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Abstract: Brain ageing is a complex process which in its 
pathologic form is associated with learning and memory 
dysfunction or cognitive impairment. During ageing, 
changes in cholinergic innervations and reduced ace-
tylcholinergic tonus may trigger a series of molecular 
pathways participating in oxidative stress, excitotoxicity, 
amyloid-β toxicity, apoptosis, neuroinflammation, and 
perturb neurotrophic factors in the brain. Nicotine is an 
exogenous agonist of nicotinic acetylcholine receptors 
(nAChRs) and acts as a pharmacological chaperone in 
the regulation of nAChR expression, potentially interven-
ing in age-related changes in diverse molecular pathways 
leading to pathology. Although nicotine has therapeutic 
potential, paradoxical effects have been reported, possi-
bly due to its inverted U-shape dose-response effects or 
pharmacokinetic factors. Additionally, nicotine admin-
istration should result in optimum therapeutic effects 
without imparting abuse potential or toxicity. Overall, this 
review aims to compile the previous and most recent data 
on nicotine and its effects on cognition-related mecha-
nisms and age-related cognitive impairment.

Keywords: ageing; cognition; nicotine; therapy; toxicity.

Introduction
The population is ageing in many countries and brain 
ageing and age-related cognitive decline emerge as a 
major health care issue (Ferreira and Busatto, 2013). 
Brain ageing is a complex process involving numerous 
pathways and is associated with declining cognitive and 

sensorimotor function (Mora, 2013). Grey matter volume 
declines with healthy ageing in association with specific 
molecular changes (Mora et al., 2007), yet unique features 
distinguish ageing of the brain from that of other tissues 
(Sibille, 2013). Some hypotheses have been put forward to 
explain the brain age-related cognitive decline in healthy 
elderly individuals. However, the detailed biological and 
neuronal bases of these changes are unclear and should, 
therefore, be better clarified (Whalley et al., 2004; Craik 
and Rose, 2012).

Despite the traditional view that assumes that brain 
ageing is accompanied by substantial loss of cortical neu-
rones, recent studies have proposed that cognitive ageing 
could rather result from reduced plasticity of synaptic con-
nections (Trachtenberg et al., 2002; Whalley et al., 2004). 
Besides, age-related changes may rise due to cumulative 
effects of reactive oxygen species (ROS) and free radicals 
derived from oxidative glycolysis. The consequent oxida-
tive stress propagates alterations in lipids, proteins, and 
DNA structure, and disruption of calcium and mitochon-
drial function in association with neuroinflammation, 
which together contribute to age-related cognitive decline 
(Whalley et al., 2004; Sibille, 2013). Progressive accumu-
lation of amyloid-β (Aβ) plaques in the ageing mammalian 
brain can also contribute to learning and memory deficits 
(Zahs and Ashe, 2013), even in the absence of Alzheimer’s 
dementia. Other factors contributing to age-related cogni-
tive decline include changes in neuroprotective peptide 
levels and neurotransmitter signalling, gliosis, and den-
dritic shrinkage (Glorioso and Sibille, 2011). Last but 
not least among proposed mechanisms for age-related 
cognitive decline is degenerative changes in cholinergic 
neurones resulting in cholinergic hypofunction and pro-
gressive memory loss (Schliebs and Arendt, 2011).

Nicotine is an alkaloid which is extracted from the 
tobacco plant. It binds to the nicotinic acetylcholine recep-
tors (nAChRs) which are members of a pentameric ligand-
gated ion channels activated by nicotine and endogenous 
acetylcholine (Powledge, 2004). Nicotine by actions at 
nAChRs evokes plasticity alterations in the cortico-lim-
bic circuits and long-term synapse changes (Mansvelder 
et  al., 2009). In addition to the main pharmacological 
effects, low doses of nicotine have a number of potentially 
nAChRs-mediated procognitive effects, as summarised in 
Table 1. Nicotine acts as an antioxidant reducing oxidative 
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stress (Guan et al., 2003). Furthermore, nicotine has anti-
inflammatory effects and suppresses neuroinflammation 
(Nizri et  al., 2009). Also, nicotine has neuroprotective 
properties through reducing Aβ aggregation in the brain 
(Nordberg et al., 2002).

In contrast to these various neuroprotective and pro-
cognitive effects, some studies have reported that high 
doses of nicotine can induce cognitive, behavioural, and 
intellectual impairments (Matta et al., 2007; Ortega et al., 
2013) emphasising the dose dependence of beneficial 
actions of nicotine.

Dependence and health risks are the two main issues 
connected with nicotine use. One of the issues about nico-
tine may be its influences on health. Nicotine is addictive, 
but cancer and other health problems of tobacco abuse 
mostly result from other components of the cigarette 
smoke such as carbon monoxide and tar (Russell, 1991; 
Le Houezec, 2003). It is these components as opposed to 
nicotine itself that eventually impair cerebral blood flow 
and oxygen metabolism of smokers (Vafaee et al., 2015).

Although nicotine has direct toxic effects such as 
inducing fibrosis in various organ systems and cardiovas-
cular abnormalities (Balakumar and Kaur, 2009; Jensen 
et al., 2012), these effects might be avoided by a more selec-
tive route of administration, i.e. intranasal. Moreover, the 
reinforcing and addictive properties of nicotine are mainly 
dependent upon the rate of absorption into circulation, as 
well as the dosage of administered nicotine. Indeed nico-
tine, when delivered through routes other than smoking, 
does not result in high plasma concentrations and is 
believed not to have high abuse potential (Hughes, 1998; 
Le Houezec, 2003).

This review aims to gather the previous and most 
recent data on nicotine and its effects on cognition-related 
mechanisms and age-related cognitive impairment.

Nicotine-receptor kinetics and 
dynamics
Nicotine is an alkaloid with both sympathetic and para-
sympathomimetic features that was first isolated from 
Nicotiana tabacum by Wilhelm Heinrich Posselt and Karl 
Ludwig Reimann in 1828 (Haass and Kübler, 1997; Dietz, 
2016). Composed of pyridine and a pyrrolidine ring, 
nicotine has two enantiomeric forms. Its natural form is 
levorotatory ([−]-nicotine), and the other type is dextro-
rotatory ([+]-nicotine) which is physiologically less active 
but more toxic (Gause, 1941). Upon delivery by tobacco 
smoke, nicotine is quickly and extensively distributed 

throughout the body by the bloodstream and crosses the 
blood-brain barrier within 10–20  seconds after inhala-
tion. Due to first pass metabolism and distribution, the 
arterial plasma concentration declines rapidly to very low 
levels within minutes of smoking (Le Houezec, 2003). As 
distinct from smoking, nicotine administration by oral, 
transdermal, intravenous, and intraperitoneal routes 
evokes very gradual increases in the cerebral nicotine 
concentrations, with a lower brain-to-blood ratio (Hen-
ningfield, 1995). Nicotine is mainly metabolised by the 
liver to cotinine (70%) and nicotine-N′-oxide (4%) with an 
average elimination half-life of 2 h (Benowitz et al., 2002). 
Its minor metabolites are nicotine glucuronide, trans-3′-
hydroxycotinine glucuronide, nicotine-N′-oxide, cotinine 
glucuronide, and trans-3′-hydroxycotinine which are less 
prevalent.

Nicotine, like acetylcholine, acts via nAChRs, which 
are a family of ligand-gated ion channels with perme-
ability for Na+, K+, and Ca2+ ions. These nAChRs have a 
pentameric structure composed of α and β subunits, 
with specific neuronal forms predominating in the brain 
(Govind et  al., 2009; Zouridakis et  al., 2009). Clinical 
trials and animal studies have proved that administration 
of nicotine could improve cognitive functions through 
the activation of nAChRs (Table 1) (Barr et al., 2008). The 
primary forms of nAChRs in the brain are α4β2 heteromers 
and α7 homomers. The former has higher affinity to nico-
tine than the latter (Sadigh-Eteghad et al., 2015a, 2016b) 
and has the highest expression in the thalamus. In con-
trast, the α7 nAChR is relatively common throughout the 
cerebral cortex, where it is poised to mediate pro-cogni-
tive effects of nicotine and other agonists (Sadigh-Eteghad 
et al., 2015b). Therefore, selective α7 nAChR agonists are 
considerably interesting targets in the treatment of cog-
nitive impairment and Alzheimer’s disease (AD) (Faghih 
et al., 2007).

In addition to the direct pharmacological activa-
tion of nAChRs, nicotine also acts as a pharmacological 
chaperone of nAChRs, favouring their assembly, and this 
increases the expression level of functional pentamers in 
the brain which may subsequently mediate nicotine neu-
roprotective effects in the brain (Sadigh-Eteghad et  al., 
2015a).

Cholinergic degeneration
It has been accepted that cholinergic neurones par-
ticipate in memory, learning, and attention (Levin 
et  al., 2006; Arroyo et  al., 2014), especially those in 
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the nucleus of Meynert of the basal forebrain, which 
innervate the hippocampus and cerebral cortex. This 
cholinergic nucleus undergoes degenerative alterations 
in the course of ageing, and the resulting hypofunc-
tion contributes to age-related cognitive deficits and 
memory loss (Dumas and Newhouse, 2011; Schliebs and 
Arendt, 2011; Bañuelos et al., 2013). Age-related cogni-
tive impairments are caused not simply by the loss of 
cholinergic neurones of the basal forebrain, but also by 
the hypofunction of the remaining neurones and their 
associated synapses (Ypsilanti et  al., 2008; Bañuelos 
et al., 2013).

Nicotine treatment has been shown to improve 
memory, learning, and attention through its facilitating 
effects on cholinergic neurotransmission both in clinical 
trials and animal studies (Table 1) (Potter and Newhouse, 
2008; Arroyo et  al., 2014; Logemann et  al., 2014). These 
effects are mainly mediated through the α7 and α4β2 sub-
types of nAChRs (Ortega et al., 2013; Arroyo et al., 2014). 
Post-mortem studies in smokers and also animal studies 
have shown that chronic nicotine administration upregu-
lates high-affinity nAChRs in the brain (Fasoli et al., 2016). 
Evidence suggests that the nicotine-induced increase in 
the nAChRs is a two-phase process entailing fast (rapid 
and reversible) and long-lasting (slowed proteasomal 
degradation of subunits) phases (Govind et al., 2012). The 
activation-dependent increase in the receptor density is 
thought to be post-transcriptional (Sadigh-Eteghad et al., 
2015b) where nicotine is considered to be a pharmacologi-
cal chaperone, since the expression of mRNA encoding 
subunits is altered by nicotine administration in experi-
mental animals (Marks et al., 1992; Sadigh-Eteghad et al., 
2015a). It has been proposed that nicotine enhances the 
receptor transportation to the cell surface (Darsow et al., 
2005), reduces their turnover in the cell membrane (Peng 
et al., 1994), decreases their endoplasmic reticulum (ER)-
mediated degradation, and improves the assembly of sub-
units in the ER (Sallette et al., 2005; Rezvani et al., 2007; 
Sadigh-Eteghad et al., 2016a) all via chaperone-mediated 
mechanisms.

Nicotine, by the activation of α7 and non-α7 nAChRs, 
causes an increase in the response of N-methyl-d-aspar-
tate receptors to glutamate and consequent long-term 
potentiation (LTP), which is an essential substrate of 
memory (Yamazaki et al., 2002; Nakauchi and Sumikawa, 
2012). Nicotine-induced enhancement of LTP seems to 
involve the NMDA-mediated activation of protein kinase A 
and extracellular signal-regulated kinase 1/2 (ERK1/2) sig-
nalling pathways that together mediate plasticity-related 
alterations of long-term memory (Sweatt, 2004; Gould 
et al., 2014).

Potentiation of cholinergic signalling by nicotine and 
other nAChR agonists has been implicated in the treatment 
of various neurodegenerative and non-neurodegenerative 
disorders that primarily or secondarily affect this system 
(Mufson et al., 2008; Quik et al., 2008; Liepelt et al., 2010; 
Oz et al., 2016). Thus, it seems that the cholinergic proper-
ties of nicotine may favour its use in the treatment of age-
related cognitive deficits and memory loss.

Oxidative stress
Oxidative stress is a phenomenon resulting from an imbal-
ance between ROS production and antioxidant as well as 
free radical scavenging systems (Majdi et al., 2016b). Oxi-
dative stress, in particular, the iron-mediated oxidative 
brain damage, seems to be a crucial factor in provoking 
neuronal death and is thus implicated in many age-related 
neurodegenerative disorders including AD and Parkin-
son’s diseases (PD) (Padurariu et  al., 2010; Vaya, 2013; 
Ward et al., 2014). Furthermore, due to the brain’s higher 
oxygen metabolism and limited capacity of regeneration, 
oxidative stress (Ward et  al., 2014; Daugherty and Raz, 
2015) is considered an important role player in the brain 
ageing and its associated cognitive and functional impair-
ment (Haddadi et al., 2014). Although nicotine properties 
regarding oxidative stress and neuroprotection are con-
troversial, and may be complicated by inverted U-shaped 
dose-response curves (Guan et  al., 2003; Matta et  al., 
2007), several studies have reported antioxidant effects of 
nicotine on neurodegenerative disorders such as AD and 
PD (Ferger et  al., 1998; Linert et  al., 1999; Pachauri and 
Flora, 2013). It has been shown that nicotine administra-
tion under certain circumstances can reduce ROS-medi-
ated lipid peroxidation in vivo and in vitro (Soto-Otero 
et al., 2002; Guan et al., 2003). This may result from nico-
tine ability to chelate Fe2+ via the pyridine nitrogen and 
thus inhibit the Fenton reaction which is involved in the 
formation of hydroxyl free radicals (Ferger et  al., 1998; 
Soto-Otero et al., 2002). Other studies have confirmed the 
ability of nicotine to chelate iron and prevent the Fenton 
reaction, and also suggest that nicotine may bind to Fe2+ 
on the proinflammatory thromboxane synthase enzyme 
and prevent it from functioning (Goerig et al., 1992; Linert 
et al., 1999).

On the other hand, some studies failed to show the 
negative effect of nicotine on ROS formation and lipid 
peroxidation (Bhagwat et  al., 1998; Yildiz et  al., 1998; 
Linert et  al., 1999; Guan et  al., 2003). Indeed, in some 
circumstances, nicotine administration interferes with 
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the respiratory chain in mitochondria which subse-
quently escalates ROS production resulting in oxidative 
stress (Guan et al., 2003). Nicotine has also been shown 
to increase malondialdehyde and lactate dehydrogenase 
activity, which can trigger lipid peroxidation (Song et al., 
2016). Furthermore, nicotine is a substrate for cytochrome 
P-450 enzymes which might provoke intracellular oxida-
tive stress (Yildiz et al., 1998; Guan et al., 2003).

These discrepant reports may reflect many contrib-
uting factors including nicotine dose (high or low), and 
choice of enantiomer as well as brain region-specific 
effects (Yildiz et al., 1998; Guan et al., 2003; Song et al., 
2016). It has been claimed that nicotine effect on oxidative 
stress is dose dependent prompting antioxidant effects at 
low doses while exacerbating oxidative stress at a high 
dose (Guan et  al., 2003). Moreover, it has been reported 
that nicotine-induced changes in antioxidant-system-
related gene expression differ between brain regions 
(Song et  al., 2016). It has been claimed that differences 
in the metabolism rate and major metabolites of nicotine 
enantiomers, i.e. ( −)- and ( +)-nicotine, result in enanti-
omer-specific differences in the amounts of free radical 
generation, which might explain why nicotine shows 
opposing effects on oxidative stress in various studies 
(Yildiz et al., 1998). However, the main findings presented 
above generally support a beneficial effect of nicotine on 
oxidative stress, which may favour its potential use as a 
treatment for age-related cognitive impairment.

Neuroinflammation
Ageing is associated with alterations in the immune 
system that generally promote proinflammatory cytokines 
and neuroinflammation process in the brain (Godbout 
and Johnson, 2009). Neuroinflammation has been impli-
cated in the pathophysiology of many age-related neuro-
degenerative disorders such as AD and PD (Blasko et al., 
2004; Shytle et al., 2004). Neuroinflammation associated 
with ageing decreases neuronal plasticity and neuronal 
regenerative capacity, with long-term effects on cognitive 
function (Godbout and Johnson, 2009; Russo et al., 2011).

Preclinical studies have shown that administration 
of nicotine reduces neuroinflammation in the brain (Hao 
et  al., 2011). This action may be mediated by the effects 
of systemic nicotine administration in preventing T-cell 
proliferation in peripheral tissue and their infiltration to 
the brain. In addition, nicotine changes the production 
profile of TNF-α, IL-1β, IL-6, MIP-2/CXCL2, MIP 1α/CCL3, 
and eotaxin/CCL11 in T-helper cells; all of these factors 

may disfavour inflammation (Shi et al., 2009; Hao et al., 
2011; Han and Lau, 2014; Wei et al., 2015).

Microglia are the resident macrophages of the brain 
and serve to mediate innate immunity of the nervous 
system. There is evidence that nicotine administration 
decreases microglial activation to a remarkable extent. 
Given that cholinergic neurone degeneration with age 
is accompanied by enhanced microglial activation, this 
suggests a mechanism for neuroprotection (Shytle et al., 
2004). Furthermore, nicotine reduces the production of 
certain inflammatory cytokines (such as IL-6 and TNF-α) 
production in astrocytes, which also disfavours neuroin-
flammation in the brain (Sadigh-Eteghad et al., 2016b).

The nicotine-induced decrease in CNS neuroinflam-
mation is thought to be mediated by nAChRs (Wei et al., 
2015). Among the nAChRs mediating anti-inflamma-
tory features of nicotine, the α7 subtype of these recep-
tors merits special attention (Pavlov and Tracey, 2006; 
Bencherif et  al., 2011; Han and Lau, 2014). Activation of 
α7 nAChRs expressed by microglia and T cells tempo-
rarily upregulates Ca2+ levels inside these cells, which 
subsequently decreases the phosphorylation of the mito-
gen-activated protein kinases (MAPKs) p38 and p44 with 
the consequent reduction in the expression of proinflam-
matory cytokine protein expression (Shytle et  al., 2004; 
Suzuki et al., 2006; Razani-Boroujerdi et al., 2007). Addi-
tionally, the activation of α7 nAChRs in monocytes or 
macrophages has a number of effects disfavouring neu-
roinflammation: (1) prevention of the phosphorylation of 
IκB, an NF-κB inhibitor, (2) activation of adenylate cyclase 
6, and (3) recruitment of Janus kinase 2 (JAK2), all of which 
initiate cascades of interactions that finally downregulate 
the NF-κB signalling pathway and reduce proinflamma-
tory cytokine expression (Figure 1) (Yoshikawa et  al., 
2006; Marrero and Bencherif, 2009; Nizri et al., 2009; Han 
and Lau, 2014). In addition, α7 nAChRs also mediate the 
nicotine-induced decrease in inflammatory cytokine pro-
duction in astrocytes (Liu et al., 2012).

In summary, the anti-inflammatory characteristics of 
the nicotine molecule make it a promising agent to prevent 
or attenuate age-induced neuroinflammation in the brain.

Amyloid-β
Considerable evidence shows that Aβ and its aggregates 
are factors in brain ageing (Fukumoto et al., 1996; Rodri-
gue et al., 2012). In particular, experimental senescence-
accelerated animals have higher amyloid precursor 
protein (APP) and Aβ levels that are in association with 
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learning as well as memory impairments at younger ages 
(Morley et al., 2000; Zahs and Ashe, 2013). Promising pre-
clinical studies have shown that administration of anti-Aβ 
antibody injection reduces cognitive impairments in these 
animals (Kumar et al., 2000; Banks et al., 2001), although 
recent clinical trials with similar antibodies have failed 
to show disease-modifying benefits in patients with AD 
(Holmes et al., 2008).

Accumulating evidence shows that nicotine treat-
ment both in the short and long run significantly reduces 
Aβ depositions and plaque burden in transgenic mouse 
brain (Nordberg et  al., 2002; Court et  al., 2004). This 
reduction in the Aβ plaque density includes both paren-
chymal and vascular depositions. Several mechanisms 
have been reported to be responsible for this phenom-
enon. In particular, nicotine administration increases 
the total amount of APP in the cerebrospinal fluid which 
presumably disfavours amyloidogenesis due to enhanced 
clearance. However, it is not clear whether nicotine effects 
on Aβ clearance are direct (Utsuki et al., 2002), or related 
to increased overflow to the cerebrospinal fluid. Nicotine 
may also favour the decomposition of amyloid fibrils, thus 
interfering in the accumulation of Aβ plaques (Nordberg 
et al., 2002; Ono et al., 2002). Improved cholinergic func-
tion by nicotine agonism at AChRs might also contribute 

to reduced Aβ depositions with a particular involvement 
of the α7 receptor subtype. It has been suggested that 
a direct interaction between Aβ and α7 AChRs results in 
increased Aβ-induced MAPK activation and subsequently 
cAMP-regulatory element-binding protein phosphoryla-
tion with the downstream effect of attenuating Aβ depo-
sitions (Beach et al., 2001; Dineley et al., 2001; Nordberg 
et al., 2002).

Chronic nicotine treatment might also exert neu-
roprotective influence against pre- and postsynaptic 
injuries caused by Aβ oligomers or amyloidosis at the 
pre-plaque stage. This potential effect is thought to be 
mediated by the interaction between α7 nAChRs and the 
PI3-K/Akt signalling pathway in the pre- and postsynap-
tic elements (Inestrosa et al., 2013; Sadigh-Eteghad et al., 
2014). Also, the activation of α7 nAChRs through nicotine 
administration activates the Wnt/b-catenin signalling 
pathway that is thought to have a major role in protec-
tion against Aβ aggregates in the brain (Inestrosa et al., 
2012, 2013).

Overall, it is highly possible that nicotine may dimin-
ish the Aβ plaque load and oligomer concentration in 
the ageing brain and thus exert neuroprotective effects 
against Aβ-induced injury and cognitive impairment.

Neurotrophic factors 
and neuroprotection
The neurotrophic factors are members of a family of 
proteins which includes, but is not limited to, brain-
derived neurotrophic factor (BDNF), nerve growth factor 
(NGF), and glial cell line-derived neurotrophic factor 
(GDNF). These factors together play a significant role in 
the development, differentiation, survival, and function 
of neurones (Skaper, 2012; de Azevedo Cardoso et  al., 
2014; Harada and Harada, 2014). The production of neu-
rotrophic factors normally declines through time in the 
ageing brain (Erraji-Benchekroun et al., 2005). Evidence 
suggests that these factors, notably BDNF and related 
downstream pathways, may present novel and exciting 
therapeutic interventions for treating age-related brain 
changes and cognitive deficits (Glorioso and Sibille, 2011; 
Lu et al., 2014; Pourmemar et al., 2017).

Accumulating evidence shows that nicotine can itself 
exert neurotrophic effects and together with nAChRs 
may have a crucial role in the development and matura-
tion of neurones (Ferrea and Winterer, 2009). As noted 
above, nicotine activates α7 nAChRs and can increase 
NGF expression through NF-κB-dependent pathways 

Figure 1: α7 nAChRs mediate anti-inflammatory features of nicotine. 
The activation of α7 nAChRs in microglia temporarily upregulates 
calcium levels inside these cells, thus decreasing the phospho-
rylation of mitogen-activated protein kinases (MAPKs) p38 and 
p44 which subsequently reduces expression of proinflammatory 
cytokines.
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(Martínez-Rodríguez et  al., 2003; Hernandez and Terry, 
2005; Wongtrakool et al., 2014). Indeed, nicotine increases 
the nuclear translocation and transcriptional activity 
of NF-κB and enhances p65 attachment to the promoter 
region of the NGF gene which ultimately increases NGF 
expression (Wongtrakool et al., 2014). Additionally, nico-
tine increases expression of mRNA for tyrosine recep-
tor kinase A mRNA expression which mediates effects 
of NGF in the neurones (Garrido et  al., 2003). NGF then 
exerts neuroprotective effects by promoting synaptic plas-
ticity while attenuating glutamate-induced excitotoxic-
ity (Figure 2) (Martínez-Rodríguez et  al., 2003). Studies 
have also shown positive effects of NGF on learning and 
memory that further substantiate its neuroprotective 
properties (Fischer et al., 1991; De Rosa et al., 2005).

In addition to these aforementioned effects, there 
is evidence that certain doses of nicotine can increase 
BDNF levels in both the hippocampus and the neocortex 
(Czubak et  al., 2009). Administration of an α7 nAChRs 
selective antagonist (α-bungarotoxin) reduces BDNF 
mRNA expression in the brain which strongly suggests 
that the nicotine-induced increase in the BDNF level 
might be mediated through α7 nAChRs (Freedman et al., 
1993). Other lines of evidence show that BDNF is an 
important role player in the formation of memory traces 

in the hippocampus and can affect LTP (Tyler et al., 2002; 
Yamada et al., 2002; Czubak et al., 2007). Similar effects 
of nicotine have been reported for GDNF levels, a cytokine 
which has been shown to enhance memory in animal 
models (Xiaolin et al., 2002; LI et al., 2005).

Accordingly, it appears that nicotine in a time-
dependent manner through its positive effects on neuro-
trophins can improve memory and learning impairments 
which can arise as part of brain ageing.

Apoptosis
Apoptosis or programmed cell death is an energy-depend-
ent cell suicide program in which the targeted cell is 
eliminated without the inflammation that usually occurs 
in necrotic degeneration (Kiss, 2010; Majdi et al., 2016b). 
While apoptosis is an essential element of brain develop-
ment, aberrant or pathologic apoptosis has been linked 
to many neurodegenerative disorders (Majdi et al., 2016b). 
Furthermore, it has been shown that brain ageing makes 
the brain more vulnerable to apoptosis-induced neuronal 
damage (Adams et al., 1996; Chen et al., 2013) which may 
involve in age-induced cognitive impairment (Wozniak 
et al., 2004; Chen et al., 2013).

Since nicotine prevents apoptosis, it has been called 
the ‘survival agonist’ (Mai et al., 2003; Tizabi et al., 2005). 
Mounting evidence indicates that nicotine protects neu-
rones against apoptosis through both caspase-dependent 
and -independent pathways (Yu et  al., 2011). Nicotine 
administration inhibits caspase-3, -8, and -9 activation, 
and hence blocks the caspase-dependent pathway (Liu 
and Zhao, 2004; Tizabi et  al., 2005). It also blocks the 
release of apoptosis-inducing factors released from mito-
chondria and their translocation to the nucleus which 
may be mediated through α7 nAChRs activation (Garrido 
et al., 2001; Yu et al., 2011). Evidence suggests that the α7 
nAChRs are not the only subtype involved in anti-apop-
totic effects of nicotine; the α4β2 subtype, which has a 
wider distribution in the brain and higher affinity to nico-
tine, may similarly mediate these anti-apoptotic effects 
(Hejmadi et al., 2003).

Nicotine-mediated anti-apoptotic effects may also 
be rendered by MAPK and ERK-2 cascade activation 
which has an important role in regulating cell growth 
and apoptosis (Heusch and Maneckjee, 1998; Garrido 
et al., 2001). Even though one study had proposed that 
changes in the anti-apoptotic Bcl-2 protein levels may 
not be involved in the anti-apoptotic effects of nicotine 
(Garrido et al., 2001), a more recent survey showed that 

Figure 2: α7 nAChRs mediate neuroprotective features of nicotine. 
Nicotine activates α7 nAChRs and increases the nuclear transloca-
tion and transcriptional activity of NF-κB, which ultimately increases 
NGF expression. Also, nicotine increases tyrosine receptor kinase 
A (trkA) mRNA expression, which mediates NGF effects in the 
neurones.
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Bcl-2 participate in nicotine-mediated anti-apoptotic 
effects via the α7 nAChR/JAK2/STAT3/NF-κB/Bcl-2  sig-
nalling pathway in neurones (Marrero and Bencherif, 
2009). Furthermore, nicotine reduces neuronal nitric 
oxide synthase activity and nitric oxide production, 
which may contribute to its anti-apoptotic effects, in 
addition to less specific ROS-mediated effects (Figure 3) 
(Garrido et al., 2001).

It seems that nicotine, when administered at appro-
priate certain doses to a developed brain, may halt age-
induced neuronal apoptosis and accordingly may reduce 
its consequent cognitive impairments.

Excitotoxicity
Excitotoxicity is a glutamate-mediated neuronal injury 
resulting in excessive neuronal signalling, and an increase 
in the intracellular Ca2+ and neurotoxic effects (Majdi 
et al., 2016a). It has been demonstrated that brain ageing 
is accompanied with dysregulation of calcium homoeosta-
sis (Toescu et al., 2004), which leads to an increase in the 
susceptibility of hippocampal neurones to excitotoxicity 
(McEwen, 2000). This dysregulation may eventually lead 

to structural changes in hippocampal neurones resulting 
in cognitive impairment and memory loss (Toescu et al., 
2004; Esposito et al., 2013).

Nicotine has shown anti-excitotoxic effects through 
a calcium-dependent pathway that is mediated via α7 
nAChRs (Shimohama et  al., 1998; Dajas-Bailador et  al., 
2000; Corsini et al., 2016). This may result from the mod-
ulatory effects of α7 nAChRs on the glutamate-induced 
prevention of the PI3-K/Akt pathway (Cui et  al., 2013). 
Disinhibition of the PI3-K/Akt pathway then upregulates 
Bcl-2 and Bcl-x levels and subsequently inhibits neuronal 
death (Shimohama, 2009). The activation of α7 nAChRs 
also results in NMDA receptor internalisation, bringing 
about a reduction of their numbers presented on the cell 
surface. This may itself be responsible for the decrease in 
glutamate-induced Ca2+ influx and following caspase-3 
activation and neuronal damage (Figure 4) (Shen et  al., 
2010).

Hence, anti-excitotoxic effects of nicotine seem to 
mediate neuroprotective effects against ageing, again 
indicating nicotine as a treatment strategy in cognitive 
impairment due to ageing.

Figure 4: α7 nAChRs mediate anti-excitotoxic features of nicotine. 
Nicotine activates α7 nAChRs, which then exert modulatory effects 
on the glutamate-induced inhibition of activation of the PI3-K/Akt 
pathway. Net activation of the PI3-K/Akt pathway then upregulates 
Bcl-2 and Bcl-x levels and, subsequently, inhibits neuronal death. 
α7 nAChR activation also results in increased internalisation of 
NMDA receptors, thus reducing their numbers presented on the 
cell surface. This effect may be responsible for the decrease in 
glutamate-induced Ca2+ influx and following caspase-3 activation 
and neuronal damage.

Figure 3: α4β2/α7 nAChRs mediate anti-apoptotic features of nico-
tine. Nicotine administration inhibits caspase-3, -8 and -9 activa-
tion, and hence blocks the caspase-dependent pathway, activates 
MAPK and ERK-2 and α7 nAChR/JAK2/STAT3/NF-κB/Bcl-2 signal-
ling pathways and reduces neuronal nitric oxide synthase (nNOS) 
expression and nitric oxide (NO) production which together may 
contribute to its anti-apoptotic effects.
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Nicotine and addiction
One of the biggest obstacles in using nicotine therapeuti-
cally in the age-induced cognitive impairments is the risk 
of nicotine dependence (ND). It has been shown that ND 
is mediated through particular nAChRs. When nicotine 
binds to nAChRs, it exerts a dual effect; binding initially 
induces a series of transient conformational changes 
that rapidly opens the receptor which is soon followed 
by the desensitisation phase, during which the receptor 
closes and becomes unresponsive to nicotine (Govind 
et  al., 2009; Papke et  al., 2009). This state is also tran-
sient unless there is chronic exposure to nicotine in which 
event the nAChRs undergo long-term expression changes 
(Eilers et  al., 1997). Accumulating evidence shows that 
after the withdrawal of nicotine after chronic exposure, 
high-affinity nAChRs are functionally upregulated, which 
may be a long-term consequence of the desensitisation 
described above (Buisson and Bertrand, 2002). It has 
been proposed that the number of nAChRs and also their 
sensitivity to nicotine both increase and decrease due to 
factors such as receptor degradation in the ER, changes 
in the stoichiometry of receptors’ subunits, and slowing 
of the surface turnover of the receptors (Wonnacott, 1990; 
Dani and Heinemann, 1996). These observations are not 
contradictory and may signify the importance of nicotine 
dosage, duration of exposure, and the type of receptor 
(Govind et al., 2009).

The α4, α6, and β2 subunits-containing nAChRs are 
expressed on the soma and presynaptic terminals of 
dopamine neurons of the ventral tegmental area, which 
provide an innervation of the ventral striatum, where 
dopamine signalling mediates aspects of reward and rein-
forcement. The α4β2 nAChRs regulate dopamine release 
and α4/β2-knocked-out mice do not self-administer nico-
tine during experiments (Maskos et al., 2005; Pons et al., 
2008). Although the α7 nAChRs are involved in the reward-
ing effects of nicotine, this is distinct from ND, which is 
mediated by other factors (Markou and Paterson, 2001) 
including classical conditioning.

Upon the activation of these receptors by nicotine, the 
release of many neurotransmitters such as acetylcholine, 
glutamate, noradrenaline, and dopamine is enhanced in 
the brain which results in behavioural consequences such 
as the long-term dependence (Berrendero et  al., 2010). 
Dopamine, glutamate, and type 1 cannabinoid receptors 
are involved in the rewarding effects of nicotine (Liechti 
and Markou, 2008; Scherma et al., 2008; Benowitz, 2010; 
Berrendero et al., 2010).

It has been shown that the rate and route of nicotine 
administration both play a significant role in the degree of 

dependence that develops (Matta et al., 2007); the faster 
nicotine administered, the greater the risk for depend-
ence it causes, which explains why inhalation of nicotine 
in tobacco smoke is more addictive than other routes of 
delivery. This phenomenon may result from the activa-
tion of various neuronal circuits and cell types according 
to the different routes of nicotine delivery (Samaha and 
Robinson, 2005). Furthermore, the target concentration 
of nicotine achieved in the brain may also affect nicotine-
induced dependence (Matta et al., 2007). Studies support 
the concept of ‘inverted U dose-response relationship’ 
for nicotine, in which low and suboptimal doses of nico-
tine do not produce effective molecular and behavioural 
influences on the subject, whereas excessively high doses 
result in attenuated or adverse effects. Thus, the therapeu-
tic window for pharmacological effects of nicotine is very 
narrow (Picciotto, 2003), which may explain the contra-
dictory results of studies that have assessed ND and thera-
peutic benefits. This, in addition to ND, may explain why 
nicotine with so many positive effects on cognition has 
not become a therapeutic agent in the treatment of age-
related cognitive decline.

Conclusions
It can be concluded that although nicotine’s procognitive 
and therapeutic effects have been investigated in various 
animal and clinical studies in healthy or diseased condi-
tions, their true nature remains controversial. It seems 
that under optimal circumstances nicotine treatment 
can ameliorate age-related cognitive impairment through 
a combination of nAChR-dependent and -independent 
mechanisms. Nicotine has a direct effect in modulat-
ing oxidative stress, excitotoxicity, Aβ toxicity, apoptotic 
pathways, and neuroinflammation, as well as the expres-
sion of neurotrophic factors. Moreover, some paradoxical 
effects of nicotine may arise from its inverted U-shaped 
dose-response effects, and form complex pharmaco-
dynamical factors. As such, sustained release delivery 
routes of nicotine at tightly controlled doses may result 
in optimum therapeutic effects and plasma concentra-
tions without high abuse potential or the toxicity associ-
ated with tobacco consumption. The optimum treatment 
parameters furnishing the best efficacy and safety should 
be determined in the future pre-clinical studies leading 
eventually to the design of clinical trials.
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