Example of calculating the fundamental group of a graph G

Note: This graph includes a loop and some vertices connected by more than one edge; the method of calculating $\pi_{1}(G)$ for graphs is not bothered by these.

Step 0: List the vertices: v0, v1, v2, v3, v4, v5
Step 1: List the edges, and give each an orientation: a, b, c, d, e, f, g, h, k.
Note each "edge" is a path in G. Denote the reverse of each edge as $a^{\wedge}, b^{\wedge}, c^{\wedge}, d^{\wedge}, e^{\wedge}, f^{\wedge}, g^{\wedge}, h^{\wedge}, k^{\wedge}$.

Step 2: Identify a maximal tree, T, in G.
Step 3: Pick one vertex to be the basepoint. (We will use v0.)

Step 4: For each edge NOT in the maximal tree, construct a path from v 0 to the beginning of the edge, and another path from the end of the edge back to v0. (Note: Because T is a tree, these paths are unique; except
 for duplicating a path (forward, back, forward again) there is only one way to travel in T from v0 to another vertex.) This gives a set of loops in G based at v 0 :

In our example, the four edges not in T are d, f, h, k.
The corresponding loops (based at the basepoint v0) are
b^c^db
b^{\wedge} efg
a^ha
kcb

The fundamental group $\pi_{1}(G)$ is a free group of rank 4, and the loop classes [$\left.b^{\wedge} c^{\wedge} d b\right]$, [$\left.b^{\wedge} e f g\right]$, [a^ha], [kcb] are a free basis for the group.
[end of handout - when we want to analyze a covering space, it can help to be fussy/careful in this way]

