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Abstract

Distributional models of semantic cognition commonly make
simplifying assumptions, such as representing word co-
occurrence structure by prototype-like high-dimensional se-
mantic vectors, and limit how retrieval processes may con-
tribute to the construction and use of semantic knowl-
edge. More recently, the instance theory of semantics (ITS,
Jamieson, Avery, Johns, & Jones, 2018) reconceived a dis-
tributional model in terms of instance-based memory, allow-
ing context-specific construction of semantic knowledge at the
time of retrieval. By simulation, we show that additional en-
coding and retrieval operations, consistent with learning and
memory theory, can play a crucial role in flexibly controlling
the construction of general versus specific semantic knowl-
edge. We argue this consolidation of processing principles
holds insight for distributional theories of semantic cognition.
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Introduction

People flexibly understand word meaning at multiple levels
of similarity and in different contexts. For example, the word
cat could be similar to subordinate (tiger), basic (dog) or su-
perordinate (animal) category words; associates (house, hat,
or Felix); alternative meanings (a person in jazz, or Caterpil-
lar machinery); or words in general compared to nonwords.
How people flexibly control the specificity of their seman-
tic knowledge remains unclear. Stable semantic representa-
tions for words may become positioned in high-dimensional
semantic space to permit multiple comparisons for mean-
ing along general and specific lines. Or, semantic repre-
sentations could be more labile, potentially granting pro-
cesses associated with encoding and retrieval operations con-
trol over the construction of general versus specific seman-
tic meaning. The present work merges assumptions from
three memory models, MINERVA 2 (Hintzman, 1984), the
instance theory of semantics (ITS, Jamieson et al., 2018) and
the instance theory of associative learning (MINERVA-AL,
Jamieson, Crump, & Hannah, 2012), to examine how learn-
ing and memory operations participate in the flexible con-
struction of general and specific semantic knowledge.

As accounts of semantic cognition, we distinguish between
representation and retrieval models. Distributional models
typically articulate processes for forming semantic represen-
tations but underspecify the role of retrieval. For exam-
ple, models like LSA (Landauer & Dumais, 1997), BEA-
GLE (Jones & Mewhort, 2007), and word2vec (Mikolov,

Sutskever, Chen, Corrado, & Dean, 2013) represent word
meaning in terms of high-dimensional vectors sensitive to co-
occurrence structure in natural text, whereby words closer in
semantic space are closer in meaning. Furthermore, repre-
sentations are prototypic because each word has one vector
that roughly averages over co-occurrence structure with other
words in the corpus. The prototype assumption is obvious for
polysemous words. For example, “bank” could refer to a river
or financial institution; but, a prototype representation aver-
ages the distinction with a single vector partway between the
two meanings. Nevertheless, prototype representations can
be sensitive to multiple levels of similarity (e.g., cat can be
similar to lion and animal) because words can be positioned
in high-dimensional space to somewhat align with multiple
levels of meaning. Retrieval minimally involves comparing
word similarity in high-dimensional space, but does not in-
teract with encoding or construction of semantic represen-
tations. Finally, models use various pre-processing steps,
like stop-word exclusion, log and entropy transformations
(LSA), and negative information sub-sampling (word2vec),
or post-processing transformations of base-rate information
(e.g., Johns, Mewhort, & Jones, 2019) to further improve the
specificity of semantic representations.

Outside of semantic modeling, instance/exemplar theories
have risen against prototype accounts (e.g., in categorization
and concept formation, Jacoby & Brooks, 1984). Instance
theory assumes that memory encodes a history of richly
featured examples as traces, and retrieves them in context-
specific fashion by their similarity to patterns in the immedi-
ate environment. Although the composition of examples in
memory is stable, knowledge as content retrieved from mem-
ory is labile depending on retrieval conditions and operations.

Recently, ITS (Jamieson et al., 2012) applied instance the-
ory to distributional semantics by combining BEAGLE word
representations (Jones & Mewhort, 2007) with MINERVA 2
encoding and retrieval operations (Hintzman, 1984). In BEA-
GLE, a semantic vector is a prototype aggregating over sen-
tence representations containing a word. By contrast, ITS
encodes individual sentences as memory traces, and aggre-
gates over them at retrieval allowing retrieval conditions to
selectively modulate the construction of word meaning. For
example, ITS handles polysemy by retrieving the meaning
of a probe word (bank) depending on the conditions of local
context (river vs. piggy). ITS showed how the selective con-



struction of semantic knowledge from memory can depend
on retrieval conditions (e.g., probe context), but did not fully
consider how its encoding and retrieval operations offer addi-
tional control over the specificity of semantic representations.

Here, we establish the value of importing assumptions
about encoding and retrieval operations from learning and
memory theory into a modification of ITS (ITS 2). A par-
simonious feature of ITS 2 is the consolidation of processing
assumptions made between variants of MINERVA 2 that were
not originally expressed in ITS. For example, MINERVA-
AL (Jamieson et al., 2012) is an instance account of asso-
ciative learning phenomena that employed a modified encod-
ing rule, termed discrepancy encoding. Whereas MINERVA
2 and ITS encode each new experience as a raw trace in
memory, MINERVA-AL mimicked the principle of surprise-
driven learning (Rescorla & Wagner, 1972) by encoding only
features of a new experience that were unexpected by mem-
ory. In ITS 2, we show that a form of discrepancy encod-
ing, termed weighted expectancy subtraction (because it can
be performed at encoding or retrieval) controls the specificity
of semantic knowledge. Similarly, MINERVA 2 allowed the
possibility of iterative retrieval, where memory responses in-
spire successive waves of retrieval. We show that iterative
retrieval in ITS 2 allows traversal of higher orders of seman-
tic similarity and controls the generality of semantic knowl-
edge. In the general discussion, we speculate that encod-
ing and retrieval operations are crucial for negotiating the
integration of general and specific expectations for word co-
occurrence in semantic representations, and may approximate
post-processing transforms for weighting word base rate in-
formation known to improve word-embedding quality (Johns
et al., 2019).

ITS and ITS 2

To overview we first define ITS and ITS 2, and then
trained them on an artificial language with known word co-
occurrence structure. This enabled clear accounting of en-
coding and retrieval operations controlled recovery of specific
and general aspects of the semantic space.

Word representation Following BEAGLE, words are arbi-
trary perceptual objects with no pre-existing similarity. Each
word, is assigned an environment vector, e;, by randomly
sampling n values from a normal distribution (u =0, ¢ =
1/n), where n determines the dimensionality of the vector
space. Thus, all words are ortho-normal in expectation. ITS
can accommodate other representational assumptions and we
used a identity matrix, with the diagonal set to 1, and the
number of rows/columns equal to the number of words in the
language.

Memory ITS preserves experiences with individual sen-
tences in memory. For example, committing a sentence to
memory involves summing the environmental vectors for the
words in the sentence, and entering the composite vector as a
new row in the matrix:
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M is the memory matrix, and c; is a sentence context. ¢; is
stored in a new row in M; as a composite trace by summing
the e;; environment vectors for each word, from 1, to A, in
the sentence. For example, the sentence context, c;, “I like
cats” is the sum of e; + ejjxe + €cqars Word environment vec-
tors. The number of words inside a trace, A, is a windowing
parameter that must be larger than one word, otherwise the
memory will return perceptually similar traces, rather than
semantically similar ones. We note that the memory matrix
becomes a document-term matrix of word frequencies when
the environment vectors for words are taken from an identity
matrix.

Retrieval Word meaning is constructed at retrieval. Mem-
ory is probed with a word and returns an echo response. The
echo is the sum of similarity weighted traces to the probe, and
taken as the semantic vector for the probe word. Retrieval and
echo construction follow MINERVA 2. First, memory M is
probed, p, with a word environment vector (p; = e;) and the
cosine similarities between p; and all traces M are computed
to produce a vector of trace activations a;:
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where, a; is the activation (cosine similarity to probe) of
trace i in memory, p; are the jth features of the probe, M;; are
the jth features of each trace i in memory, and » is the num-
ber of columns in memory setting the dimensionality of the
vector space. The vector of activations is raised to a power,
T, controlling a retrieval gradient determining selectivity in
the composition of the echo. The activation vector is a record
of similarity between the traces and the probe spanning the
range —1 to 1, with a¢; = 1 when a trace is identical to the
probe, a; = 0 when a trace is orthogonal to the probe, and
a; = —1 when the trace is opposite the probe.

Second, the memory-based semantic representation, m;,
for the probe word is retrieved as an echo by summing the
traces in proportion to their activation. Specifically, all traces
in memory are multiplied by their activations, and the echo is
formed by summing the weighted traces:
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where, echoj is the jth feature of the echo, m is the number
of traces in memory, a; is the activation of trace i, and M;; are
the jth values of each trace i in memory. In ITS, the echo is
used as the semantic representation for the probe word, m;.
Words are compared for semantic similarity by compar-
ing their respective echoes. Semantic similarity between two
probes words, cos(p1, p2), is computed between their respec-
tive echoes using a cosine:
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Briefly, words become similar to one another by appearing
in similar sentences. For example, probing the word “doc-
tor” will return an echo comprised of a sum over sentences
including “doctor”. This echo will be similar to the echo for
words like “nurse” which sums over sentences with overlap-
ping words (e.g., hospital).
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ITS 2: Weighted expectancy subtraction at encoding

ITS 2 implements weighted expectancy subtraction during
encoding in a similar manner to MINERVA-AL’s discrepancy
encoding rule. The difference is the subtraction between the
probe and the echo is weighted by x, controlling the amount
of expectation to be subtracted. Weighted expectancy sub-
traction is applied at each step across training. For exam-
ple, when a new sentence is experienced, the sentence con-
text vector ¢; is used as a probe to memory to generate an
echo. The echo represents the memories’ expectation for the
new sentence. If the new sentence is fully expected, then the
memory can reconstruct the new sentence on the basis of its
existing traces. The magnitude of the echo vector contains
the sum of many traces, and is generally much larger than the
magnitude of the sentence context vector. As a result, before
subtraction, the probe and echo vectors are normalized,
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where, c; is a sentence context probe vector, and the ele-
ments of ¢; are divided by the largest absolute value in ¢}, to
produce the normalized c’j. Similarly, the echo is normalized
such that,
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where, echo; is an echo vector, and the elements of echo;
are divided by the largest absolute value in echo;, to produce
the normalized echo.

Next, the new trace encoded to memory is defined by sub-
traction of a weighted normalized echo from the normalized
probe,
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where, M;; is the new row entry in the memory matrix, and
x is a weighting parameter (from O to 1), controlling how the
proportion of the normalized echo subtracted from the nor-
malized probe. When x is set to 0, ITS 2 becomes equivalent
to ITS.

ITS 2: Weighted expectancy subtraction at retrieval

ITS 2 can conduct weighted expectancy subtraction at re-
trieval, after training is complete. Memory is constructed
identically to ITS, except weighted expectancy subtraction

occurs at retrieval through a two-step iterative retrieval pro-
cess. A probe word generates an echo from memory, and the
echo is submitted as an “internal” probe to generate a second
echo. The semantic representation for the word is taken as a
weighted subtraction of the normalized second echo from the
normalized first echo.

The first echo, echoy, is generated in the usual way, but
then resubmitted as a probe to construct a second echo, echoB,
by the same equations 2 and 3 used to construct echog. Both
echog and echog are normalized following equation 6. The
semantic representation for a word, m;, with weighted ex-
pectancy subtraction at retrieval in ITS 2 is:

m; = echo& —X- echofs (8)

where, m; is the semantic representation for the ith word,
and x is a weighting parameter varying from O to 1 controlling
the proportion of echoé subtracted from echoy,.

Simulations

Our aim was to characterize how ITS and ITS 2 recover spe-
cific and general aspects of semantics from co-occurrence.
First, we created an artificial language with known co-
occurrence structure. Next, we trained ITS on sentences from
the artificial language and compared the semantic structure of
ITS vectors to direct measures of the semantic structure of the
language. We were interested in determining which aspects
of the language ITS recovers by default. Last, we show that
encoding and retrieval operations in ITS 2 provide control
over the specificity of semantic knowledge production.

Artificial language

The artificial language contained no grammar and only se-
mantic structure based on word co-occurrence. The simplistic
form offers a transparent window into the transformations of
ITS 2. We created semantic topic generators that use unique
collections of words to discuss a given topic, with some over-
lap across topics. The language contained 100 words and
10 topics. Each topic used 15 words, and overlapped with
neighboring topics by five words on both sides. Each topic
had a random word-occurrence probability distribution that
summed to one. Figure 1 depicts the topic-word probabil-
ity matrix defining the artificial language. A corpus was
generated by randomly sampling topics (equal probability),
and then constructing sentences from the topic by sampling n
words as a function of their probability. Sentence-size varied
randomly between 10 and 20 words per sentence. A corpus
included 5,000 sentences.

The purpose of the simulations was to compare the seman-
tic spaces generated by ITS and ITS 2 to known properties
of the semantic space from the language. We defined the
known semantic space at various orders of semantic similar-
ity. At the first order, the true semantic representation for
a word was the column vector for each word in the topic-
word probability matrix above. To visualize this semantic
space we computed the cosine similarity between each word



} 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 1(.)0 D
11 WN 'I
2 N
2 z LII IF. || h 0.15
S 6 ﬂllllllIIL 0.10
8 ni
21 im = Paa | %

0 25 50 75 100 0 25 50

0 25 50 75 100 25 50 75 100

Figure 1: Upper: The topic-word probability matrix defining the artificial language. Darker colors represent higher probability
of word occurrence. Lower: Word-word similarity matrices from the first to fourth order.

(using their column vectors) and plotted the similarity ma-
trix. The first word-word similarity matrix in figure 1 (lower
panel) shows the structure of the artificial language that mod-
els are ostensibly attempting to recover. Words are more sim-
ilar to each other within their topics than between topics, and
there is some overlap because word usage overlaps across the
topics. Words in topic one are not at all similar to words in
topic six because there is no overlap in word usage between
those topics. The remaining panels in figure 1 show word-
word similarity in higher order space up to the fourth order,
reflecting more general semantic similarities between words.
A higher order similarity space uses a lower-order space to
derive a higher order one. For example, the second-order
space uses columns from the first-order similarity matrix as
word embeddings to compute a second word-word similarity
space, and so on. In our language, because of word over-
lap between topics, words become increasingly similar to one
another in higher order space. A veridical model would re-
cover specific word meaning from first-order semantic space;
whereas, more general word meaning could be recovered by
accessing higher semantic space.

Simulation 1: ITS

We trained ITS on 5000 sentences, using one-hot coding
(100 x 100 identity matrix) to form environment vectors for
the words. Each word was coded as a 1, with 99 zeroes. The
position of the 1 in the vector refers to the nth word in the
corpus. As a result, the memory matrix is equivalent to a
document-term matrix of raw term frequencies occurring in
each document. We used a range of retrieval gradients (T =
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Figure 2: R? values between ITS word-word similarity space,
and the first to fourth order word-word similarity spaces de-
rived the artificial language as a function of training, and re-
trieval gradient (T)

0 to 9) and training intervals (100, 500, 1000, and 5000 sen-
tences). At each interval we computed echoes as semantic
representations for each word, and then a word-word sim-
ilarity matrix from those vectors. To determine which as-
pects of the artificial language ITS recovered, we computed
R? between the ITS word-word similarity space, and the first
to fourth order word-word similarity spaces derived directly
from artificial language. The results are shown in figure 2.
ITS performed well in recovering the structure of the lan-



guage, and was most sensitive to second-order similarity
space. Overall, ITS became more sensitive to all orders of
similarity as training increased, and less sensitive as T in-
creased. Raising T did increase relative sensitivity to the
first order, but did so at the cost of losing sensitivity overall.
Specifically, increasing the selectivity of the retrieval gradi-
ent limits the sampling of traces into the echo, resulting in
noisier representations. The fact that ITS prioritizes the sec-
ond order over the first is a flaw. The second order space is
an overgeneralized version of the first, and blurs out the finer
distinctions between word usage within the topic structures
that generate the words. ITS relies on second order similarity
(see discussion), so semantic vectors for topic-unique words
become similar to words from overlapping topics, whereas
they are not similar to those words in first order space. ITS
glosses over these nuances.

Simulation 2: ITS 2 encoding

We next trained ITS 2 with weighted expectancy subtrac-
tion at encoding on the same artificial language. We show
that weighted expectancy subtraction causes ITS 2 to become
more sensitive to first order word-word similarity than higher
orders. In the simulations we vary the value of x (from .01 to
.5) to subtract different amounts of the echo from the probe.
The value of x causes systematic differences in ITS 2’s sen-
sitivity to higher order similarity structure. For brevity, we
report results with T set to 1 (shown in figure 3, left panel).

Weighted expectancy subtraction at encoding modulated
how ITS 2 recovered different orders of semantic similar-
ity space, specifically allowing recovery of more veridical
and nuanced word embeddings from the first-order similarity
space. For example, when x = .01, ITS 2 was most sensitive
to second order similarity, but as x increased ITS 2 became
most sensitive to first-order similarity. Increasing x further
caused overall sensitivity to decline.

Simulation 3: ITS 2 retrieval

Here, we repeated the above simulation but applied weighted
expectancy subtraction with iterative retrieval after training
was complete (using standard ITS memory encoding). The
results are shown in figure 3 (right panel).

Remarkably, ITS 2 does not need to make any assumptions
about encoding to benefit from weighted expectancy subtrac-
tion. The pattern of Simulation 3 is almost identical to that
of Simulation 2. Specifically, ITS 2 becomes most sensitive
to first-order word-word similarity structure as x is increased.
Again, increasing x has diminishing returns.

General Discussion

We showed that ITS is most sensitive to second order se-
mantic space, and that ITS 2 increases sensitivity to the
more veridical first order space by processes of weighted ex-
pectancy subtraction and iterative retrieval.

It is instructive to consider how ITS and ITS 2 recover dif-
ferent orders of similarity space. First, consider how words
become increasingly similar across orders of similarity space.

In the first order, word similarity is determined by the topics
they occur in. Word 6 is unique to topic one and only similar
to words in topic one. In the second order, words become sim-
ilar on the basis of their first-order similarity features. First-
order features for word 6 contain positive similarity for topic
one words 1 to 15. Some of these features (11 to 15) are
shared by words from topic two, so word 6 becomes simi-
lar to topic two words in second order space. If topics are
connected by overlapping words, then all words become in-
creasingly similar across increasing orders of similarity, and
the nth order similarity matrix becomes all ones.

Crucially, iterative retrieval in ITS 2 is a process for
traversing higher-order similarity space; and weighted ex-
pectancy subtraction is a process for negotiating the relative
contributions of higher-order similarity in the construction of
semantic knowledge. To elaborate, we showed that standard
ITS echoes are most sensitive to the second order. Echoes
contain sentence memory, so an echo for a topic-unique word
is immediately partially similar to echoes for words from
neighboring topics, because their echoes share co-occurring
words. Submitting an echo as a probe for iterative retrieval
is a third order operation. The echo contains many words
and the second echo collapses over memory for sentences
that contain any of those words. This draws in sentences
from additional topics, causing a given word to be more sim-
ilar to words in more distant topics. Iterating to the extreme
sweeps all sentences in memory into the echo, causing iden-
tical echoes for all words.

Simulation 3 showed that subtracting a portion of the sec-
ond echo from the first allows ITS 2 to preferentially re-
cover first order space. Our preceding discussion suggests
ITS 2 performs a weighted subtraction of third from second
order space, implying a similar result could be obtained an-
alytically. We confirmed this directly from the language by
subtracting proportions of the third order similarity matrix
from the second, and computing R*> between each new ma-
trix and the first order similarity matrix. We found an inverse
U function, with R? approaching 1 at .4. As a sidenote, com-
puting second order similarity from a document term matrix
(Cribbin, 2011) can produce embeddings similar to those pro-
duced by singular value decomposition, as in LSA (Landauer
& Dumais, 1997). We speculate that subtracting a portion
of the third order from the second may further improve the
quality of those semantic representations.

More generally, count-based/vector-accumulation mod-
els like ITS rely exclusively on positive information from
word co-occurrence, whereas neural embedding models like
word2vec (Mikolov et al., 2013) exploit negative information
by sub-sampling adversarial examples during training which
may result in superior word embeddings (Mandera, Keuleers,
& Brysbaert, 2017). Johns et al. (2019) developed analytic
transformations for weighting word occurrence base rates that
approximate gains from using negative information for im-
proving word-embedding quality. We speculate that ITS 2
negotiates a similar merger of general expectations for word
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Figure 3: R? values between ITS word-word similarity space and the first to fourth order word-word similarity spaces derived
the artificial language as a function of training, and weighted expectancy subtraction. The left panel shows ITS 2 with weighted
expectancy subtraction during encoding, and the the right panel shows ITS 2 with weighted expectancy subtraction during

retrieval.

occurrence in higher order space with specific expectations
from lower order space by iferative retrieval and weighted ex-
pectancy subtraction; and, may realize base-rate transforms
through cognitive encoding and retrieval operations.

As a future direction we will apply ITS and ITS 2 to natural
language and determine whether ITS 2 assumptions produce
higher quality fits to human semantic judgments. At present,
we offer ITS 2 as an intriguing account of how people may
transform their semantic knowledge along general versus spe-
cific lines, by using iterative retrieval to traverse higher order
similarity space, and weighted expectancy subtraction to con-
trol the specificity of retrieved semantic knowledge.
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