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The duration of immunity to SARS-CoV-2 is uncertain. De-
lineating immunememory typically requires longitudinal sero-
logical studies that track antibody prevalence in the same
cohort for an extended time. However, this information
is needed in faster timescales. Notably, the dynamics of
an epidemic where recovered patients become immune for
any period should di�er signi�cantly from those of onewhere
the recovered promptly become susceptible. Here, we ex-
ploit this di�erence to provide a reliable protocol that can
estimate immunity early in an epidemic. We verify this pro-
tocol with synthetic data, discuss its limitations, and then
apply it to evaluate human immunity to SARS-CoV-2 inmor-
tality data series from New York City. Our results indicate
that New York’s mortality �gures are incompatible with im-
munity lasting anything below 105 or above 211 days (90%
CI.), and set an example on how to assess immune memory
in emerging pandemics before serological studies can be
deployed.
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Introduction

The presence and duration of immunity to novel viruses is
traditionally determined through longitudinal serological
studies. By characterizing antibodies against a problem
virus and tracking the serum levels of these antibodies
in a population, for a long enough period, it can be de-
termined with a solid standard of evidence whether the
virus induces immunity and how long that immunity lasts.

This method for studying immunity is statistically re-
liable, but it can demand a very long time and requires
ample human and technical resources. Such caveats do
not usually pose a problem, but they have become rel-
evant in the case of the recent 2019 coronavirus out-
break. COVID-19 presents the right combination of in-
fectivity and mortality to cause a pandemic of unprece-
dented global proportions that became clinically and eco-
nomically relevant in very short timescales, far exceeded
by those required for longitudinal serological studies.

Common human coronaviruses causing cold and �u-
like symptoms of mild degree typically leave an immune
memory lasting from six to twenty-eight months [1].
The determinants of coronavirus and rhinovirus immunity
have beenwidely studied for decades and aremoderately
well understood, as are those of in�uenza [2]. These dis-
eases leave some immunity, but they can reinfect patients
as soon as half a year after.

Themechanisms enabling reinfection strive from sim-
ple to elaborate. In the case of in�uenza and rhinoviruses,
highly polymorphic proteins change yearly or faster and
thus pathogens escape immune memory through muta-
tion: they are virtually a new pathogen [2, 3]. There
is also some evidence that homologous reinfection may
contribute tomulti-wave in�uenza outbreaks. Due to pre-
vious infections generating an insu�cient or non-lasting
immune response, recovered patients can become in-
fected again [4]. Other human pathogens such as herpes
virus, human cytomegalovirus (HCMV), and human im-
munode�ciency virus (HIV) elude immunity without fully
leaving the human body. This persistence in the face
of immune surveillance and medicine is not unique to
viruses, as it is well documented in bacteria and tumor
cells [5–8]. The populations of these cellular pathogens

achieve persistence through the complex interplay of
di�erent factors, including extrinsic and intrinsic noise
in therapeutic targets, mutation, directly compromising
immune function, subpopulations with distinct growth
rates, and other phenomena. In viruses, lysogeny often
plays a pivotal role, as may do infection of immune cell
types.

SARS-CoV-2 is phylogenetically a coronavirus, so the
standard of evidence by default would indicate that it
induces immunity lasting from one to two years. How-
ever, since early in the pandemic, recovered patients have
tested positive after previously testing negative. For a
while, this rose concerns that SARS-CoV-2 could be not
inducing immunity, or persisting in the body after recov-
ery. It is now becoming evident that these positives at
least were induced by harmless remains of viral material
that endure in the human bloodstream weeks after dis-
ease has subsided. But, could immunity after infection
be virtually non-existing after all? The presence, extent,
and particularities of human immunity to SARS-CoV-2 are
still relevant for academics, health professionals and the
broader public, and require further research.

Serological studies are the main tool to that aim and
continue to unfold as we write this study, with prelimi-
nary results already being published [9, 10]. In the mean-
time, lack of further evidence on human immunity to
SARS-CoV-2 delays our full understanding of COVID-19,
leads to mismanagement of medical resources such as
masks in conditions of scarcity (as the ones we have seen
during this pandemic), and sets recovered patients as pu-
tative contagion sources, among other undesirable out-
comes.

Theoretical alternative approaches to detecting im-
munity would be desirable in these circumstances; and
in principle identifying immunity times should be as sim-
ple as inferring the value of a free parameter by �tting an
epidemiological model to �eld data. However, nonlinear
dynamical systems like those characteristic of epidemics
have a high degree of inherent uncertainty, which makes
prediction through conventional, deterministic means in-
e�cient. System variables such as the population of in-
fectious or recovered patients may follow any of a wide
array of possible trajectories, and we cannot know which
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one they will take until they do so [11].

Despite these hurdles, data assimilation techniques
are a set of mathematical tools that have provided suc-
cess in forecasting epidemics [12]. Within thesemethods,
ensemble adjustment Kalman �lters (EAKF) have shown
capable of providing accurate predictions in a system
with many variables [13].

By using Bayes’s theorem to update a model’s predic-
tions with observations at a series of points, uncertainty
in a further forecast is reduced, and the span of possi-
ble posterior trajectories is limited [14]. The better the
measurements (having less uncertainty themselves than
the predictions) and the closer in time to the present,
the better the updated forecast will be. These Bayesian
approaches were originally developed in the context of
large-scale geophysical problems and readily and most
notably applied to weather predictions [15, 16]. More
recently, they have been adapted to epidemiology too,
where they became the state of the art in epidemiological
forecasting, also in the COVID-19 pandemic, e.g., [17],
see also [18] for a related method.

Here, we �rst examine the impact of immunity mem-
ory in the dynamics of a sound epidemiological model of
COVID-19. We then estimate the capacity of EAKF tech-
niques to infer the duration of this memory and then ap-
ply this approach to mortality time series from New York
City (NYC), discerning immunity times against SARS-CoV-
2with reasonable accuracy. Finally, we examine the impli-
cations of the presence of immunity in the post-pandemic
dynamics. This work thus provides reliable information
about human immunity to SARS-CoV-2 and also repre-
sents an alternative to longitudinal serological studies for
use against future emergent pandemics.

Results

| Impact of immunity memory on a COVID-
19 epidemiological model

We used an epidemiological model in which the total
population is divided into a number of classes [19] (Fig-
ure 1). The speci�c compartments represent our cur-
rent understanding of COVID-19 progression. Note that

the infected population is divided into �ve (right column
in Fig. 1) and that we also included two di�erent mor-
tality rates for critical cases because mortality depends
strongly on whether there are available beds in Intensive
Care Units (ICUs; Methods and Supplementary Material
for the model details). All associated parameters in this
model are available except for the infection rate � and the
immunity memory ⌧ (Supplementary Material). The fun-
damental categories resemble those of the well-known
SEIRS model [20] in that the recovered population be-
comes susceptible after some duration of immunity (⌧).
However, the particularities of the COVID-19 progres-
sion are such that aminimal SEIRS cannot predict themid-
and long-term dynamics of the population well enough
(Fig. S1 and Supplementary Material).

F IGURE 1 COVID-19 epidemic model. We
introduce a compartmentalized epidemiological model
with �ve infected categories (gray shading). Note that
the accessibility of ICUs determines the rate to
deceased and that those individuals recovered after
infection may lose their immunity and become again
susceptible after a �nite time ⌧ (red arrow). See
Supplementary Material for model details.

In addition, we performed a variance-based global
sensitivity analysis [21, 22] of the model (Fig. S2 and Sup-
plementary Material). In particular, it illustrates the im-
portance of the parameters related to the mild cases in
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F IGURE 2 The immunity memory ⌧ impacts di�erently in the mid- and long-term dynamics. (A) Di�erent time
series of daily deceases depending on the value of the immunity memory ⌧ (� = 0.5 days�1). (B) The peak height, i.e.
maximum number of deceased individuals in a single day, and the duration of the "�rst-wave" (inset) increase with
shorter immunity times. However, the former increases with the infection rate, as opposed to the latter. (C) A �nite
value of immunity memory induces intrinsic seasonality on the model what produces subsequent epidemic peaks
with time. This seasonality depends heavily on the interplay between the infection rate and the immune memory.
Data shown for ⌧ = 3 months.

shaping the deceases time series, the peak height and
the total number of deceases after a year of pandemic
whereas the infection rate tunes mainly the timing of the
pandemic peak.

First, we study how the loss of immunity after infec-
tion impacts daily deaths (dD/dt) in our COVID-19 epi-
demiological model. The initial condition is a single ex-
posed case, with a constant and intermediate value of the
infection rate (Figure 2A). We �nd analytically that in the
short term, i.e., during the exponential growth of infected
cases, the development of immunity has no e�ect on the
initial number of secondary infections R0 (Supplementary
Material): there is not enough time for the re-circulation
of the recovered back to the susceptible population.

However, in the mid-term of the epidemic starting
at the departure from exponential growth and up to the
�rst noticeable reduction in daily deceases, a shorter im-
munity memory time raises the overall number of daily
deceases. It also promotes a more prolonged duration of
the epidemic as estimated by the time daily deceases stay
above 75% of the maximum. Finally, in the long term, be-
yond the �rst peak, a �nite immunity memory promotes
the appearance of new epidemic waves.

The duration of the immunity time also shapes the
dependence with � of the peak number of daily cases
dD/dtmax and the duration of the epidemic (Figure 2B).
As expected, dD/dtmax increases with the infection rate

� but decreases for increasing ⌧ . In addition, we observe
that dD/dtmax for ⌧s beyond a threshold are hardly distin-
guishable, e.g., data for ⌧ = 3 months and ⌧ = 1 year.
Moreover, the duration of the �rst peak decreases to-
gether with both increasing � and ⌧ . Figure 2C displays
the intrinsic seasonality derived from a �nite immunity
time. The height and timing of the secondary peaks are
strongly dependent on both � and ⌧ , data shown is for a
�xed value of ⌧ = 3 months. This subscribes earlier pro-
jections obtained with a multi-strain model [23].

| Predicting immunity memory of an ongo-
ing epidemic

A �nite value of the immunity time impacts the time se-
ries of daily deceases only after the exponential growth,
and starting around the peak of the �rst wave. To notice
these implications, we required a considerably advanced
epidemic. What about an ongoing epidemic? This would
need the real-time assessment of the epidemic parame-
ters and the ability to forecast the short-term dynamics
after the epidemic passes the peak.

While this kind of forecasting is intrinsically di�-
cult [13], it is now possible to apply �ltering techniques
that recently demonstrated valid in this problem by inte-
grating model predictions and data [17, 23–25]. We thus
adopted a speci�c recursive �ltering technique known
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F IGURE 3 Our EAFK-based approach predicts well the parameters of an ongoing epidemic with synthetic data.
We tested the performance of the EAKF-based protocol over a test bed of synthetic data made of 100 time-series
generated with the model and random values of � and ⌧ . Panels A-C illustrate the analysis of a single example
whereas panels D-F show the overall performance on the entire test bed. (A) Our protocol (blue) is able to accurately
capture data of daily deceases (red), with a linear correlation between data and model ⇢ > 0.99. (B) The value of the
synthetic infection rate �synth (dotted line) is captured by the protocol �model (blue) after some data assimilation
steps, and prior to the pandemic peak. Accordingly, the relative error between �synth and �model decreases as more
data is assimilated (purple solid, right y-axis). (C) The immune memory ⌧model (blue) follows similar dynamics as
�model and approaches the synthetic value ⌧synth (dotted line). However, its relative error (purple solid, right y-axis)
drops later than �model, at about the epidemic’s peak, in agreement with the results of our previous section. In
panels A-C, shadings represent 95%CI, while vertical lines denote time of peak. (D) Histogram of linear correlations
between model and data of daily deceases (as in panel A) for the entire test bed. (E-F) Synthetic values and EAKF
estimates of the infection rate and immune memory largely correlate, ⇢ = 0.99 and ⇢ = 0.98, respectively. We �nd
however that our protocol tends to overestimate larger infection rates when �synth > 1.
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as EAKF to infer the immunity memory duration in the
course of an ongoing epidemic (see Supplementary Ma-
terial for a brief intro to EAKF) [11, 14].

To describe a typical scenario, we �rst simulated a
synthetic time-series with the deterministic model that
would represent real data (Figure 3A-C).We then ran 100
independent iterations of the EAKF protocol, with di�er-
ent initial conditions, to estimate dD/dt (everyday deaths)
and the "hidden" parameters (�synth and ⌧synth). To as-
sess the performance of our protocol, we compute the
relative errors between the target values and the median
of predictions. The similarity between the predicted and
real curve of dD/dt is evident (Fig. 3A). Note that the es-
timates of � and ⌧ improve mostly before and after the
epidemic peak, respectively (Fig. 3B-C). This trend is in
agreement with our results from the previous section.

To further evaluate the limits of this approach, we
generated a test bed of 100 synthetic data series for
a range of parameters (note that for each series we
ran again 100 iterations). Speci�cally, each series cor-
respond to random values of �synth 2 [0.2, 1.5] days�1

and ⌧synth 2 [0, 360] days to which we added relative ran-
dom noise normally distributed with zero mean and stan-
dard deviation up to 10%. The initial exposed popula-
tion is also selected randomly from a uniform distribution
Esynth (t = 0) 2 [0, 10]. The goal is to apply EAKF within
this range to estimate once again the dD/dt series and
the "hidden" parameters.

Figure 3D-E shows the performance of our protocol
when applied to the entire test bed of synthetic data. On
the one hand, we �nd that infection rates � < 1 are ex-
cellently captured whereas � > 1 are slightly overesti-
mated (Fig. 3E). On the other hand, ⌧ is more di�cult to
estimate in its entire range (smaller correlation between
model and synthetic values), but the estimates are not bi-
ased towards upper/lower values (Fig . 3F). Moreover we
found that the errors between estimates of ⌧ and � barely
correlate (⇢ = �0.18, not shown), so a better estimation
of � does not necessarily lead to a worse estimation of ⌧ .
Also, neither errors in the estimates of ⌧ nor � correlate
with the magnitude of the noise added to dD/dt (⇢ = 0.04

and ⇢ = �0.12, respectively; not shown).
In sum, �ltering and data assimilation techniques suc-

cessfully identify the values of the infection rate, � , and
immunity memory, ⌧ , when enough data points are avail-
able. The value estimates are robustly captured for dif-
ferent initial conditions. Finally, we also found that our
protocol can handle up to 10% relative errors with little
to no impact on the estimation of � and ⌧ .

| Quick and strong social distancing mea-
sures conceal the mid-term e�ect of immu-
nity

We now apply the protocol used in the previous section
to real time series of new daily deceases reported for
COVID-19 in di�erent heavily-a�ected regions. We per-
formed a preliminary test to rank these regions (world-
wide countries and counties/cities within the US) to nar-
row down potential candidates for signal detection. From
over 30 regions, we selected NYC because it had the
largest number of deceases per 105 inhabitants and it did
not exhibit volatile �eld data like other regions, e.g. Nas-
sau (NY, USA) or Belgium, (Fig. S3 and S4 in Supplemen-
tary Material).

To be certain that the signal in ⌧ is not an artifact, we
added to the protocol a control variable � that has no ef-
fect on the model, is initialized as a di�erent sample of
the same initial distribution as ⌧ and follows the same up-
date rules as ⌧ . Thus, statistically signi�cant deviations
between the distributions of ⌧ and � highlight the in�u-
ence of ⌧ in the results.

In Figure 4A-C we show the results of NYC. The
success of the EAKF protocol to capture the dynam-
ics of dD/dt is apparent with a root mean squared er-
ror RMSE= 18 deceases and a linear correlation between
data and the model median ⇢ > 0.99 (Fig. 4A). In par-
ticular, our protocol also captures the time-dynamics of
the infection rate, which is well aligned with the days on
whichNYCpromoted social distancingmeasures: schools
and library closings on March 16th, and the pause order
of March 22nd (Fig. 4).

Most importantly, we found a �nal estimate of
105 < ⌧ < 211 days with 90% con�dence (80 < ⌧ < 288

days with 95% CI). We obtained this estimate from a sta-
tistically signi�cant change in the distribution of ⌧ with re-
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F IGURE 4 Our protocol captures the days on which social distancing is established, and provide and estimation
of immune memory duration with data of New York City (USA). (A) Data (red dots) and algorithm estimate (blue
solid, median and 95% CI) of New York City’s daily deceases of COVID-19. Data and prediction are in good
agreement, with a root mean squared error RMSE=18 deceases and with a linear correlation coe�cient ⇢ => 0.99.
(B) Estimate of the infection rate, � , dynamics (median and 95% CI). Drops in � are well aligned with the days on
which social distancing measures took place: school closings (black dashed) and the pause order (black dotted). (C)
Estimate of the immune memory duration ⌧ (median and 95% CI). The distribution of ⌧ becomes signi�cantly
di�erent from that of a control variable � (two-sample Kolmogorov-Smirnov test p= 0.017) and sets the lower and
upper to ⌧ 2 [80, 288] days with (95% CI). We also simulated a hypothetical scenario based on NYC data with (D)
lockdowns established on di�erent days since the �rst decease, and with (E) di�erent decreases in � due to the
lockdown. As a proxy for the di�culty of detecting ⌧ , we use the number of potential reinfections, i.e. the number of
recovered people that has lost its immunity by the 50th day since the start of the epidemic, for di�erent values of ⌧ .
Observe that speci�c data for NYC (black vertical lines in panels D and E) illustrates how their quick action in closing
schools and passing a pause order (on March 22nd 2020) and their large e�ectiveness (with � decreasing > �90%)
ensure a small amount of possible reinfections, and hence the di�culty to capture ⌧ with �tting methods.
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spect to the control variable � (two-sample Kolmogorov
Smirnov, p= 0.017). The upper bound should be consid-
ered with caution, given the limited availability of COVID-
19 data due to its recent appearance, and future data as-
similation steps could alter this bound.

We attribute the di�culty to capture the value of
⌧ in real data as opposed to synthetic data to the ubiq-
uity of a strong reduction of the infection rate during the
initial days of the epidemic in all data sets that we stud-
ied (results of Belgium, Spain and France are available in
Fig. S5). We tested this idea by computing the number of
recovered cases that have lost their immunity against the
virus after 50 days of the start of the epidemic. This num-
ber, which we call potential reinfections, is a proxy for
the di�culty of capturing ⌧ . We consider a scenario sim-
ilar to NYC, with equal population and equal initial and
�nal infection rates � , but with di�erent timing and ef-
fectiveness of lockdowns (Fig.4DE). The e�ectiveness is
measured by the relative change between the infection
rate pre- and post-lockdown. Simulation data supports
our hypothesis since the number of potential reinfections
is both close to zero and independent of ⌧ when lock-
downs are quickly established and/or when they are very
e�ective with infection rate drops > 90%.

Although we con�rmed the potential of EAKF algo-
rithms to distinguish the duration of immunememory dur-
ing an ongoing epidemic, we also noted that the applica-
tion of our methods is bounded by the expected control
measures that are aimed to reduce epidemic progression,
i.e., to decrease the infection rate.

| Potential consequences of immunity on
post-pandemic COVID-19 dynamics

How could the immune memory for COVID-19 a�ect a
secondary wave of infection? We tackle this by integrat-
ing the �nal state of the EAKF ensembles of NYCwith our
COVID-19 model deterministically. To account for the re-
laxation of social distancing measures we include a linear
increase of the infection rate during the month of July,
speci�cally, � doubles by the 1st of August and remains
constant from then on, which is a conservative scenario.
In terms of the e�ective number of secondary infections

Re , a doubling of � is equivalent to an Re increase from
⇠ 0.7 to ⇠ 1.3 (Supplementary Material).

Figure 5 shows the model forecast of daily de-
ceases due to COVID-19 considering the lower and up-
per bounds of the 95% CI, ⌧ = 80 and ⌧ = 288 days, re-
spectively. First, in this scenariowhere social distancing is
only slightly relaxed and where the infection rate remains
constant from then on, a new epidemic wave in terms
of deceases would shortly take place. Its precise timing
will depend strongly on the number of ICU beds available,
but it can be expected to start in mid September. More-
over, without further social distancing measures during
this second epidemic wave, we anticipate that it could
last up until January and beyond.

This is due to the fact that, during the �rst wave,
most of the population did not develop immunity to the
virus and hence is yet susceptible through the second
wave. Such a secondary peak has already been suggested
in other speci�c scenarios [23, 26].

However, if we focus on the maximum e�ect that dif-
ferent ⌧s have in the short run, we �nd that, although the
median trajectory is independent of ⌧ , the con�dence re-
gion is narrower for ⌧ = 80 days. In fact, we expect the
immune memory to be relevant only after a considerable
fraction of the population has undergone a �rst infection
by COVID-19, or in the case that the time between epi-
demic waves (or intermittent social distancing) is shorter
than that of ⌧ where there is enough time to build a su�-
ciently large pool of immune population.
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F IGURE 5 Independently of immunity duration, a
second epidemic wave could a�ect NYC if the infection
rate doubles by August. We show the forecast of a
second epidemic wave starting in early September if the
infection rate � doubles its value during July, for two
cases of immune memory ⌧ = 80 and ⌧ = 288 days
(purple and orange respectively, shadings denote 95%
CI). Observe that ⌧ slightly a�ects the timing of the
second wave: the shorter ⌧ has a narrower CI. The
second wave becomes quickly a real problem due to the
little immunity developed during the �rst (black).

Discussion

We propose an alternative approach for estimating the
duration of immunity. The protocol relies on the compu-
tational analysis of epidemiological time series, which re-
quires far fewer resources and may be deployed faster
than its alternatives. Although longitudinal serological
studies may be preferred, the evidence for immunity they
provide is as indirect as the onewemay detect in epidemi-
ological data series. In fact, a direct experimental test of
human immunity to SARS-CoV-2would require intention-
ally infecting and monitoring recovered human patients
with the virus, which would be highly controversial, al-
though this approach has been tested in monkeys [27].

To circumvent this, serological studies obtain indirect
evidence based on the premise that antibody prevalence
equates immunity, which is generally accurate. However,
this is not the case for all diseases. Di�erent mechanisms
of persistence deployed by pathogens can uncouple anti-
body memory from actually being protected against the
disease and/or being asymptomatic. Moreover, the e�ect
of immunity on mortality series can hardly be mimicked
by any other factors and draws information from �eld
data. Thus, its standard of evidence for immunity is not
necessarily lower than the one traditionally employed.

Despite all these points in its favor, the reach of the
protocol in its current form is limited, and some require-
ments must be satis�ed to discern immunity. Data series
must have surpassed the peak following social distancing
measures, which will increase the time necessary to be-
gin a proper examination. In this regard, capturing ⌧ was
highly dependent on lockdown policies, as evidenced by
our potential reinfections metric. The maximum portion

of infected people in the population must be su�ciently
large for there to be a signal. However, most regions will
implement comparable measures to reduce the number
of deceased and its growth that make the signal barely
distinguishable. In some cases, di�erent stages of social
alarm strati�ed with political or legal restrictions of vary-
ing strength are what makes for very volatile infection
rates or completely renders changes in immunity irrele-
vant to early population mortality.

However, segregating exposure and likeliness of in-
fection should improve signal detection as all individuals
are not equally likely to be infected. On the one hand,
long-lasting cross-immunitywith other coronaviruses can
signi�cantly reduce the susceptible population [28, 29],
and on the other hand, re-infections are most likely oc-
curring in only a subset of the population ( such as the
working as opposed to the non-working population, age-
based classi�cations, or metropolitan vs suburban or ru-
ral). A secondway of improving immunitywould be to use
another observable on top of the deceased during data
assimilation. In fact, predictions would improve consid-
erably should data of the infected population be reliable
and independent of the limited availability of PCR tests.
In addition, the improper mapping of �eld-measured vari-
ables (the "con�rmed", sampling-biased metric) to model
variables (exposed, asymptomatic, mild, severe and criti-
cal populations) prevents predictability.

But leaving aside reliability in the �eld tracking of
epidemiological variables, it is also worth noting that the
protocol is unworkable without a moderately predictive
model. Concomitantly, having an accuratemodel requires
some knowledge of the disease’s progression, symptoma-
tology, and outcomes, as well as any notable resources
or clinical agents involved in them (as in this case were
ICU beds or oxygen). Still, none of these requirements is
particularly unlikely to be reached during emergent pan-
demics. For instance, all of them had been satis�ed after
3 months of COVID-19. And the information needed to
produce a reasonable model was already public after the
second month.

Lastly, perhaps the most signi�cant obstacle in this
and more conventional approaches is their inability to
discriminate heterogeneity in immunity [30] from groups
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of recovered patients that have experienced varying de-
grees of symptomatology. Indeed, patients with many
kinds of symptoms and/or peak viral loads may vary in
their development of immunity. It could be, for instance,
that mild cases do not result in enduring immunity, or
result in a shorter immune span, than severe or critical
cases. If that were the case, our approach would similarly
identify a single overall value for immunity from the sta-
tistical overlap of di�erent genuine immunity times, o�er-
ing a weighed, non-real centrality measure of all immune
times in the population.

All these things considered, the present protocol can
be thought of as an additional �rst-hand tool that can al-
ways provide necessary evidence in the early stages of
a pandemic, until more and varied methods can be de-
ployed.

Now, several issues have arisen surrounding persis-
tence and immunity in COVID-19 throughout the last
months. For the majority of the time, the best estimate
for immunity to SARS-CoV-2 the community could work
with was a presumed range stemming from phylogenetic
comparisons pertaining seasonal human coronaviruses
like HCoV-OC43 and HCoV-HKU1 [23]. Nevertheless,
the standard of evidence of phylogenetic assumptions
is not very reliable, particularly with regards to microor-
ganism. According to these suppositions, COVID-19 may
elicit immunity lasting from 6 months to 2 years.

Because these were potentially inaccurate measures,
early cases of apparent reinfection sparked controversies,
and even now as some countries are re-experiencing out-
breaks recurring positives are a concern. Our work adds
on to other very recent publications that appear to indi-
cate immunity will last at least several months [10], and
provides COVID-19-speci�c evidence that recovered pa-
tients will maintain at the very least 3.5 months of immu-
nity, most likely around 5, and possibly no more than 7;
so long as there are no signi�cant di�erences in immunity
due to case severity.

While we recognize the complexity of the human im-
mune response to SARS-CoV-2, as it is to many other
viruses, we trust that our work contributes to a more
solid comprehension of the epidemiological implications
of this response.

Materials and Methods

Data acquisition

We obtained death counts of COVID-19 aggregated by
country andUSA county from the COVID-19Data Repos-
itory by the Center for Systems Science and Engineering
(CSSE) at Johns Hopkins University [31] (last updated on
July 9th), and information of ICU beds from a variety of
sources depending on the region of study (for the case of
NYC see the city’s coronavirus tracker). We used Worl-
dometer to obtain the populations of the regions and
countries we selected for analysis [32]. We also used
data from the Oxford COVID-19 Government Response
Tracker to �nd the days that di�erent social distancing
measures took place in some countries [33].

Epidemiological model

We introduced a compartmentalmodel that exploitswhat
is currently known about COVID-19 progression and as-
sociated accessible data such as the fraction and times
at which di�erent infected cases recover or worsen (Sup-
plementary Material, Table S1). Namely the compart-
ments are: susceptible (S ), exposed to the virus but not
yet contagious (E ), infected and contagious but asymp-
tomatic (IA), with mild symptoms (IM ), with severe symp-
toms (needs hospitalization - IS ), and critical symptoms
(requires urgent admittance to an ICU - IC ); recovered
cases (R ) and the deceased (D ).

The basic reproductive number, R0, and its temporal-
dependent counterpart Re (e�ective reproductive num-
ber) are composite parameters that integrate information
on not only the infection rate but also the contact rate,
susceptible population, and most importantly model ar-
chitecture [34, 35]. For this reason, we have prioritized
the use of the infection rate � throughout. However, we
have used Re sparingly due to its biological relevance,
which lies in whether it is larger/smaller than the unit, in-
dicating whether the outbreak is expected to continue.
To compute Re we have applied the Next Generation Ma-
trices (NGM) algorithm to our model [36], hence Re is the
largest eigenvalue of the NGM KL=-T S�1 where T and S
are respectively the transmissions and transitions matri-
ces (Supplementary Material for more details). A sensitiv-
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ity analysis of R0 with respect to the model parameters is
available in Fig. S6.

Data assimilation
The EAKF �ltering method consists in propagating and
updating ensemble members, which constitute a proba-
bilistic description of the state variables and model pa-
rameters [13]. Ensembles are samples of the distributions
that the variables are expected to have. In our case, the
time-dependent state variables are the infection rate � ,
the immunity memory ⌧ and the population in each com-
partment of the model. We also introduced a dummy
variable � that does not a�ect the model results against
which to test the ensemble dynamics of ⌧ . The time-
dependent observable is the number of daily deceases
o�cially reported, to which we applied a 2 week running
average to account for miscommunications and reporting
delays.

In the data assimilation step, the ensemble members
are integrated with the model to obtain their expected
state at the time of the succeeding observation. Next, to-
gether with the likelihood distribution of the actual ob-
servation, the algorithm calculates the posterior proba-
bility assuming that all distributions are normal. Lastly,
the unobserved state variables are updated according to
their correlationwith the observable. For the assimilation
of the next data-point, the posterior probability then be-
comes prior. A more detailed description of the protocol
is available in the Supplementary Material.

Importantly, considering that ⌧ did not correlate lin-
early with the observable, we used rank correlations in-
stead to update both ⌧ and � . We also used a 3% in�ation
in the ensemble variance of all variables except ⌧ and �

since they showed no convergence problems. We have
run 100 EAKF instanceswith ensemble sizes of 200mem-
bers. The days inwhich con�nementmeasures took place
(school closing, lockdown...) we added a 200% in�ation to
better accommodate parameter discontinuities.
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