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Cryptic genetic variation promotes rapid evolutionary adaptation in 

an RNA enzyme. 

 

Eric J. Hayden, Evandro Ferrada, Andreas Wagner 

Institute of Biochemistry, University of Zurich, Zurich, Switzerland.  

 

Cryptic genetic variation has no effects on phenotypes; such effects become 

manifest only after mutations or environmental change. Caused by the 

robustness of phenotypes to mutations, cryptic genetic variation has important 

implications for the study of disease, for animal and plant breeding, and for the 

evolution of novel traits in natural populations. Whether it facilitates 

evolutionary adaptations (and why) has remained elusive, partly because most 

pertinent work focuses on complex phenotypes of whole organisms whose genetic 

basis is incompletely understood. We here study cryptic variation in a simpler 

phenotype, the catalytic activity of an RNA enzyme. We find that populations of 

RNA enzymes with accumulated cryptic variation adapt more rapidly to a new 

chemical environment than a population without cryptic mutations. A detailed 

analysis of our evolving RNA populations in genotype space shows that cryptic 

variation allows a population to explore new genotypes that become adaptive 

only in a new environment. Our observations show that cryptic variation 

contains new genotypes pre-adapted to a changed environment. It highlights the 

positive role that robustness and epistasis can play in adaptive evolution. 
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The existence of cryptic genetic variation has been demonstrated in several organisms 

by the broad range of abnormal phenotypes that result from environmental or 

mutational perturbations
1
. Cryptic variation is only conditionally neutral to selection. 

It is therefore a distinct class of neutral mutations, where neutrality is dependent upon 

environmental and genetic context. Classic examples come form the production of 

phenocopies in Drosophila. Phenocopies are abnormal phenotypes that resemble the 

effect of major mutations in specific genes. However, phenocopies occur in stressful 

environments in individuals that are wild-type at these genes. This is possible because 

wild populations of Drosophila that are highly uniform in morphology are still 

genetically diverse. An average of six nucleotide differences per thousand base pairs 

(in D. melanogaster) means that each fly in an outbred population is genetically 

unique
2
. Phenocopies are caused by the exposure of this cryptic variation under 

“stressful” conditions. The genetic basis of phenocopies was confirmed through 

artificial selection
3
. This example and many others demonstrate that genetic variation 

is common, but its expression as phenotypic variation is highly buffered, and 

dependent upon environmental and genetic context
4
. 

 

The hiding of genetic variation requires a phenotype’s robustness against the effect of 

mutations, a phenomenon which is often called mutational robustness
5
.  Mutational 

robustness does not require a complex phenotype, and is biologically important even 

at the level of individual protein and RNA molecules. A given RNA or protein 

molecule can accept many mutations without changing structure or losing function
6,7

. 

As a consequence of this robustness, many different sequences in a genotype space 

have the same phenotype. They form the same tertiary structure and have the same 

biochemical activity. These sequences form vast mutational networks whose members 
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can be connected through series of mutations in their nucleotides. They are thus 

accessible from each other through small evolutionary changes. These mutational 

networks are also sometimes called “genotype networks” or “neutral networks” 

because they consist of different genetic sequences that have similar phenotypes
8,9

. 

RNA has been used as a model system for the study of genotype networks both 

computationally and experimentally
10-14

, because it provides accessibility of both 

genotypic (sequence) and phenotypic (structure/activity) information. These studies 

confirm the existence of vast mutational networks in RNA structures that indicate a 

fundamental mutational robustness of RNA phenotypes
15

, which results in the 

potential for cryptic variation at the molecular level.  

 

Evolutionary adaptation by natural selection requires phenotypic variation. 

Phenotypically revealed cryptic genetic variation may thus facilitate evolutionary 

adaptation
16-18

. This is possible if the cryptic variation happens to be pre-adapted
19

 or 

“exapted”20
 to the new environment, and is thus advantageous once revealed. 

However, this facilitating role has not been proven. Part of the reason is that cryptic 

variation has traditionally been studied for complex macroscopic traits. The link 

between genotype and phenotype is poorly understood for such traits, and it is 

difficult to study cryptic variation systematically for them. We decided to undertake 

the study of cryptic genetic variation in a simpler system, a catalytic RNA molecule, 

where we can access both phenotypic and genotypic information. Further, our 

experimental system allows us to quantify and visualize genetic variation during 

evolutionary adaptation using next generation sequencing technology. 
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For our evolution experiments, we chose the well-characterized group I RNA enzyme 

(ribozyme) derived from the Azoarcus pre-tRNA
ile

. We chose this ribozyme primarily 

for its robust phenotype. The Azoarcus ribozyme folds consistently and rapidly (< 100 

ms) to the active state without getting trapped in misfolded intermediates, which is the 

fate of many large RNA molecules, including other group I ribozymes
21,22

. Once 

reached, the active state is highly stable, and retains activity at unusually high 

temperatures (80 °C), or in the presence of high concentrations of denaturants (7.5 M 

urea)
23

. We thus expected the robust phenotype of the Azoarcus ribozyme to tolerate 

mutations without losing function, making it an ideal candidate for the experimental 

study of cryptic variation. In addition, the Azoarcus ribozyme has been the subject of 

several studies focusing on ribozyme folding and kinetics
22,24

, and a high resolution 

crystal structure of the ribozyme in an active conformation has been solved
25

. These 

detailed functional and structural data provide guidance for designing and interpreting 

in vitro evolution experiments. 

 

We utilized a modified version of a previously reported procedure for the in vitro 

evolution of group I introns
26,27

 (Fig. 1a). The procedure begins with a population of 

~10
13 

variant ribozymes generated by mutagenesis of the wild-type sequence 

(Methods). This population is challenged to catalyze the sequence specific cleavage of 

an exogenous nucleic acid substrate. As a by-product of this cleavage reaction, a 

portion of the substrate becomes ligated to the 3'-end of the ribozyme, which 

generates a primer binding site for specific amplification of molecules only if they 

have successfully performed a catalytic event. The random mutations that are 

introduced during the amplification process, along with selection for catalytic activity, 

allow the system to evolve based on Darwinian principles. At each “generation” (one 

cycle of mutagenesis and selective-amplification) the activity of the population can be 
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determined at the ribozyme reaction step, and a cDNA library is produced which can 

be characterized to monitor genetic changes. 

 

To produce populations containing cryptic variation, we exposed populations of RNA 

enzymes to a period of mutagenesis with purifying selection, by selecting for 

molecules with the native RNA cleavage activity (Fig. 1b). Thus, by continuously 

introducing new variants through random mutation, while also selecting for activity 

on a “native” RNA substrate, we expected to accumulate mutations in the evolving 

populations while maintaining the native ribozyme function. We carried out two 

independent evolution experiments, and called them "line A" and "line B". They were 

identical except for the addition of 5 M formamide to line B. Formamide is a 

denaturant that lowers the melting temperature of base paired regions by 

approximately 2.7 
o
C/M

28
. Thus, the addition of formamide in line B introduces a 

more stringent selection pressure, which in terms of structural stability, is analogous 

to increasing the selection temperature by 13.5 
o
C, but without the numerous other 

consequences (i.e. on pH and kcat) of a temperature change. Pilot experiments showed 

that the addition of formamide lowered the amount of ribozyme reacted under the 

selection conditions by about 30% (Supplementary Fig. 1). We were concerned by the 

possibility that the weaker selection conditions of line A could allow the accumulation 

of moderately deleterious mutations, causing a continuous decline in the population’s 

activity. Also, ribozymes selected in the laboratory may have a lower mutational 

robustness than natural ribozymes
29

. The inclusion of formamide in line B was 

intended to counteract these possibilities. However, as we shall see, neither line 

experienced a decrease in the native activity while accumulating genetic variation.  
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We used the same starting population for each line. We constructed this population by 

mutagenesis of 159 nucleotides of the wild-type Azoarcus ribozyme sequence through 

a mutagenic PCR
30

. The diversity of this starting population can be calculated by 

determining the probability of finding sequences with a given numbers of mutations 

from the “wild-type” sequence using binomial statistics (Methods). Based on an 

estimated mutation rate of 0.0066 per nucleotide per PCR, individual sequences in the 

population contained on average 1 mutation relative to the wild-type. Our large 

population (~10
12

 individuals; 160 ng PCR produced dsDNA) also contained all 

possible sequences with four or fewer nucleotide changes, and random samples of 

sequences with five or more changes relative to the wild-type sequence. 

 

We monitored the native activity of the two lines over 10 generations of purifying 

selection while introducing mutations at every generation (Fig. 2a). No significant 

difference in activity (two-tailed t-test, 95% C.I.) exists between the initial and final 

round of selection for both lines. This demonstrates that the procedure was in fact 

maintaining the native activity of the population despite the high mutation rate, and 

provides evidence supporting the cryptic nature of any accumulated mutations. 

Although the activity appears to decrease to a minimum at generation four, followed 

by a recovery, no significant difference in activity exists between any two generations 

within either lineage. Line B, with higher selection stringency, preserved the same 

level of activity as line A.   

 

Although both lines maintained the initial activity, sequencing analysis revealed that 

mutations had in fact accumulated. We determined the DNA sequences of 2748 ± 770 

molecules sampled from each generation. We first measured the composite genetic 
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change of the population by determining the mutational distance between individuals 

in the populations and the original wild-type sequence (Fig. 2b and c). That mutations 

accumulated in both lines was indicated by the mean increase in population distance 

from the wild-type sequence over time (Fig. 2b and Supplementary Fig. 2). At every 

generation, line B showed a slightly higher mean distance to the wild-type than line 

A, although divergence in the last generations was similar (Fig. 2b). While both 

populations maintain some copies of the wild-type sequence, by generation 10 fewer 

than 1% of the sampled individuals had no mutations (Supplementary Fig. 2). To 

identify the positions where the mutations accumulated, we classified positions as 

either “mutable” or “non-mutable” (Fig. 2c and d). Mutable positions showed a rate of 

mutational change significantly greater than zero, based on linear regression 

(Methods). We found that 35 positions (22%) in line A, and 19 positions (12%) in line 

B were mutable, with 15 of these positions common to both lineages.  

 

Although the accumulated mutations did not affect the phenotype of the population 

under “native” conditions, we hypothesized that they could facilitate evolutionary 

adaptation of the populations to a new chemical environment. To test this hypothesis, 

we challenged the resulting populations to adapt to a non-native function by changing 

the substrate in the selection procedure.  For this, we chose an RNA substrate with 

identical sequence, but with a phosphorothioate (PT) replacing the scissile phosphate 

(Fig. 1b). This chemical change represents a “promiscuous activity”31
 of the Azoarcus 

ribozyme with a 200% decreased catalytic efficiency (kcat/Km), by mostly affecting 

kcat
24

. We started new evolution lines from ~10
13

 (20 pmol) RNA molecules taken 

from the last generation of line A and line B. We called these lines New-A and New-

B, respectively. In addition, we started another new line from a sample of ~10
13

 RNA 
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molecules taken from the original initial population. We called this line New-wt. In 

this phase of the experiment we wanted to analyze the effect of previously 

accumulated mutations on evolutionary adaptation to the new substrate. Thus, we 

used the same reaction conditions for all three lines, and reduced the mutation rate by 

several-fold to approximately 0.001 per nucleotide per generation by replacing the 

mutagenic PCR step of our selection procedure with a standard PCR (Methods). This 

lowered mutation rate favors error free replication of the reacted ribozymes, i.e. 98% 

of sequences will be replicated without mutation. However, at every generation, 

statistics predicts that the population will still experience every combination of newly 

introduced mutations involving one or two mutated positions (Methods). 

 

We selected for activity with the new substrate during eight generations, and again 

measured the activity of each population at each generation as the amount of 

ribozyme reacted (Fig. 3a). In each line, the activity increased significantly between 

the first and last generations. However, lines New-A and New-B showed a much faster 

rate of adaptation than line New-wt. To facilitate comparison, we calculated the rate of 

adaptation by dividing the percent increase in activity (fraction ribozyme reacted) by 

time (generations). The greatest difference in rate is found at generation 5, where the 

rates of adaptation for lines New-A, New-B and New-wt were 19.5, 15.5, and 2.5, 

respectively. This corresponds to an approximately 8-fold faster rate of evolutionary 

adaptation for line New-A relative to line New-wt, and an approximately 6-fold faster 

rate for line New-B.  

 

We analyzed the genotypic changes in the new evolving lines at varying levels of 

detail. We first measured the composite genetic change by measuring the distance 
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between individuals in the populations and the wild-type sequence (Fig. 3b). 

Surprisingly, all three lineages showed different diversity, even though they had 

evolved under the same conditions. Line New-A had a very high mean distance from 

wild-type. This mean distance further increased over time from 10.6 to 13.7 

nucleotide differences. Line New-B showed an intermediate mean distance that 

increases slightly from 7.7 to 9.1. Line New-wt showed the lowest distance values, but 

it also increased from 2.8 to 4.4 nucleotide differences. 

 

We next identified genotypes that were potentially contributing to the increasing 

activities of the evolving populations. To this end we defined genotypes by their 

unique combination of mutations relative to the wild-type. We determined the 

population frequency of different combinations of mutations, and identified genotypes 

that increased most rapidly in their frequency with respect to generation time. We 

limited our search to combinations of individual mutations that showed the most 

significant increase in frequency with time (Fig. 3c). Significance was determined by 

linear regression with correction for multiple testing (Supplementary Fig. 3 and 

Methods). It should be pointed out that the increase in the frequency of genotypes that 

are under selection is expected to be exponential, not linear, under standard 

population genetic models
32

. Linear regression penalizes non-linearity, and thus our 

determination of significance of individual mutations is a conservative approach.  

 

Two important genotypes stand out (Fig. 3d). In line New-A, the most rapidly 

increasing genotype, which we call AzoΔ, includes deletions at positions 47-53 

combined with seven point mutations (G31U, G35U, G70U, G121A, C141U, A144G 

and G183C). By generation 8, this genotype represented 31% of the population, and 
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subsets of its mutations accounted for 56% of the population. In line New-B, the most 

rapidly increasing genotype, which we call Azo*, is composed of four point mutations 

(G32U, G53A, C89U and G179C). By generation 8, sequences containing all four 

mutations accounted for 23% of the population, and various subsets of these four 

mutations accounted for 78% of the population. To corroborate the significance of 

association between the individual mutations of these genotypes, we also calculated 

correlation coefficients
32

 for all pairs of mutations for either AzoΔ or Azo* (table S1). 

All pairs showed significant correlation (P < 0.05, chi-squared), supporting the 

conclusion that these groups of mutations represent individual genotypes.   

 

One can estimate the fitness w of a genotype relative to the rest of a population from 

its increase in frequency over time according to the expression ln(pt/qt) = tln(w) + 

ln(p0/q0), where pt and qt are the frequencies of this genotype and of all other 

genotypes, respectively, at time t
32

. This calculation yields a relative fitness for AzoΔ 

of w = 1.46, or a 46% advantage over the remainder of the population. The genotype 

Azo* has a fitness of w = 1.82, or an 82% advantage. 

 

The fitness advantage for a sequence could potentially arise at any step in our 

selection procedure, such as during reverse transcription or PCR. To determine if the 

high fitness genotypes were in fact important contributors to the increased activity 

observed in Fig. 3a, we tested whether they had an increase in activity with a 

phosphorothioate substrate. To this end, we synthesized clonal transcripts of the AzoΔ, 

Azo*, and wild-type ribozymes for kinetic analysis. We performed the kinetic 

experiments under the same conditions as used in the New selection lines, and 
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monitored the production of the selected species, i.e. the 3’-modified ribozyme 

(Methods). 

 

Surprisingly, the clonal preparation of the AzoΔ ribozyme showed no activity toward 

the selected PT substrate. We further tested two other ribozyme variants, one with 

only the deletion mutations, and another with only the seven point mutations. These 

variants also showed no activity with the PT substrate, demonstrating that either group 

of mutations is enough to obliterate activity. Thus, not only did this genotype survive 

our selection procedure without any individual activity, it actually showed a dramatic 

increase in frequency, suggesting a selective advantage within the population. 

Because our selection procedure specifically requires the production of a 3'-modified 

ribozyme, we needed to account for the selection of a molecule with no apparent 

activity. We hypothesized that this sequence lacked the ability to fold into the native 

state individually, but could form an active complex in conjunction with other active 

ribozymes. Such an intermolecular partnership was previously observed in several 

other ribozyme experients
33-35

. To test this hypothesis, we assayed the Azo ribozyme 

for activity with a PT substrate alone, or in the presence of either the wild-type 

Azoarcus or the Azo* ribozymes (Fig. 3e). In these experiments, only the AzoΔ 

ribozyme was 5'-radiolabled with 
32

P so that only the activity of this ribozyme was 

observable on a denaturing polyacrylamide gel. The results confirm that while the 

AzoΔ ribozyme is inactive individually, it regains activity upon addition of either 

active variant. 

 

For the Azo* ribozyme, we found an increased activity with a phosphorothioate 

substrate as compared to the wild-type Azoarcus ribozyme (Fig. 3f). The four 
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mutations of Azo* increase the observed rate constant (kobs) by 131%, and also 

increase the extent of ribozyme reacted by 76%. Thus, the presence of this genotype 

in the population accounts for much of the increasing activity of line New-B. 

 

Because the increased activity of the Azo* variant correlates with increased activity of 

line New-B, we also looked for the presence of the Azo* genotype in lines New-A and 

New-wt. In line New-A, Azo* is present and increases in frequency from 1.1% to 8.0% 

over eight generations, which corresponds to a fitness of w = 1.35. Thus, this variant 

also appeared in this line, but the fitness of this genotype is lower here than in line 

New-B. The lowered fitness is presumably a consequence of the presence of 

individually inactive, yet highly fit AzoΔ variants. Because the increase in the 

frequency of Azo* is modest in this line, linear regression had not identified the four 

mutations as individually significant, which demonstrates a limitation of this 

approach. 

 

In line New-wt, the Azo* genotype did not appear in the first three generations, and 

only three individuals contained all four mutations in generation 8 (0.2% of sample). 

The most frequent combination of the individual Azo* mutations was G53A and 

G179C, which accounted for 9.6% of the population by generation 8 (Fig. 3d). We 

confirmed the absence of significant association of these mutations by calculating 

correlation coefficients for each possible pair of mutations (table S1). For example, 

while the individual mutations G53A and G179C were quite frequent by generation 8 

(each >30% of the sampled individuals), they co-occurred at only 5% of the 

theoretical maximum (Methods). This suggests that the significant individual 

mutations from line New-wt are acting separately, not in concert. Further, the other 
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individual mutations of Azo* (C32U and C89U) did not show a significant increase in 

frequency in this line, as determined by linear regression, suggesting that they do note 

display a strong selective advantage individually. In sum, although the Azo* genotype 

showed increased activity with the phosphorothioate substrate, line New-wt, which 

had not yet acquired cryptic variation, did not discover this genotype. 

 

While the Azo* genotype has an increased activity in the new environment, our data 

suggest that the mutations that comprise this genotype had no advantage in the native 

environment. First, the composite activities of the populations of lines A and B did 

not increase during selection for the native activity, suggesting that these lines had not 

yet discovered higher fitness genotypes. Also, the individual mutations of the Azo* 

genotype do not increase in frequency during selection for the native activity 

(Supplementary Fig. 4), and the Azo* genotype was not detected in line A or B.  

 

To confirm the cryptic nature of the Azo* mutations, we engineered these mutations 

into the Azoarcus ribozyme. We then determined the activity of these variants under 

the conditions used during selection for the native activity in line A (no formamide) 

and compared them to the wild-type activity (Fig. 4a). Of the individual mutations of 

the Azo* genotype, only G179C showed an increase in mean activity (14%), but 

which was not significantly different from the wild-type (p = 0.11, two-tailed t-test). 

The mutation C32U showed a significant decrease in activity (-33%, p = 0.03). The 

mutations G53A and C89U both showed decreased in activities (-28% and -17% 

respectively) that were not significantly different than the wild-type (p = 0.07 and p = 

0.10, respectively). Thus, the individual mutations of the Azo* genotype showed no 

fitness benefit during selection for the native activity. However, because three of these 
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individual mutations, and several combinations (Supplementary Fig. 5), showed no 

significant difference from the wild-type, they can be discovered and remain in the 

population despite purifying selection for the native activity. This is consistent with 

the observations that approximately 10% of sampled individuals in generation 10 of 

lines A and B had at least one of the Azo* mutations, but none of the mutations 

showed a dramatic increase in frequency. 

 

Further, due to the diversity of our populations, the Azo* mutations rarely occurred in 

an entirely wild-type background. For example, after the first round of selection for 

the native activity, only ~4% of line A individuals and ~6% of line B individuals are 

wild-type, and there are almost no wild-type individuals left in either line by 

generation 10 (Supplementary Fig. 2). Also, most selected individuals will acquire a 

random mutation during amplification. Thus, we wanted to test the average effect of 

mutations on the Azo* genotype. To this end, we introduced random mutations into 

the Azo* genotype through mutagenic PCR (Methods), and tested the activity of this 

population of ribozymes on either the native or new substrate (Fig. 4b). The results 

showed that in the native environment, the effect of random mutations decrease the 

average activity of Azo* individuals to approximately the same level as the wild-type 

activity (p = 0.91, two-tailed t-test). However, in the new environment, the activity of 

the population of Azo* mutants remained significantly higher than the wild-type 

activity despite random mutations (p = 0.007).  

 

We conclude that the mutations of the Azo* genotype represent cryptic variation that 

is advantageous in the new environment, but had no distinguishable selective 



 15 

advantage in the native environment. The lack of selective advantage is compounded 

by the average deleterious effect of random mutations. 

 

We next turn to a more detailed visual analysis of sequence space to help us 

understand why cryptic variation allowed faster adaptation. This space is very high-

dimensional and cannot be visualized directly. However, we can study lower-

dimensional projections of this space, for example using principal component analysis 

(PCA) of aligned sequence data sampled from evolving populations. Fig. 5 shows 

such an analysis based on sequences isolated from three generations of the New lines. 

It shows that, first, lines New-A and New-B are more diverse during all generations, 

compared to line New-wt. Second, it also confirms the existence of two 

subpopulations of line New-A, where two clearly discernible clouds of sequences are 

visible at all times; one contains the Azo* genotype, and the other contains AzoΔ. 

Third, it illustrates the high fitness of AzoΔ and Azo* in that the number of sequences 

belonging to these genotypes increases over generational time. Importantly, it shows 

that many of the sequences in generation 1 of lines New-A and New-B are close in 

genotype space to Azo*. Over time, the genotypes become more concentrated around 

the Azo* genotype. In contrast, in generation 1 of line New-wt, sequences are tightly 

clustered and distant from Azo*. Over time, this population becomes more diverse, 

and moves towards the region of space occupied by the Azo* individuals. 

 

A candidate explanation for the advantage of cryptic variation that emerges from the 

previous analyses is that lines A and B had the opportunity to expand in sequence 

space, such that their sequences came close to regions where advantageous mutations 

could occur in line New-A and New-B. Line New-wt did not have this opportunity, 
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and thus adapts more slowly. Thus, while the genetic variation acquired during 

purifying selection did not affect the activity on the native substrate, it allowed the 

rapid adaptation after the environmental perturbation. This rapid adaptation coincides 

with the discovery of Azo*, a variant with increased activity. To further validate this 

explanation, we constructed a network of sequences combined from the last 

generation of line B (B10) and the first generations of lines New-B (New-B1) and 

New-wt (New-wt1) (Fig. 6). In Fig. 6a, this network is represented as a graph, whose 

nodes correspond to clusters of sequences (96% identity) and edges connect related 

clusters (distance ≤10 nucleotide changes). The graph shows that many of the 

individuals in B10 (7 clusters) are already in close proximity (connected by a yellow 

edge) to the high fitness Azo* genotype (yellow nodes with black borders). The first 

round of selection in line New-B (New-B1) acts on this standing diversity and 

increases the number of sequences (33 clusters) around Azo*.  In obvious contrast, not 

a single cluster from New-wt1 is in close proximity to an Azo* cluster. The proximity 

of B10 individuals to Azo*, relative to New-wt1 individuals, is further supported by 

analyzing the positions where the Azo* mutations occur: 32, 53, 89, and 179 (Fig. 6 b-

d). The results show that many sequences in B10 already posses two or three of the 

four Azo* mutations. No individuals in New-wt1 posses three Azo* mutations, and 

only a fraction of a percent posses two. Thus, the cryptic diversity acquired during 

purifying selection for the native activity moved some of the population to regions of 

genotype space that happen to be proximal to the high fitness genotype. 

 

To visualize all the sequence data from these three generations requires clustering 

which compromises resolution. We thus constructed an unrooted phylogenetic tree to 

understand the relatedness between Azo* sequences and closely related sequences in 
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B10 at high resolution (Fig. 6e). To this end we used only the sequences that share 

more than 96% identity with Azo*, which are those found in the clusters represented 

as yellow nodes in the network graph of Fig. 6a (Methods). For comparison, we also 

included the representative sequences form New-wt1, although they do not share this 

level of sequence identity with Azo*. The tree shows, first, that at this early stage of 

evolution toward the New activity, the sequences that contain the Azo* mutations are 

not spread throughout the tree, but are related, and form a relatively small clade. 

Second, it shows that the sequences of B10 are approximately equally distant from the 

different clades in New-B1, including the “Azo* clade”, which arise from the first 

round of selection for the new activity. Third, sequences from New-wt1 are much 

more distant to these Azo* sequences. The tree supports the notion that the sequences 

with cryptic mutations in B10 are not specifically adapted for the new substrate 

activity because they are equally close to clades that do not contain Azo*. 

Nevertheless, these sequences are fortuitously similar enough to the Azo* sequences 

to allow the immediate emergence of this high fitness genotype upon environmental 

change (new substrate). This was not the case in line New-wt, which lacked this 

cryptic variation.    

 

In summary, our results show that populations which had acquired cryptic variation 

adapted rapidly to a chemically perturbed substrate. Their rapid adaptation results 

from the presence of a high fitness genotype that requires four mutations relative to 

the wild-type sequence. The required mutations are cryptic when selecting for the 

native activity; they do not display a selective advantage. However, upon 

environmental perturbation (new substrate), the high fitness phenotype of these 

genotypes is revealed, and selected, causing rapid adaptation. We also observed the 
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origin of a simple molecular “ecology” in the interactions between the AzoΔ variant 

and active enzymes, showing how unforeseen complexity can arise in seemingly 

simple systems.  

 

Our observations demonstrate that cryptic variation can facilitate adaptation, and why 

it does so. Populations under purifying selection for a trait can still evolve genotypic 

diversity, because there are many different genotypes with the same or similarly well-

adapted phenotype. Some of this diversity is fortuitously pre-adapted to a new 

environment, which aids the population’s evolutionary adaptation to this new 

environment. We note that this genotypic diversity is a signature of extensive 

epistasis. Indeed, such epistasis has recently been demonstrated in protein and RNA 

phenotypes
36-38

. Our results suggest that epistasis is important in our system, because 

several individual mutations do not provide a large fitness advantage alone, but do so 

in combination. The ability to explore such combination of mutations cryptically is 

especially important in cases where high-fitness genotypes require several interacting 

mutations. Our observations also support theoretical work which demonstrates that the 

release of hidden variation after perturbation is a general property of genetic systems 

near mutation-selection balance, and with epistatic or gene-environment 

interactions
39

.  

 

Our results also demonstrate the importance of robustness in facilitating evolutionary 

adaptation
40,41

. Cryptic variation becomes possible only because the enzymes we 

study are to some extent robust to genetic change, and can explore a large genotype 

space even when subject to purifying selection. Our more rapidly adapting 

populations are also more diverse, providing experimental evidence of how 
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mutational robustness can lead to the fulfillment of Fischer’s fundamental theorem
42

. 

Strikingly, the robustness to mutations of the Azo* genotype in the native and new 

environments provides a selective advantage for these individuals only after 

environmental change (new substrate). We note that this different robustness could be 

the result of either a buffering of deleterious mutations or from a high density of more 

active sequences in the local genotype space
38

.   

 

The phenotype of our study system is much simpler than complex traits of higher 

organisms, which is its primary limitation. However, this system allows the 

monitoring of population wide genotypic change over multiple generations through 

ultra-high throughput sequencing. This ability allowed us to analyze the relationship 

between standing variation and high fitness genotypes over time, and to quantify the 

rate at which combinations of mutations rise to high frequency. Our results suggest 

that we may understand the role of cryptic variation in complex traits to the extent that 

we can analyze their evolution in an underlying genotype space.  

 

Our observations suggest that the adaptive advantage of cryptic variation will often be 

transient. Unless the individual mutations that lead to a high fitness genotype are 

strongly deleterious, even a population without cryptic variation will eventually 

discover them, and climb the fitness landscape to this genotype. This transient effect 

is evident in Fig. 2b, where the three New lines are approaching a common activity. 

We note that our system involved only a single environmental change, whereas in the 

wild, environments change incessantly. Even if a robust system with cryptic variation 

only has a transient advantage after environmental change, this advantage may 

become permanent if environments change frequently. Consistent with this notion is 
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that protein structures with greater robustness to mutations and thus greater potential 

for cryptic variation have evolved greater functional diversity in their evolutionary 

history
43

.   

 

Our results are similar to those found in a protein system, where mutations that did 

not affect the native activity of the protein changed the activity of non-native or 

“promiscuous” functions, and in some cases were several mutations closer to new 

phenotypes
44

. Thus, our results support a general role for cryptic variation in 

accelerating adaptive evolution. Further, if cryptic variation is important in simple, 

single enzyme systems, it is likely to be pervasive in complex phenotypic traits. The 

ability to sequence entire genomes and evolving populations through deep sequencing 

is leading to a surge in genome based research. These efforts are continually 

uncovering single-nucleotide polymorphisms that have yet unknown effects, and 

might often be hidden under normal conditions. Our observations suggest that these 

mutations should not be ignored, and may have important consequences in 

populations that face perturbations, including new mutations, infectious disease 

agents, and environmental changes. 

 

METHODS SUMMARY 

The dsDNA template for the Azoarcus ribozyme was produced from a two step PCR 

based assembly of synthetic oligonucleotides
45

. Ribozyme populations were prepared 

from in vitro transcritption (T7 RNA polymerase) and purified for length 

homogeneity by denatureing PAGE (6% polyacrylamide/8M urea). Mutagenesis was 

achieved by a mutagenic PCR procedure
24

, and to a lesser extent by the inherent 

mutation rates of the polymerase enzymes of the selection procedure. Substrate 
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oligonucleotides were produced by solid phase synthesis and purified by PAGE 

(Microsynth). Selection was based on a reverse splicing reaction containing 20 pmol 

ribozymes, and either 100 pmol RNA oligonucleotide substrate, or 200 pmol 

phosphorothioate containing substrate (equal mixture Rp/Sp). Negative controls for 

the selection protocol were carried out for every generation by skipping the reverse 

transcription step, but keeping the remainder of the protocol identical, and were 

monitored at both PCR steps by agarose gel electrophoresis. No band was ever 

observed in a negative control. Kinetic parameters were determined by non-linear 

curve fitting of time course data (Methods). cDNA samples from each generation 

were appended with a primer sequence unique to that generation via a PCR reaction. 

Samples from all generations were combined, and sequenced on a single picotiter 

plate using Roche 454 technology by the Functional Genomics Facility Zurich. P-

values from linear regression were adjusted for multiple testing using the Benjamini 

Hochberg procedure
46

. Principle component analysis was performed using the 

princomp function in Matlab on multiple sequence alignments constructed from 

combined generations. Network graphs were constructed using Cytoscape from all-

against-all distance data extracted from the multiple sequence alignments. 
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Figure 1 | Selection procedure and experimental overview. a, Approximately 10
13

 

ribozyme variants (single horizontal black line) are challenged to catalyze the 

cleavage of an exogenous substrate (single horizontal grey line). Successful 

ribozymes are specifically amplified by reverse transcription (RT) PCR using a primer 

(grey arrow) specific to the ligated portion of the substrate (grey line). A second PCR 

regenerates the active form of the ribozyme using primers (black arrows) specific to 

its 5’ and 3’ ends. Transcription of this PCR product generates ribozymes for the next 

generation. b, A diagram of cleavage reaction chemistry. The chemical change 

(phosphorothioate; PT) for New lines is shown by an X at the scissile phosphate. c, 

Experimental overview. The same initial population is used to start lines A (open red) 

and B (open blue). Cryptic variation is produced by selecting for activity on a native 

substrate (RNA oligonucleotide) for 10 generations (x10). The populations that have 

acquired cryptic variation are then used to start two lines, New-A (solid red) and New-

B (solid blue). A third new line, New-wt (solid black) is started from the initial 

population that started A and B. The New lines experience an environmental change 

by requiring selection on a phosphorothioate substrate (b), carried out for 8 

generations (x8). The color scheme used here is preserved in subsequent figures. 

 

Figure 2 | Evolution during selection for the native activity. The colors used for 

each line correspond to those in Fig. 1c. a, Activity (fraction ribozyme reacted) at 

each generation under conditions used during selection for the native activity (RNA 

oligonucleotide cleavage) over 10 generations (Methods). Error bars correspond to 

standard errors of three measurments. b,c, Histograms, from each generation of line A 

and B, showing the frequency (percent of sample) of individuals with a given number 
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of nucleotide differences from the wild-type sequence (distance). Frequencies from 

generations 1 (G1) and 10 (G10) are shown as solid lines, and intervening generations 

are shown as dashed grey lines. d, Secondary structure of the Azoarcus ribozyme 

according to
25

, with nucleotide positions numbered according to
23

. The substrate for 

selection is shown in lower case letters, with an “x” representing the location of the 

PT bond used in the New lines. Structural elements P4 and J3/4 are indicated. e, 

Representation of positions that accumulated mutations during selection for native 

activity. The crystal structure of the ribozyme (1ZZN)
25

 is shown using the “PUTTY” 

function in Pymol (Schrödinger). Mutable positions are highlighted by scaling the 

thickness and color of the tube to the P-value found from linear regression relative to 

zero (Methods). The active site of the ribozyme is indicated by the substrate (stick 

representation, colored by element). 

 

 Figure 3 | Evolution during selection for the new activity. a, Activity (fraction 

ribozyme reacted) at each generation under conditions used during selection for 

phosphorothioate bond cleavage. Error bars represent standard error of three 

measurements. b, Histograms, from generations of line New-A (red), New-B (blue), 

and New-wt (black) showing the frequency (percent of sample) of individuals with a 

given number of nucleotide differences from the wild-type sequence (distance). c, 

Individual mutations that were used to search for rapidly increasing genotypes. The 

mutations of the AzoΔ and Azo* genotypes are shown in bold. d, Frequency of 

genotypes, comprised of combinations of mutations in c, that showed a rapid increase 

in frequency (percent of sample) over time (generations), and their corresponding 

fitness relative to the rest of the population (see text). e, Intermolecular activity of the 

AzoΔ ribozyme, under the same conditions as during selection (Methods): 200 pmol 
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PT substrate, 20 pmol 5’-[32
P]-labeled AzoΔ. In additon, lanes 3 and 4 contained 40 

pmol wild-type and Azo*, respectively. The negative control “No S (–)” contained no 

substrate. f, Comparison of kinetic parameters for the  Azo* and wild-type ribozymes. 

 

Figure 4 | Cryptic nature of Azo* mutations in the native environment. a, 

Activities (fraction ribozyme reacted) of variants of the Azoarcus ribozyme with 

individual mutations of the Azo* genotype. Error bars show standard error of at least 

three measurments. For reference, the error bars of the wild-type activity are extended 

as grey dashed lines. b, Activities (fraction ribozyme reacted) of the wild-type 

ribozyme and a population of ribozymes generated from random mutagenesis of the 

Azo* genotype (µ-Azo*). The activites are shown on either the native substrate 

(RNA) or the new substrate (PT = phosphorothioate). The RNA reactions were carried 

out under the same conditions as in line A (no formamide). The PT reactions were 

carried out under the same conditions as the New lines. 

 

Figure 5 | Evolution in genotype space. Principal component analysis of multiple 

sequence alignments constructed from the combined sequences from New-A, New-B 

and New-wt populations. Each node represents an individual sequence. The distance 

between nodes is proportional to the number of nucleotide differences. Note that the 

apparent distance on the graph may be lower than the true distance due to the 

compression of multiple dimensions into a 2D plot.  Sequences from the indicated 

generation of each line were combined before alignment. The region on the graphs 

occupied by the AzoΔ sequences is indicated by a grey ellipse. 
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Figure 6 | Proximity of sequences to the Azo* genotype. a, A network graph 

composed of all sequences from the last generation of line B (B10), and the first 

generations of lines New-B (New-B1) and New-wt (New-wt1). Nodes represent 

several sequences clustered at 96% identity (Methods) and are colored based on the 

source population of their representative sequence (see color key). Edges connect 

clusters with ≤10 nucleotide differences between their most distant sequences. Nodes 

containing Azo* individuals are yellow with a black border. All connections to Azo* 

nodes are shown as yellow edges, and the connecting node has a yellow border. The 

wild-type sequence is a green node with a yellow border. b-d, Frequency, presented 

as percent of sampled sequences (left y-axis) and total number of sequences (right y-

axis), of sequences with a given number of the Azo* mutations in B10, New-wt1, and 

New-B1. e, Unrooted maximum likelihood phylogenetic tree of sequences found 

within the yellow nodes of a (96% ID with Azo*) and the representative sequences 

from New-wt1. Leaves represent individual sequences and are colored to match a (see 

key). 

 

 


