus here is digital platforms (aka software platforms) used in the
software industry.

Whereas products are best described by their features, platforms are best described by their
communities (M. W. Van Alstyne, Parker, & Choudary, 2016). An open platform is based on
open standards, is openly documented and designed so the platform can be leveraged by
anyone. In the software world, an open digital platform is a software platform with published
API’s that 3rd parties can use to extend the platform with new functionality. As noted by
Forrester, API’s are central to any platform: “Developers first inclination is to look for a
service they can call or an API they can use” (Hammond, 2014b)

9.1.1. Platform strategy
In their book “Strategy Rules - five timeless lessons from Bill Gates, Andry Grove And Steve
Jobs” (2015), authors David Yoffie and Michael Cusumano argue, using the cases of Microsoft,
Intel and Apple, that singular products cannot provide a sustainable completive advantage.
Instead companies should think in platforms that make it easier to sell add-on products to a
captured audience as well as allow an ecosystem with 3rd parties that can contribute with
their unique value. The lesson is ”Build platforms & ecosystems, not just products - No firm is
an ‘island,’ especially in technology driven markets” (Yoffie & Cusumano, 2015).

In support, Marshall Van Alstyne argues that “The Product Business Model is Broken” (M. Van
Alstyne, 2015, p. 12). Digital platforms and their ecosystems with 3rd party developers are in
combination able to put significant more resource into development then any product
companies. Singular products maintained by individual software companies cannot compete
on innovation, scale or costs. As a result the platform companies are increasingly dominant40
in the economy. Similar to the giants of the industrial age, economics of scale gives the big
platforms the advantage. The key difference though is that the old industrial age giants used
“supply side economics of scale” to gain competitive advantage, while the modern open
platforms use “demand side economics of scale” (M. Van Alstyne, 2015)

A key goal of a platform is to promote economic network effects, where the value of the
resulting ecosystem increases with the number of participants (VisionMobile, 2013). As more
and more 3rd parties contributors build solutions on top of the platform (such as plug-ins),
customers will be attracted by the increasing value of using the platform. More customers
increase the attractiveness of the market which in turn attracts more 3rd party contributors

40 Measured in market capitalisation, the top 3 companies in the US (Apple, Google and
Microsoft) are all platform companies (M. Van Alstyne, 2015).

Open digital platforms, ecosystems and open source

59

yielding “a virtuous circle of developers and users that fuel exponential growth”
(VisionMobile, 2013)

Commercially successful platforms are both open and closed. They have open API’s that
make it easy to contribute solutions (complements) on top of the platform and they are closed
around core business of their owner in a way that allow the platform owner to capture value
(VisionMobile, 2013). For example, Apple is open in regards to App developers but closed
towards distribution and the devices it sells (VisionMobile, 2013).

From a traditional industry selection and positioning view, the external forces in Porters 5
forcers are considered as having negative effects, so competitive advantage is about raising
barriers against competitors and reducing the bargaining power of customers and suppliers
etc. Correspondingly, in the traditional strategic resource view completive advantage is
derived from controlling tangible/intangible company assets used by production that are at
best rare, valuable and inimitable (G. Johnson et al., 2011).

Platforms change the rules of business strategy. Instead of considering customers and
suppliers in terms of their (negative) bargaining power, they are seen in terms of the value
they add to the platform. In a similar change, many vendors can be seen as potential
providers of complementary value instead of a threat. The strategy is now about facilitating
external interactions, orchestrating external resources and providing governance that
encourages external innovation yet does not threaten the platform owner. Platform
companies do not have to own rare or inimitable resources – they can have 3rd parties bring
them in. Completive advantage is now derived from a (hard to copy) interorganizational
network of customers and complementors that form an ecosystem together with the
platform owner (M. W. Van Alstyne et al., 2016; M. Van Alstyne, 2015; Stürmer, 2009)

Platform companies must allow and promote 3rd party contributions. Rather than trying to
solve and capitalize from all needs, they should focus on a few valuable applications (or plug-
ins) and let 3rd parties monetise the long tail of potential additions to the platform. By
actively leaving room for 3rd parties41 the platform companies can lower costs, spread
business risks among 3rd parties and incentivise an increasing amount of innovation. (M. Van
Alstyne, 2015)

Launching a new platform suffers from a difficult chicken and egg problem, because users
require other users for the platform to have value. Typical multi-sided platforms with both
buyers and sellers won’t get sellers before there is a critical mass of buyers, but buyers won’t
show up before there is a critical mass of sellers (Gawer, A., Cusumano et al., 2012; N. L.
Johnson, 2014; Parker & Alstyne, 2014). Here the literature suggests subsidising one type of
user to get other users, seeding the platform with initial complementary value (developed
internally or sponsored) for the platform to be useful, piggybacking on users of

41 MySpace serves as an interesting warning of the consequences of failing to invite 3rd
parties. In 2008, MySpace was the leading social media hub but in three years it lost most of
its community to competing platforms. As put by former MySpace founder Chris DeWolfe:
“We tried to create every feature in the world and said, 'O.K., we can do it, why should we let a
third party do it?’ … We should have picked five to ten key features that we totally focused on
and let other people innovate on everything else.” (Gillette, 2011)

Open digital platforms, ecosystems and open source

60

supplementary networks and/or initially restricting the platform to a micro-market before
branching out (Parker & Alstyne, 2014)

9.1.2. Platforms and open source
I view platforms and vendor sponsored open source projects as similar in multiple ways. They
both leverage external resources that the vendor does not own, they are both difficult to
launch due to the need for external participation and they both share the same socio-
technical architecture of participation discussed in chapter 6.3 and 7.2.

Specifically, the architecture of participation is about supporting external development
communities for both open source and for platforms. Hence, in terms of their architecture,
digital platforms are a perfect fit for open source projects.

Similar to the chicken and egg launch problem in platforms, open source has something called
the mobilization problem, a term introduced by Michael Weiss after the “penguin problem”
from economics. The mobilization problem is about enticement of developers, since
developers won’t join before there is a community of other developers. He explains, “Hungry
penguins are gathered on a floe of ice. However, none of them wants to dive first for fear of
being eaten by a predator. No penguin moves until every penguin moves” (Weiss, 2009, pp.
A5–3). The mobilization problem is, however, more simple than the chicken and egg problem
because the mobilization problem is single sided (developers also assume the role of users)
and because providing value attracts users. Hence, Weiss suggests that providing a critical
mass of initial value can solve the mobilization problem. In other words, by providing the
plausible promise discussed in chapter 7.1 (Weiss, 2009, pp. A5–3).

From a competitive business standpoint, I find that there are two major forces in play for
open source platforms: Network effect (demand side economics of scale) and
commoditization of software.

Network effects suggest that the bigger platform wins, which tends to favour first movers.
Because of demand side economics of scale, competition between similar platforms tends to
end with winner-takes-all scenarios with few exceptions (Parker & Alstyne, 2014)

Commoditization of software by open source suggests that open source products tend to
displace proprietary products when having similar capabilities (features and quality): “In
product category after product category we are starting to see open source displace
commercial products (Hammond, 2014a).

In the absence of strong commercial platforms already having gained solid foothold, new
platform entrants that are open source benefit from having the advantage of both forces.
Subsequent commercial challengers will find it extremely difficult to compete against both
forces. As summed up by Mike Olson, co-founder of Cloudera and with a background from
multiple open source companies, “No dominant platform-level software infrastructure has
emerged in the last ten years in closed-source, proprietary form… You can no longer win with
a closed-source platform, and you can't build a successful stand-alone company purely on
open source.” (Olson, 2013)

A holistic view on contribution decisions by the community

61

10. A holistic view on contribution decisions by the community
In the literature it is common to assume a direct link between motivation and the act of
making contributions, but as discussed in chapters 6.6, 7.3 and 8.7 there are many other
factors in play that encourage or constrain contributions. External factors that the project
initiator has significant influence on, unlike potential contributors. For contributors the
factors are considered external since they have little or no influence on them (Krogh et al.,
2012).

From the previous discussions on attractiveness, a conclusion is that a motivated developer is
not enough for the act of making a decision to contribute to a particular project. A project
must also be marketed and the project must be generally attractive to contribute to - more so
than any competing projects. In these discussions I have argued that project attractiveness is
influenced by external factors.

Scholars like Georg Von Krogh et al. describe the sparse academic work in the area of external
factors as “recent and difficult to categorise” (Krogh et al., 2012). Nevertheless, I will propose
a way to categorise and model various findings on such factors. As a basis I use chapters 6, 7
and 8 (and in particular sections 6.6, 7.3 and 8.7), where I have drawn on a large amount of
literature that mentions the subject in passing (in a way that I have interpreted and classified
as being related to attractiveness).

The first categorisation I suggest is to divide the external factors into genuine attractors (e.g.
capabilities) that make a project attractive and factors that acts as barriers (or dis-attractors)
that make a project difficult to contribute to or decidedly unattractive. For example, running
software that is uniquely useful can be categorized as an attractor, while missing source code
is best categorized as a barrier. Using negation, some types of factors can be modelled either
as an attractor or a barrier. In these cases, I classify factors only as attractors if they are of
significance when comparing with alternative open source projects and thus likely to make a
real difference for contributors. In the above example of “missing source code” as barrier, it
makes no sense to use “having source code” as an attractor instead, as real open source
projects do have source code published. Having source code is expected. It is not something
that a contributor looks at as a distinguishing capability. However, he/she does look at code
as a barrier if the source is missing.

Building on the classification of
attractors versus barriers, I suggest
that a contributor’s decision to
contribute (or not) depends on
individual motivation, the
attractiveness and barriers of
contributing to the project and finally
any alternatives as illustrated in the
force field in Figure 14.

Figure 14 Decision making by a potential contributor

A holistic view on contribution decisions by the community

62

Other categorisations that I suggest are beneficial for looking at external factors are:
 What kind of people/firms that are primarily affected: Users, individual developers or

corporate developers.
 The area or perspective the factors most relate to as seen from the vendor: Business,

Community and Technical.

Using the above categorisations, I have created a holistic model containing a condensed set
of all the external factors identified by this thesis that affect project attractiveness. An
illustration of my model is shown in Figure 15. A project that is a good fit for open source has
most of the attractors and few of the barriers mentioned in the model.

A few factors are difficult to categorize and are thus located at boundaries in the model. In
particular, any single choice of programming language & platform can be considered
attractive or a barrier depending on the unique viewpoint of each individual open source
developer. The only way for this choice to be a near-universal attractor is to support multiple
languages and platforms (which is usually difficult and extra demanding in terms of time and
resources).

Note, that it is not implied that a project should realistically have all specified attractors and
no barriers. There can be valid reasons for some barriers to exist and for the lack of specific
attractors (e.g. strategic or economic). However, too few attractors or too many barriers are
likely to make the project unsuccessful in attracting a community.

Although representing just a theory at this stage, I believe the model is useful as a summary of
what a wide range of literature (plus a bit of common sense of my own) says about what
makes an open source project attractive for potential contributors (and what does not). The
model is also useful as a kind of checklist when initiating a new project. As such, I believe the
model constitute a new addition to the open source literature that is useful in both its current
state and as a basis for further study.

A holistic view on contribution decisions by the community

63

Figure 15 Model of external influencers of attractiveness for contributors

Technical:

Product &
content

Community:

Open source
fitness, Project
health, Support,
Relationships,
Marketing etc.

Business:

IP, control and
trust

Barriers to entryAttractors
Areas
(perspectives)

Copyrights & governance by
independent foundation

Good documentation (gradual
learning curve, separate parts
for users and developers)

Informative and visually
appealing project website

Users Individual developers Corporate developers All

Credible promise as running software

Frequency/importance of potential use

Mature product

Backing/participation of famous (rock-
star) developers or organisations

Small number of core
comitters (Truck factor)

Good code quality

Code modularity
and APIs for easy
consumption

Overall product quality

Not adhering to accepted norms of
open source conduct (reciprocality etc.)

Copyrights & governance by a single
vendor (vendor sponsored project)

All developers

Manual/complex installation or
configuration (no automated installer)

Software has excessive or
proprietary dependencies

Steady project activity (heartbeat)

Lack of activity for
significant time

Frequent releases

Open source license is absent, difficult
to find, non-standard (non-OSI / gated).

Part commercial, part open
source licensing schemes

Dysfunctional community- f.x.
hostile community members

Credibility of project founders
(expertise and trustworthiness)

Published source code is incomplete
or difficult to access

Mission statement

Contribution
guidelines

Communication platform & project infra-
structure is missing, unsuitable, lacking, or
unpopular in the open source community.

Private/hidden decision making

Mission/feature fit with user need

Lack of awareness of project among
target audience (lack of marketing)

Missing automated build scripts

Missing automated tests

Excessive/complex legalese

Friendly, helpful and welcoming
and community

Choice of programming
language & platform.

Unanswered/ignored bugs, patches,
messages or questions.

Fast and professional responses
to communication

Popular project

Lack of innovation / differentiation.

Applicable to open source . . .

Revisiting the digital platform case

64

11. Revisiting the digital platform case

This chapter is confidential and has been removed from the public version. Contact the author
for access to the content (may require signing a NDA).

Conclusion

65

12. Conclusion

The objective of this thesis is to answer the following question:

 What are the general concerns for a firm when initiating an open source
digital platform project?

A firm should be aware that actions and decisions at the initiation stage define the project,
influence how likely the project is to be successful in terms of attracting a community and
lay the foundation for the ability of the business to generate economic rents in the future.

My answer to the research question is presented in Figure 16 in form of a holistic view of the
general concerns. The illustration should be read bottom up.

Figure 16 Vendor concerns related to initiating an open source digital platform

As illustrated in Figure 16, a firm should start with formulating a public product vision and a
project mission for both internal use and as a rallying point by the community as discussed

Conclusion

66

in 7.3. Both should be broad enough to attract contributors and narrow enough to avoid
attracting the wrong contributors.

The firm should then consider if copyrights should be owned or distributed and which
licences to use according to community participation needs, business strategy and
competitive considerations as discussed in chapter 8.3 and 8.12 etc. Generally for vendor-
sponsored projects, copyright (and hence re-licensing rights) of key software components
should belong to the firm (see chapter 8.5). In any case, firms should be aware that copyrights
and licensing are expensive or outright impossible to change after initiation (see chapter 8.3).

At the project initiation stage of a platform the firm should consider the eventual business
needs in regard to the future ecosystem of the platform. What should be open sourced, what
should be closed (in order to secure revenue streams) and strategies to attract a critical
mass of users to the platform (see chapter 9). All of which can influence the project in regard
to priorities, features etc. As discussed, digital platforms are a perfect fit for open source, as
the same socio-technical design that makes open source work is ideally suited for open
platforms as well (see 9.1.2). I also see open source as a way to subsidise some platforms
during launch as discussed in chapters 9 and 11.

From a business perspective, a primary concern is if the firm has the collective will, the
resources and long-term commitment for a serious open source project. As discussed in
chapter 8.10, going open source is a significant endeavour. In the short-term it will not save
anything or produce benefits compared to developing a product with internal resources.
When resources and commitment are secured, the firm should then consider how the
software modularity affects their strategy (see chapter 8.5.1) and how the choice of a level of
openness (and a future method of governance) can support both the business interests of
the firm and the need of the community (see chapter 8.5, 8.12 and Appendix F).

A firm must understand motivation of potential contributors in order to have a chance to
make the project attractive for the community and later to successfully lead a project. As
discussed in chapters 6.4, effective motivation of individual developers (of all kinds) is about
inner and internalised motivation that respects developers’ personal need for autonomy,
competence and relatedness to other people. Unlike a commercial setting that allows
managers to exercise control through carrot and stick approaches to motivation, such
(highly ineffective and short-term) approaches are not possible in open source projects42.
Individual open source developers share most of the same intrinsic and extrinsic
motivations with developers in general, but the distinguishing motivations that are unique
to individual open source developers are ideology, having fun, giving something back to
the community and own-use opportunities (see chapters 6.4 and 6.5).

A firm must set up suitable project infrastructure such as a code repository, bug tracking,
forums etc. Also, before any software can be written, technology choices must be made such
as a development platform. Importantly, the choice of infrastructure, as well as all technology

42 The self-determined methods of motivating independent open source developers can be
viewed as an ideal that managers in traditional commercial settings should strive for, when
optimizing long-term motivation of their employed developers in order get the resulting
benefits of high performance, quality and engagement.

Conclusion

67

choices, must first and foremost suit the needs and expectations of the external community –
not just the needs of the vendor (see chapter 7.3)

Software architecture in an open source project is not just about technicalities. A firm should
design the software architecture of the solution not only from a technical view of
engineering but also in regard to the needs of community participation, business needs and
in regard to what should be opened/closed in the platform as discussed in chapters 6.3, 7.2,
8.5 etc. In particular, plug-in architecture is suitable for wide participation (and for support
of platform ecosystems).

A firm should generally be aware of special benefits, drawbacks and challenges of open
innovation in form of an open source project as described in chapters 8.9, 8.10 and 8.12 etc. A
notable technical challenge is for internal developers unused to open source to master the
open source development processes and open source governance approaches (in
particular transparency). This is as big a change for proprietary developers as going from
waterfall to agile development.

During or before project initiation, the firm generally needs to develop a preliminary version
of the intended product that provides enough value to attract users and to persuade
contributors to invest their time by providing a plausible promise that the project will attain
its goals (see chapter 7.1). Depending on how overall attractive the project is, this pre-
community software may need to have more or less strength in features and quality. A simple
MVP may not be enough to convince developers (see chapter 7.1).

A firm should carefully document all aspects of the project such as community governance
(for example contribution guidelines), the product (platform), source code organisation etc.
Documentation must support different audiences such as users of the product, contributors
and project site visitors. The documentation must be informative, indexed (searchable),
presented in a visually appealing way and written so that it provides a gradual learning
curve. Good documentation is a vital component of marketing (see chapter 8.8) and an
important factor in project attractiveness (see chapter 10).

A firm should allocate considerable resources to deal with marketing of the project towards
users and contributors. Community marketing is both similar and different from normal
marketing of products as mentioned in chapter 8.8. Most importantly, potential contributors
are initially seen as users with a need. Hence, marketing to contributors is initially about
getting visitors, attracting users and helping some of these users to become contributors.

A firm should arrange the project in a way that is as attractive to a community as possible
and limits barriers to those that are absolutely necessary for business reasons. The model in
Figure 15 (chapter 10) can be used for that purpose. For example, just like a famous lead actor
may positively affect ticket sales for a Hollywood movie production, a firm can improve
project attractiveness by hiring or partnering with a famous and well-respected open source
developer or open source organisation.

Finally, a firm should consider monetisation and business strategy. Strategy should include a
relational view of competitiveness and platform thinking. As discussed in chapters 8.2 and 9,
traditional strategic positioning and internal strategic resource views of competitive
advantages are not directly applicable in an open source or digital platform context.

Conclusion

68

12.1. Contributions to existing literature
I believe this thesis makes two significant additions to the existing academic body of
knowledge.

12.1.1. New holistic view of open source project initiation
While there are vast amounts of (academic) literature about the social, technical or business
side of commercial open source projects, there is precious little literature, which looks at open
source holistically from multiple perspectives. There is literature that looks at things from a
commercial business view and also mentions community aspects (or the opposite), but
equal/holistic treatment is rare. Specifically, I am aware of no other existing literature that
clearly and broadly look at commercial open source project initiation holistically from all of
my chosen 3 perspectives: business, social and technical. In addition, I have found few cross-
references between business literature, academic literature and the open source
community’s own writings. In both of these areas, I believe this thesis contributes with new
knowledge by combining different views.

The multi-perspective approach I have used is
important, as decisions made at business,
community or technical level impact other areas as
illustrated in Figure 17. E.g. business decisions affect
the ability for a project to grow a community and
software architecture can positively or negatively
affect both community size and a firm’s competitive

position.

12.1.2. New and comprehensive model of open source project attractiveness
While there is an abundance of literature that mentions related subjects such as success
factors, patterns and good practices of open source, there are very few sources that deal with
the concept of open source project attractiveness and recognize it as such. Apart from a
single (narrow-scoped) study expressly about project attractiveness the only other sources I
could find was nuggets of information scattered between many references. I did find literature
about barriers (unfortunately too late for inclusion) but I found no literature surveys and no
other models about project attractiveness apart from the single study mentioned above.

This thesis contributes to academic knowledge by organising the many extracts about open
source project attractiveness into a single holistic model in chapter 10. The model is yet
untested but I believe it is a useful. As an overview it is unmatched in detail and completeness.

12.2. Limitations and critique of this thesis
This thesis bases its analysis on existing literature with no empirical data of its own. As such
the strength of its conclusions can be no better then the underlying literature. Apart from the
subject of motivation, most of the literature bases its conclusions on small surveys and other
qualitative research, game theory based on uncertain assumptions, specific project cases,
personal experiences and anecdotal evidence. All of which can’t be generalized.

Figure 17 Cross-perspective interactions

Conclusion

69

While I have looked extensively for suitable literature and searched for specific answers, in
the end I have for mundane reasons only read and used a fraction of what is available. Hence I
may have overlooked important literature.

In addition, I am particularly aware of unprocessed yet relevant literature regarding
participation barriers and maturity/health models of open source. Literature that I suspect
could be beneficial for a greater understanding (of project attractiveness in particular) but
which I could not include due to lack of time and space.

The most researched area in open source literature appears to be motivation of individuals,
but I find even that area lacking. As can be seen in Appendix A, individual studies of
motivation point to different intrinsic or extrinsic factors as being more or less important (no
consensus)43. For researching individual motivation, my use of output from meta-studies
means that many nuances disappear and those specific aspects of motivation that apply to my
specific context may be missing. On the subject of motivation of firms, the existing literature is
quite lacking and consequently so is the associated chapter 6.5 of this thesis.

On the related subject of attractiveness, the model that I have constructed (Figure 15) is
currently no more than a postulate. Firstly, most sources of external factors in the literature
are based on individual experiences that can’t be generalized. Secondly, I have had to
reinterpret most sources as the literature rarely classifies something to be about external
factors of attractiveness. My reinterpretation may be wrong. Thirdly, my classification of
external factors into attractors or barriers is based on my judgement, which may be in error
too (as well as subject to my personal bias).

12.3. Opportunities for further research
There are many subjects covered in this thesis that would benefit from additional research.
E.g. Developer motivation, project attractiveness and how the community reacts to various
monetisation schemes in the specific context of vendor sponsored open source digital
platforms. Such subjects could benefit from additional research of further literature, by
qualitative case studies of projects similar to my case and by introducing quantitative
research based on empirical data etc.

In particular, a next step for the model of attractiveness from chapter 10, would be to set up
empirical studies to see if the various stated attractors and barriers can be supported or not. I
suspect that a suitable approach could be a semi-automatic data/content analysis of a
significant amount of open source projects in open source project repositories like Github.

From the derived statistics I believe it should be possible to see if the successful and not so
successful projects have technical, social and business characteristics that support or reject
various aspect of the model. Such a study could also be used to provide some indication of the
relative strength of various factors.

43 I suspect this is due to studies asking questions on what motivates developers without
enough context. A very exaggerated analogue is to ask random people on the Internet ‘Is it
sunny?’ and then trying to extract meaning from the many responses without taking both
geographical location and time of the observation into account.

Literature

70

13. Literature

Aberdour, M. (2007). Achieving quality in open source software. IEEE Software, (September),

58–64. http://doi.org/10.1016/j.ejrad.2010.05.004
Akst, J. (2011). Public Solves Protein Structure | The Scientist Magazine®. Retrieved February

1, 2016, from http://www.the-
scientist.com/?articles.view/articleNo/31155/title/Public-Solves-Protein-Structure/

Allen, D. (2015). Everything You Need to Know to Grow Open Source. Retrieved from
https://www.youtube.com/watch?v=a_vqg-go8XI

Alstyne, M. Van. (2015). Platform Shift : How New Biz Models Are Changing the Shape of
Industry. InfoEcon.

Alstyne, M. W. Van, Parker, G. G., & Choudary, S. P. (2016). Pipelines, Platforms, and the New
Rules of Strategy. Retrieved April 22, 2016, from https://hbr.org/2016/04/pipelines-
platforms-and-the-new-rules-of-strategy

Andersen-Gott, M., Ghinea, G., & Bygstad, B. (2012). Why do commercial companies contribute
to open source software? International Journal of Information Management, 32(2), 106–
117. http://doi.org/10.1016/j.ijinfomgt.2011.10.003

Asay, M. (2014). Open-Source Projects Need More Than Good Code—They Need Marketing -
ReadWrite. Retrieved January 25, 2016, from http://readwrite.com/2014/10/10/open-
source-marketing-apache-storm-nathan-merz

Asghar, I., & Usman, M. (2013). Motivational and de-motivational factors for software
engineers: An empirical investigation. Proceedings - 11th International Conference on
Frontiers of Information Technology, FIT 2013, 66–71.
http://doi.org/10.1109/FIT.2013.20

Aslett, M. (2010). From support services to software services The evolution of open source
business strategies. the451group.

Aslett, M. (2011). Updated open source business strategy framework. Retrieved April 12,
2016, from https://blogs.the451group.com/opensource/2011/01/06/updated-open-
source-business-strategy-framework/

Aslett, M. (2012). On the rise and fall of the GNU GPL. Retrieved April 12, 2016, from
https://blogs.the451group.com/opensource/2012/12/19/on-the-rise-and-fall-of-the-
gnu-gpl/

Baldwin, C. Y., & Clark, K. B. (2006). The Architecture of Participation: Does Code Architecture
Mitigate Free Riding in the Open Source Development Model? Management Science,
52(7), 1116–1127. http://doi.org/10.1287/mnsc.1060.0546

Baldwin, C. Y., & Henkel, J. (2012). The Impact of Modularity on Intellectual Property and
Value Appropriation The Impact of Modularity on Intellectual Property and Value
Appropriation.

Berkholz, D. (2013). The size of open-source communities and its impact upon activity,
licensing, and hosting. Retrieved March 5, 2016, from
http://redmonk.com/dberkholz/2013/04/22/the-size-of-open-source-communities-
and-its-impact-upon-activity-licensing-and-hosting/

Berkholz, D. (2014). GitHub language trends and the fragmenting landscape – Donnie
Berkholz’s Story of Data. Retrieved February 27, 2016, from
http://redmonk.com/dberkholz/2014/05/02/github-language-trends-and-the-
fragmenting-landscape/#ixzz30wEgsUif

Boel, S. K., & Cecez-Kecmanovic, D. (2010). Literature reviews and the hermeneutic circle.

Literature

71

Auatralian Academic & Research Libraries, 41(2), 129–144.
http://doi.org/10.1080/00048623.2010.10721450

Bonaccorsi, A., & Rossi, C. (2006). Comparing motivations of individual programmers and
firms to take part in the open source movement: From community to business.
Knowledge, Technology & Policy, 6(4), 1–6. http://doi.org/10.1007/s12130-006-1003-9

Brodkin, J. (2010). Microsoft: We love open source. Retrieved April 11, 2016, from
http://www.networkworld.com/article/2216878/windows/microsoft---we-love-open-
source-.html

Budd, A., & Traynor, D. (2013). An Interview with Andy Budd - Inside Intercom. Retrieved
April 4, 2016, from https://blog.intercom.io/an-interview-with-andy-budd/

Buyukkayhan, A. S., Onarlioglu, K., Robertson, W., & Kirda, E. (2016). CrossFire: An Analysis of
Firefox Extension-Reuse Vulnerabilities. Ndss, (February), 21–24.

Cavalier, F. J. (1998). Some Implications of Bazaar Size. Retrieved December 28, 2015, from
http://www.mibsoftware.com/bazdev/0003.htm

Cerasoli, C. P., Nicklin, J. M., & Ford, M. T. (2014). Intrinsic Motivation and Extrinsic Incentives
Jointly Predict Performance: A 40-Year Meta-Analysis. Psychological Bulletin, 140(4),
980–1008. http://doi.org/10.1037/a0035661

César, A. (2014). A Theory of Motivation and Satisfaction of Software Engineers. Universidade
Federal de Pernambuco.

Chaffey, D. (2016). Marketing models that have stood the test of time. Retrieved May 5, 2016,
from http://www.smartinsights.com/digital-marketing-strategy/online-business-
revenue-models/marketing-models/

Chalef, D., & Mickos, M. (2008). Open-source software as guerrilla marketing strategy, 14–16.
Christensen, M. M., & Jensen, J. E. (2015). Strategiudvikling med open source.
Christina M. Stello. (2014). An Integrative Literature Review. Herzberg’s Two-Factor Theory of

Job Satisfaction, 32.
Collins-Sussman, B., & Fitzpatrick, B. (2007). What’s In It for Me? Benefits from Open Sourcing

Code. GoogleTechTalks. Retrieved from
https://www.youtube.com/watch?v=ZtYJoatnHb8

Columbus, L. (2015). Roundup Of Cloud Computing Forecasts And Market Estimates, 2015 -
Forbes. Retrieved April 17, 2016, from
http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-cloud-
computing-forecasts-and-market-estimates-2015/#4e7a5473740c

Contributor-covenant.org. (2014). Contributor Covenant: A Code of Conduct for Open Source
Projects. Retrieved May 5, 2016, from http://contributor-covenant.org/

Corbet, J. (2010). LCA: How to destroy your community. Retrieved May 2, 2016, from
http://lwn.net/Articles/370157/

Deci, E. L. (2012). Promoting Motivation, Health, and Excellence. Retrieved from
https://www.youtube.com/watch?v=VGrcets0E6I

Eaves, D. (2011). Open Source Community Building. Djangocon. Retrieved from
https://www.youtube.com/watch?v=SzGi1DfbZMI

Economist, T. (2014). Platforms - Something to stand on. Retrieved April 22, 2016, from
http://www.economist.com/news/special-report/21593583-proliferating-digital-
platforms-will-be-heart-tomorrows-economy-and-even

Ehls, D. (2013). Open Source Participation Behavior-A Review and Introduction of a
Participation Lifecycle Model. 35th DRUID Celebration Conference. Retrieved from
http://druid8.sit.aau.dk/acc_papers/8tfya9e35eitx6godspbo767ars3.pdf

Erway, T., & Ruff, N. (2013). Can You Market an Open Source Project ? Embedded Linux
Conference.

Literature

72

Finette, P. (2012). Changing the world with Open Source - Pascal Finette. Retrieved May 6,
2016, from https://www.youtube.com/watch?v=n6e5S80PRBQ

Fingas, R. (2016). App Store reached estimated $6.4 billion of Apple’s revenue during 2015.
Retrieved February 1, 2016, from http://appleinsider.com/articles/16/01/07/app-
store-reached-estimated-64-billion-of-apple-revenue-during-2015

Fogel, K. (2015). Producing Open Source Software - How To Run A Successful Free Software
Project. Self published. Retrieved from http://producingoss.com/

Gawer, A., Cusumano, M. A., Gawer, A., & Cusumano, M. A. (2012). Industry Platforms and
Ecosystem Innovation. In Druid (Vol. 31, pp. 417–433.).
http://doi.org/10.1111/jpim.12105

Geer, D. (2005). Java IDE. Computer, 38(7), 16–18. http://doi.org/10.1109/MC.2005.228
Germain, J. M. (2015). HP’s Marten Mickos: Open Source Is Not a Business Model. Retrieved

April 12, 2016, from http://www.linuxinsider.com/story/81732.html
Ghazawne, A. (2015). Digital Platforms & Ecosystems - ITU Presentation.
Gillette, F. (2011). The Rise and Inglorious Fall of Myspace. Retrieved May 7, 2016, from

http://www.bloomberg.com/news/articles/2011-06-22/the-rise-and-inglorious-fall-of-
myspace

Glen, P. (2003). Leading Technical People, 19–24.
Goodin, D. (2016). NoScript and other popular Firefox add-ons open millions to new attack.

Retrieved April 6, 2016, from http://arstechnica.com/security/2016/04/noscript-and-
other-popular-firefox-add-ons-open-millions-to-new-attack/

Hall, T. (2008). Motivating Software Developers. Retrieved from
http://www.uio.no/studier/emner/matnat/ifi/INF5700/h08/undervisningsmateriale/
Motivating software developers.ppt

Hall, T., Sharp, H., Beecham, S., Baddoo, N., & Robinson, H. (2008). What do we know about
developer motivation? IEEE Software, 25(4), 92–94.
http://doi.org/10.1109/MS.2008.105

Hammond, J. (2009). Open Source and its role in a new IT ecosystem. Forrester. Retrieved
from http://www.slideshare.net/Brunovonrotz/open-source-and-its-role-in-a-new-it-
ecosystem

Hammond, J. (2010). OSS Adoption Patterns In Enterprise IT. Forrester.
Hammond, J. (2014a). Open Source By The Numbers. Forrester. Retrieved from

https://www.youtube.com/watch?v=GTFM39h5m5g
Hammond, J. (2014b). Open Source: A Key Component of Modern Applications (keynote).

Forrester.
Hammouda, I., Aaltonen, T., & Sirkkala, P. (2008). Exploiting social software to build open

source communities. Automated Software Engineering - Workshops, 2008. ASE Workshops
2008. 23rd IEEE/ACM International Conference on DOI - 10.1109/ASEW.2008.4686309,
42–45. http://doi.org/10.1109/ASEW.2008.4686309

Harding, R. (2014). Growing an Open Source Project.
Harris, T. (2015). Software licences.
Heitmann, J. (2014). The Lean Startup - A pragmatic view on its Flaws and Pitfalls,

(November).
Helen Walton. (2015). Lean Start-Up, and How It Almost Killed Our Company. Retrieved

January 14, 2016, from http://www.infoq.com/articles/lean-startup-killed
Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers in Open

Source projects: an Internet-based survey of contributors to the Linux kernel. Research
Policy, 32(7), 1159–1177. http://doi.org/10.1016/S0048-7333(03)00047-7

Hippel, E. von, & Krogh, G. von. (2002). Open Source Software and the “Private-Collective”

Literature

73

Innovation Model: Issues for Organization Science, 14(2003), 208–223.
Hoerr, A. (2010). Drive - The Surprising Truth About What Motivates Us.
Holman, Z. (2011). Open Source Doesn’t Just Market Itself. Retrieved January 25, 2016, from

http://zachholman.com/posts/open-source-marketing/
Ingo, H. (2011). How to grow your open source project 10x and revenues 5x. OSCON.

Retrieved from http://openlife.cc/blogs/2010/november/how-grow-your-open-source-
project-10x-and-revenues-5x

Johnson, G., Whittington, R., & Scholes, K. (2011). Exploring Strategy, 9th ed.
Johnson, N. L. (2014). Platform or Perish: An Introduction to Platform Economics. Retrieved

April 22, 2016, from http://www.applicoinc.com/blog/platform-or-perish-an-
introduction-to-platform-economics/

Karen McCally. (2010). Rochester Review :: University of Rochester. Retrieved March 15,
2016, from http://www.rochester.edu/pr/Review/V72N6/0401_feature1.html

Kawaguchi, K. (2012). Creating a Developer Community. Monki Gras. Retrieved from
https://www.youtube.com/watch?v=zfMdaHS3rYs

Ke, W. (2010). The Effects of Extrinsic Motivations and Satisfaction in Open Source Software
Development. Journal of the Association for Information Systems, 11(12), 784–808.

Kniberg, H. (2016). Making sense of MVP (Minimum Viable Product) – and why I prefer
Earliest Testable/Usable/Lovable. Retrieved April 4, 2016, from
http://blog.crisp.se/2016/01/25/henrikkniberg/making-sense-of-mvp

Krishnamurthy, S. (2002). Cave or Community, 7(6), 1–10.
Kroah-Hartman, G., Corbet, J., & McPherson, A. (2009). Linux Kernel Development - How Fast it

is Going, Who is Doing It, What They are Doing, and Who is Sponsoring It. Retrieved from
http://www.linuxfoundation.org/sites/main/files/publications/whowriteslinux.pdf

Krogh, G. Von, Haefliger, S., Spaeth, S., & Wallin, M. W. (2012). CARROTS AND RAINBOWS:
MOTIVATION AND SOCIAL PRACTICE IN OPEN SOURCE SOFTWARE DEVELOPMENT,
36(2), 649–676.

Lars Kurth. (2010). Viewing Communities as Funnels | Tales From The Community on
WordPress.com. Retrieved January 17, 2016, from
https://talesfromthecommunity.wordpress.com/2012/06/16/viewing-communities-as-
funnels/#more-361

Lerner, J., & Schankerman, M. (2010). The Comingled Code: Open Source and Economic
Development. MIT Press Books (Vol. 1). The MIT Press. Retrieved from
http://ideas.repec.org/b/mtp/titles/0262014632.html

Levine, P. (2014). Why There Will Never Be Another RedHat - The Economics Of Open Source,
1–31. Retrieved from http://techcrunch.com/2014/02/13/please-dont-tell-me-you-
want-to-be-the-next-red-hat/

Lokhman, A., Mikkonen, T., Hammouda, I., Kazman, R., & Chen, H.-M. (2013). A Core-
Periphery-Legality Architectural Style for Open Source System Development. System
Sciences (HICSS), 2013 46th Hawaii International Conference on, 3148–3157.
http://doi.org/10.1109/HICSS.2013.34

Lowagie, B. (2014). Heartbleed, an ASL business model failure? Online Gazette. Retrieved from
http://lowagie.com/heartbleed_asl_bumodel

Mair, P., Hofmann, E., Gruber, K., Hatzinger, R., Zeileis, A., & Hornik, K. (2015). What Drives
Package Authors to Participate in the R Project for Statistical Computing? Exploring
Motivation, Values, andWork Design Patrick. Proceedings of the National Academy of
Sciences of the United States of America.

Marz, N. (2014). History of Apache Storm and lessons learned - thoughts from the red planet -
thoughts from the red planet. Retrieved January 25, 2016, from

Literature

74

http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html
McAllister, N. (2013). Most projects on GitHub not open source licensed. Retrieved April 26,

2016, from http://www.theregister.co.uk/2013/04/18/github_licensing_study/
Meeker, H. (2015). Open Source for Business - A practical Guide to Open Source Software

Licensing. Flemming Editorial.
Merrill, S. (2011). Open Source is an Ecosystem, not a Zero Sum Game. Retrieved January 17,

2016, from http://techcrunch.com/2011/08/21/linuxcon-open-source-is-an-ecosystem-
not-a-zero-sum-game/

Mickos, M. G. (2011). Commercialization of Open Source. Retrieved from
http://ecorner.stanford.edu/videos/2832/Commercialization-of-Open-Source

Monty Widenius, M., & Nyman, L. (2014). The Business of Open Source Software: A Primer.
Technology Innovation Management Review, (January), 4–11. Retrieved from
http://search.ebscohost.com/login.aspx?direct=true&db=ent&AN=94361297&site=ehos
t-live

Mougayar, W. (2013). Startup Management » Don’t Let Lean Startup Become a Crutch.
Retrieved April 5, 2016, from http://startupmanagement.org/2013/07/25/dont-let-
lean-startup-become-a-crutch/

Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., & Ye, Y. (2002). Evolution patterns of
open-source software systems and communities. Proceedings of the International
Workshop on Principles of Software Evolution - IWPSE ’02, (January), 76 – 85.
http://doi.org/10.1145/512035.512055

North bridge and Black Duck software. (2015). 2015 - the future of OPEN source.
Olson, M. (2013). The Cloudera Model. Retrieved January 1, 2016, from

https://www.linkedin.com/pulse/20131003190011-29380071-the-cloudera-model
Open Source Initiative. (2007). The Open Source Definition. Retrieved April 12, 2016, from

https://opensource.org/osd
OSSS.io. (2014a). Building an Open Source Community. Retrieved from

https://www.youtube.com/watch?v=nxiiNRNTscU
OSSS.io. (2014b). Founding Open Source Companies. Retrieved from

https://www.youtube.com/watch?v=r2obF8MQDvA
OSSS.io. (2014c). Growing Open Source Companies. Retrieved from

https://www.youtube.com/watch?v=9qPnqkuxLGw
Osterloh, M., & Rota, S. (2004). Trust and Community in Open Source Software Production.

Analyse & Kritik, 26(1), 279–301.
Osterwalder, A., & Pigneur, Y. (2010). Business Model Generation. Journal of Chemical

Information and Modeling (Vol. 53). Wiley.
Parker, G., & Alstyne, M. W. Van. (2014). Platform Strategy Survey, (1967), 14.

http://doi.org/10.2139/ssrn.2439323
Pink, D. H. (2010). RSA Animate - Drive The surprising truth about what motivates us.

Retrieved from http://www.danpink.com/video/

Posted, J. S. (2014). Treat Open Source Like a Startup ★ Mozilla Hacks – the Web developer

blog. Retrieved January 25, 2016, from https://hacks.mozilla.org/2014/05/open-source-
marketing-with-velocityjs/

Raymond, E. (2002). The cathedral and the bazaar, (version 3).
Rich Sands. (2012). By the Numbers. Black Duck Software. Retrieved from

http://www.slideshare.net/blackducksoftware/open-source-by-the-numbers
Riehle, D. (2009). The Business Model of Commercial Open Source Software. Business.
Riehle, D. (2012). The single-vendor commercial open course business model. Information

Systems and E-Business Management, 10(1), 5–17. http://doi.org/10.1007/s10257-010-

Literature

75

0149-x
Riehle, D. (2014). The Five Stages of Open Source Volunteering, (March).
Ries, E. (2011). The Lean Startup. Penguin.
Ries, E., & Hartman, K. (2011). Lean Startup Book Summary. http://doi.org/23
Roberts, J. a., Hann, I.-H., & Slaughter, S. a. (2006). Understanding the Motivations,

Participation, and Performance of Open Source Software Developers: A Longitudinal
Study of the Apache Projects. Management Science, 52(7), 984–999.
http://doi.org/10.1287/mnsc.1060.0554

Ruston, J. (2007). How to start an open source project. Retrieved from
https://vimeo.com/856110

Ryan, R., & Deci, E. (2000). Intrinsic and Extrinsic Motivations: Classic Definitions and New
Directions. Contemporary Educational Psychology, 25(1), 54–67.
http://doi.org/10.1006/ceps.1999.1020

Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic
motivation, social development, and well-being. The American Psychologist, 55(1), 68–78.
http://doi.org/10.1037/0003-066X.55.1.68

Santos, C., Kuk, G., Kon, F., & Pearson, J. (2012). The attraction of contributors in free and open
source software projects. The Journal of Strategic Information Systems, 22(1), 26–45.
http://doi.org/10.1016/j.jsis.2012.07.004

Sen, R., Subramaniam, C., & Nelson, M. L. (2009). Determinants of the Choice of Open Source
Software License. Journal of Management Information Systems, 25(3), 207–240.
http://doi.org/10.2753/MIS0742-1222250306

Shah, S. K. (2006). Motivation, Governance, and the Viability of Hybrid Forms in Open Source
Software Development. Management Science, 52(7), 1000–1014.
http://doi.org/10.1287/mnsc.1060.0553

Soós, J. K., Takács, I., Krasz, K. G., & Villám, O. (2013). Psychology - Motivation theories.
Retrieved from http://www.tankonyvtar.hu/hu/tartalom/tamop412A/2011-
0023_Psychology/030300.scorml

Stackoverflow Survey. (2016). Developer Survey Results. Retrieved from
http://stackoverflow.com/research/developer-survey-2016

Stam, W., & Joode, R. van W. de. (2007). Analyzing Firm Participation in Open Source
Communities.

Stewart, K. J., Ammeter, A. P., & Maruping, L. M. (2006). Impacts of license choice and
organizational sponsorship on user interest and development activity in open source
software projects. Information Systems Research, 17(2), 126–144.
http://doi.org/10.1287/isre.1060.0082

Stürmer, M. (2005). Open source community building. Licentiate, University of Bern. Bern.
Retrieved from
http://www.opensource.ch/fileadmin/user_upload/opensource.ch/knowhow/2005_Op
enSourceCommunityBuilding.pdf

Stürmer, M. (2009). How firms make friends: Communities in private-collective innovation. ETH
Zürich, Doctoral Dissertation No. 18630.

Stürmer, M. (2015). Digital sustainability of open source communities Open Source Software :
Community, (February).

Stürmer, M., & Myrach, D. T. (2015). Research on open source software , management and
communities : Introduction to research on open source software , selection of papers by
students. Retrieved from http://www.slideshare.net/nice/introduction-to-research-on-
open-source-software

The451group. (2008). Open Source – Is not a business model.

Literature

76

Todorović, A. (2015). Open source licensing at Github. Retrieved April 12, 2016, from
https://opensource.com/life/15/7/interview-ben-balter-github

Tsay, J. (2015). Thesis Proposal Software Developers Using Signals in Transparent
Environments. Carnegie Mellon University.

Turk, M. J. (2013). How to Scale a Code in the Human Dimension, 1–9.
http://doi.org/10.1145/2484762.2484782

Vilen, P. (2013). Publishers, turnkeys, clubs and boutiques. A business model taxonomy in the
context of free open source software extensions. Case WordPress.

VisionMobile. (2013). The M2M Ecosystem Recipe - How Telcos can win the M2M game by
playing by ecosystem rules.

Volpi, M. (2014). A “Perfect Storm” Moment for Multibillion-Dollar Open Source Companies.
Retrieved from http://recode.net/2014/03/25/a-perfect-storm-moment-for-
multibillion-dollar-open-source-companies/

von Krogh, G., & von Hippel, E. (2006). The promise of research on open source software.
Management Science, 52(7), 975–983. http://doi.org/10.1287/mnsc.1060.0560

Walli, S. (2007). Free and Open Source Software Developers Working for Free (Economics
101). Retrieved April 29, 2016, from
http://stephesblog.blogs.com/my_weblog/2007/09/free-and-open-1.html

Walli, S. R. (2013a). Once More unto the Breach: Patterns and Practices for Open Source
Software Success. Retrieved April 30, 2016, from
http://stephesblog.blogs.com/my_weblog/2013/07/patterns-and-practices-for-open-
source-software-success.html

Walli, S. R. (2013b). Patterns for Open Source Succes Talk. OuterConf. Retrieved from
https://www.youtube.com/watch?v=iPjvLnJSn7U

Walli, S. R. (2016). Patterns and Practices for Open Source Project Success.
Waltl, J., Henkel, J., & Baldwin, C. Y. (2012). IP modularity in software ecosystems: How

SugarCRM’s IP and business model shape its product architecture. Lecture Notes in
Business Information Processing, 114 LNBIP, 94–106. http://doi.org/10.1007/978-3-642-
30746-1_8

Watson, B. R. T., & Boudreau, M. (2015). The Business of OPEN SOURCE - Missing Patterns,
51(4), 41–46.

Weiss, M. (2009). Performance of Open Source Projects. EuroPLoP, (11), 1–15. Retrieved from
http://ceur-ws.org/Vol-
566/A5_PerfOpenSource.pdf?origin=publication_detail\nhttp://scholar.google.com/scho
lar?hl=en&btnG=Search&q=intitle:Performance+of+Open+Source+Projects.#1

West, J. (2003). How open is open enough? Research Policy, 32(7), 1259–1285.
http://doi.org/10.1016/S0048-7333(03)00052-0

West, J., & O’mahony, S. (2008). The Role of Participation Architecture in Growing Sponsored
Open Source Communities. Industry & Innovation, 15(2), 145–168.
http://doi.org/10.1080/13662710801970142

Widenius, M. (2016). How to create a successful (in business and development) open source
project. Open Ocean - Open source days.

Wikipedia. (2016a). Bus Factor. Retrieved from https://en.wikipedia.org/wiki/Bus_factor
Wikipedia. (2016b). Plug-in (computing) - Wikipedia, the free encyclopedia. Retrieved April

16, 2016, from https://en.wikipedia.org/wiki/Plug-in_%28computing%29
Wikiquote. (2016). Richard Stallman. Retrieved May 6, 2016, from

https://en.wikiquote.org/wiki/Richard_Stallman
Yoffie, D., & Cusumano, M. (2015). Strategy Rules - five timeless lessons from Bill Gates, Andry

Grove And Steve Jobs. Retrieved from http://hbswk.hbs.edu/item/the-5-strategy-rules-

Literature

77

of-bill-gates-andy-grove-and-steve-jobs
Young, E. and. (2011). Open Source Software.
Yu, Y., Yin, G., Wang, H., & Wang, T. (2014). Exploring the Patterns of Social Behavior in

GitHub. Proceedings of the 1st International Workshop on Crowd-Based Software
Development Methods and Technologies, 31–36.
http://doi.org/10.1145/2666539.2666571

CAR-MASPIOSSD study results

78

Appendix A. CAR-MASPIOSSD study results

The figure below is a direct copy of the results of the meta-analysis of 40 empirical papers on
open source motivation from “Carrots and rainbows: Motivation and social practice in open
source software development" referred to as CAR-MASPIOSSD in chapter 6.4.3 (Krogh et al.,
2012)

Term definitions for Matthew Aslett’s framework

79

Appendix B. Term definitions for Matthew Aslett’s framework

Below is a verbatim copy of Matthew Aslett’s exact definitions of the terms used in his open
source business strategy framework (Aslett, 2011) but rearranged into a table.

Terms as defined by Matthew Aslett’s in his elements of open source business strategy framework.
Software license
Strong copyleft Reciprocal licenses that ensure redistributed modifications and derived works based on or including the

code must be made available under the same license. For example the GNU GPL and the Affero GPL
Weak-copyleft Reciprocal licenses that enable integration with closed source software without the entire derived work

having to be made available under the same license. For example the GNU Lesser GPL, the Eclipse
Public License, the Mozilla Public License, the Common Development and Distribution License (CDDL)

Non-copyleft Permissive licenses that do not place restrictions on code usage, enabling it to be integrated with closed
source software and the combined code to be distributed under a closed source license. For example
BSD licenses, the X11/MIT license, the Apache License

No preference The vendor commercializes software that combines or utilizes multiple open source software licenses
and has no discernible preference

Development model
The Cathedral The source code is available with each software release, but is developed privately by an exclusive

group of developers
The Bazaar The code is developed in public, with builds and updates constantly made available on a public forge

available to anyone
Aggregate The vendor commercializes software that utilizes a combination of publicly and privately developed

software and has no discernible preference
Community The software is predominantly developed by a community
Vendor The software is predominantly developed by a vendor
Mixed The vendor commercializes software that utilizes a combination of community- and vendor-developed

software and has no discernible preference
Copyright control
Vendor The copyright is owned by a single vendor.
Foundation The copyright is owned by a foundation.
Distributed Copyright ownership is distributed across the individual developers.
Withheld The copyright is owned by another vendor.
End user licensing
Single open source The software and all associated features are available under a single open source license
Multiple open source The software and all associated features are available using a combination of open source licenses
Dual licensing The software is available using an open source license, or a closed source license
Open core The core project is open source, but a version with additional functionality is available using a closed

source license
Open complement Complementary products and services are available using a closed source license
Open edge The core product is closed source, but extensions and complementary features are open source.
Open foundation The core product is closed source, but is built on open source software
Open platform Open source software has been used to create a platform for the delivery of software services and Web

applications
Revenue triggers
Closed source license Either for a version of the full project, or a larger software package or hardware appliance based on the

project, or for extensions to the open source core
Support subscription An annual, repeatable support and service agreement
Value-add subscription An annual, repeatable support and service agreement with additional features/functionality delivered as

a service
Service/support Ad hoc support calls, service, training and consulting contracts
Software services Users pay to access and use the software via hosted or cloud services
Advertising The software is free to use and is funded by associated advertising
Custom Development Customers pay for the software to be customized to meet their specific requirements
Other Products and
Services

The open source software is not used to directly generate revenue. Complementary products provide the
revenue

Obligations of open source licences

80

Appendix C. Obligations of open source licences

The illustration below gives an overview of open source license characteristics and is a direct
copy from a report by Ernst and Young (Young, 2011). Permissive licenses are shown at the
right, while restrictive licences are shown at the right. The left-most column with the most
restrictive license is erroneously without a label in the source report. The correct label here
appears to be “AGPL”.

Large open source projects

81

Appendix D. Large open source projects

The illustration below provides an overview of large successful open source projects and their
ownership (or governance). It is an direct copy from the presentation “How to grow your
open source project 10x and revenues 5x” (Ingo, 2011):

Detailing extrinsic motivations

82

Appendix E. Detailing extrinsic motivations

In self-determination theory (SDT) discussed in chapter 6.4.1, extrinsic motivation can have
several forms which are listed and explained below (R. Ryan & Deci, 2000):

- External regulation
- Introjection
- Identification
- Integration

One type of extrinsic motivation, based on external regulation, is experienced as controlled,
which is the carrot and stick approach by reward or punishment. It does not work very well.
People that are in a controlled motivation situation tend to take short-paths that may
negatively affect quality/ethics of their work. It also has negative long-term consequences for
performance and well-being (Deci, 2012; R. M. Ryan & Deci, 2000)

Another type of extrinsic motivation, based on introjection, is experienced as pressure to
perform actions to avoid anxiety and guilt or to gain pride, ego-enhancements, self-esteem or
feeling of being of value. Ultimately, resulting behaviour is experienced as controlled and is
thus not an effective motivator. (R. Ryan & Deci, 2000)

Another type of extrinsic motivation, based on identification, is when a person accepts and
identifies with the importance of an external impressed behaviour. In this weakly
autonomous form of extrinsic motivation, the individuals agree to do the work because of
his/her own choice and because of its instrumental value that he/she agrees is worthwhile
(so not because of compliance). (R. Ryan & Deci, 2000)

A final type of extrinsic motivation, based on integration, is when a person not just accepts
and identifies with the importance of an external impressed behaviour but also deeply
assimilates the regulation in his/her own system of values and needs. Consequently, that
person will have difficulty in not doing the impressed behaviour because it is something that
is now a part of that person’s self. Integrated motivation is autonomous and free from conflict
but still external as the resulting behaviour is done for its instrumental value in achieving
some outcome. (R. Ryan & Deci, 2000)

Governance of open source projects

83

Appendix F. Governance of open source projects

Vendor driven open source projects are typically using a closed governance model where
the vendor dominates, while community driven open source projects are almost exclusively
open (Ingo, 2011) . For open community driven projects, there are two major forms of
governance: Benevolent dictator model and meritocracy.

The benevolent dictator model is essentially a situation where final decision-making
authority sits with a judge/arbitrator approved by the community. Commonly, a wise dictator
influences discussions, defers to specialists of individual modules and makes decisions only
when no consensus can be reached. In reality, the power of the benevolent dictator is much
restrained by contributors’ freedom to leave or fork (copy) a project (Fogel, 2015). Linux is an
example of a project governed by a benevolent dictator, Linus. (Hertel, Niedner, & Herrmann,
2003)

Meritocracy is a form of democracy based on merit: “The more work you have done, the
more you are allowed to do”. For a meritocracy to work promotions are from internal ranks
only and are based on past contributions. The Apache project is an example of meritocracy in
action (Roberts et al., 2006, p. 2 Attributed to Roy Fielding from the Apache project).
Community led open source projects tend to evolve into democratic models, which can better
survive different dictators or absence of one and is thus more “evolutionary stable” (Fogel,
2015, p. 74).

For open source projects enforcement of agreements can be done internally or by third-party
enforcement enabled by signed contracts. Third-party enforcement is problematic, as it will
negatively affect participation, in particular of individuals.

Research shows that self-governance mechanisms tend to be more effective than 3rd-party
enforcement (Stürmer, 2009). Here enforcement can be assured if a sufficient number of
intrinsic motivated people feel obligated to punish rule-breakers. In open source
communities, individuals are sanctioned by “violently blaming individuals on the Internet or
refusing to respond to communicate with said individuals. Such sanctions are reported to be
quite effective (Osterloh & Rota, 2004).

Another benefit of self-governance mechanisms it that they are more likely to represent a
sustainable competitive advantage than signed contracts because trust and reputation
components of self-enforcement is harder to copy (Stürmer, 2009)

Finally, governance mechanisms should ensure that the community members in opposition to
decisions are treated fairly and respectfully. Respecting other viewpoints and recognizing that
they have rational reason for what they do is something to keep in mind when governing an
open source project. Universally when decisions are made, when you state or do something
publicly, one can generally assume that 70% won’t care, 20% will support you and 10% will
be against. The 70% that do not care, do care however that the detracting 10% are treated
fairly and respectfully (Mickos, 2011 attributed to Jonathan Ian Schwartz, former CEO of Sun
Microsystems)

	Abstract (English)
	Resumé (Danish)
	Contents
	Glossary of key terms
	1. Introduction
	2. Problem formulation
	2.1. Delimitation

	3. Approach and methodology
	3.1. A holistic approach with three perspectives
	3.2. Identifying literature

	4. Overview of literature and theories
	5. Digital platform case
	6. Open source from a community perspective
	6.1. Who are the open source contributors
	6.2. Types of open source communities
	6.3. Social participation architecture of communities
	6.4. Motivation of individual OSS contributors
	6.4.1. Theoretical motivation theories
	Self-determination theory (SDT)
	Process theories

	6.4.2. Studies on motivation software developers in general
	6.4.3. Studies specifically on motivation of open source developers
	Importance of own-use

	6.5. Motivation of corporate contributors
	6.6. Attraction of contributors from a social perspective

	7. Open source from a technical perspective
	7.1. A plausible promise of a product and the MVP
	7.1.1. Views from the open source community on up-front code in initial release
	Lean start-up’s Minimum Viable Product concept and starting an open source project

	7.2. Technical participation architecture of communities
	7.3. Attraction of contributors from a technical perspective

	8. Open source from a business perspective
	8.1. The commercial market and adoption of open source
	8.2. Innovation and open source
	8.3. Copyrights and licensing of open source
	8.4. Naming and associated intellectual property rights
	8.5. The business side of participation architecture for communities
	8.5.1. Revisiting software modularity from a business standpoint

	8.6. Open source, monetisation and business models
	8.7. Attracting contributors from a business perspective
	8.8. Open source community marketing
	8.9. Benefits of open sourcing for a commercial vendor
	8.10. Challenges of open source development
	8.11. Open source project success rates
	8.12. The central dilemma of commercial open source

	9. Open digital platforms, ecosystems and open source
	9.1.1. Platform strategy
	9.1.2. Platforms and open source

	10. A holistic view on contribution decisions by the community
	11. Revisiting the digital platform case
	12. Conclusion
	12.1. Contributions to existing literature
	12.1.1. New holistic view of open source project initiation
	12.1.2. New and comprehensive model of open source project attractiveness

	12.2. Limitations and critique of this thesis
	12.3. Opportunities for further research

	13. Literature
	Appendix A. CAR-MASPIOSSD study results
	Appendix B. Term definitions for Matthew Aslett’s framework
	Appendix C. Obligations of open source licences
	Appendix D. Large open source projects
	Appendix E. Detailing extrinsic motivations
	Appendix F. Governance of open source projects

