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Notations and glossary

Fn The field with n elements. It is also referred to as GF(n).

Zn The ring of the residue classes modulo n in Z.

ϕ ϕ : Z→ Z is the Euler’s totient function. It can be defined by
ϕ(n) := Card(Z∗n).

R∗ The unit group of the commutative ring R.

Card For a finite setM , Card(M) (also written as |M |) refers to the number of its elements.

Ceiling function The ceiling function d·e : R→ Z can be defined by
dxe := min{z ∈ Z : z ≥ x}.

Floor function The floor function b·c : R→ Z is defined by bxc := max{z ∈ Z : z ≤ x}.

A

AES Block cipher with a block size of 128 bits, standardised by NIST in FIPS 197 [44].
Corresponding to the length of the keys used, a distinction is made between AES-
128, AES-192 and AES-256. Apart from related-key attacks against AES-192 and
AES-256, no attacks against AES are known which provide a significant advantage
over generic attacks on block ciphers.

Asymmetric cryptography Generic term for cryptographic mechanisms in which some cryp-
tographic operations (such as the encryption of a message or the verification of a
signature) can be carried out by parties who do not know secret data.

Authenticated encryption Encryption schemes are referred to as authenticated if not only the
confidentiality, but also the integrity of the data to be encrypted is protected.

Authentication Objective of securely identifying a person or machine. In the given context,
this applies to persons or machines who or which are the source or destination of a
communication connection and the authentication is performed by making use of a
cryptographic secret.

Authenticity Authenticity of a message means that no changes to the message were made since
the message has been generated and that no incorrect information about the sender
of the message is employed by the recipient. Within the meaning of the terminology
used in this Technical Guideline, the authenticity of a message is protected reliably
by means of a data authentication scheme only if the access to the authentication
keys used is protected reliably by means of an instance authentication method and
old messages are prevented by cryptographic mechanisms from being repeated.
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B

Block cipher Key-dependent, efficiently computable, reversible mapping which maps plain-
texts of a fixed given bit length n to ciphertexts of the same length. Without
knowing the key, it should be practically infeasible to distinguish the output of the
block cipher from the output of a randomly chosen bijective mapping.

C

Chosen-ciphertext attack Cryptographic attack in which the adversary can gain access to
plaintexts corresponding to ciphertexts chosen by them. The aim of the adversary
is usually to decipher a given ciphertext which does not belong to one of these
plaintext–ciphertext compromises. Depending on whether the adversary knows this
ciphertext before or after the end of the attack, a distinction is made between adap-
tive and non-adaptive chosen-ciphertext attacks.

Chosen-plaintext attack Cryptographic attack in which the adversary can gain access to ci-
phertexts for plaintexts chosen by them.

Collision resistance A function h : M → N is referred to as collision-resistant if it is practically
infeasible to find x 6= y with h(x) = h(y).

Confidentiality Objective of binding read access to an information to the right to access. In a
cryptographic context, this usually means that only the holders of a secret crypto-
graphic key should be able to access the content of a message.

D

Data authentication Protection of the integrity of a message by means of cryptographic mech-
anisms.

Diffie-Hellman problem (DH) g, ga, gb are given, with g being a generator of the cyclic group
G. gab must be calculated. The difficulty of this problem depends on the represen-
tation of the group. The DH problem can be solved easily by adversaries who are
able to calculate discrete logarithms in G.

Discrete Logarithm (DL) Problem of calculating d given gd in a cyclic group G generated by
g. The difficulty of this problem depends on the representation of the group.

Disk encryption The term “disk encryption” refers to the complete encryption of a data
medium. The objective of a disk encryption is to ensure that no confidential
information can be read from the encrypted system, at least when it is switched off.

DLIES Discrete Logarithm Integrated Encryption Scheme, hybrid authenticated encryption
scheme based on DH in F∗p.

E

ECIES Elliptic Curve Integrated Encryption Scheme, hybrid authenticated encryption
scheme based on DH in elliptic curves.
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F

Fault attack Attack on a cryptographic system in which the adversary uses an incorrect exe-
cution of a cryptographic operation and/or causes it actively.

Forward secrecy (for cryptographic protocols) Security property of a cryptographic protocol,
which says that the disclosure of cryptographic long-term secrets does not enable an
adversary to compromise previous sessions of the protocol [38]. It must be noted that
forward secrecy can only be reached in any protocol if a random number generator
which ensures at least Enhanced Backward Secrecy according to [66] was used within
the protocol when generating the ephemeral keys. If future sessions which have not
been manipulated by an adversary are also to remain protected in the case of a
compromise of all long-term secrets, a random number generator which also offers
enhanced forward secrecy [66] must be used when generating the ephemeral keys.

Forward secrecy (for deterministic random number generators) In the context of determin-
istic random number generators, forward secrecy means that future output values
of the random number generator cannot be predicted with more than a negligible
advantage by adversaries who only know previous output values of the random num-
ber generator, but not its internal state and whose computing power is below a limit
which is given by the security level of the deterministic random number generator
[66].

Forward security The term forward security for encryption and signature algorithms is related
to the concepts of forward secrecy for cryptographic protocols and deterministic
random number generators (but not identical to either of the two concepts); see, for
example, the review article [61].

G

GCM Galois/Counter Mode, a mode of operation for block ciphers which constructs an
authenticated encryption scheme on the basis of the block cipher. The authentication
of data that is not encrypted is also supported.

GHASH Key-dependent tag which is used in the authenticated block cipher mode of operation
GCM. The hash of a message M = M0M1 . . .Mn (Mi 128-bit blocks) in GHASH is∑n
i=0MiH

n−i+1 , with H ∈ GF (2128) being the hash key. It must be noted that
GHASH alone cannot be used as a cryptographic hash function or as a message
authentication code! Good security properties are provided only if GCM (or the
authentication of GCM without encryption, i.e. the GMAC authentication code) is
used as a whole.

GMAC Message authentication code which results from using the GCM without data to be
encrypted.

H

Hash function A function h : M → N which can be computed efficiently and for which M is
significantly greater than N . h is referred to as a cryptographic hash function if it is
collision-resistant and resistant to the calculation of first and second preimages. In
this Technical Guideline, the term hash function usually refers to a cryptographic
hash function.

Hybrid encryption Encryption scheme which uses public-key cryptography to transport keys
for a symmetric encryption method which, in turn, is used to encrypt the message.
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I

Information-theoretic security A cryptographic mechanism is referred to as information-
theoretically secure if any adversary fails because of a lack of information when
attempting to break the system. In this case, the security objective is achieved
irrespective of the computing power available to the adversary as long as the as-
sumptions regarding the system information which can be accessed by the adversary
are valid. There are information-theoretically secure mechanisms in many areas
of cryptography, for example for the encryption of data (one-time pad), for the
authentication of data (Wegman-Carter MAC) or in the field of secret sharing (for
Shamir’s secret sharing algorithm, see also Chapter 8). In mechanisms of this kind,
there are usually no security guarantees if the prerequisites for the operation of the
mechanisms are not precisely complied with.

Instance authentication Proof of the possession of a secret by a user or an information-
processing system to another party.

Integrity Objective of binding write access to an information to the right to change the infor-
mation. In a cryptographic context, this means that a message can only be changed
without being noticed using a certain secret cryptographic key.

K

Key length For symmetric cryptographic mechanisms, the key length, which is also referred
to as key size, is simply the bit length of the secret key used. For RSA (signature
and encryption algorithms), the bit length of the RSA module n is referred to as
key length. For schemes which are based on the Diffie-Hellman problem or discrete
logarithms in F∗p (DLIES, DH key exchange, DSA), the bit length of p is defined
as the key length. For schemes which are based on the Diffie-Hellman problem or
discrete logarithms in an elliptic curve C over the finite field Fn (ECIES, ECDH,
ECDSA and variations), the bit length of n is the key length.

M

MAC Message authentication code, key-dependent cryptographic tag. Without knowing
the key, it should be practically infeasible for an adversary to distinguish the MACs
of nonrecurrent messages from random data. In this case, tags cannot be forged
successfully by an adversary with a probability that is considerably above 2−t, with
t referring to the length of the authentication tags. Here, requirements on the length
of t greatly depend on the application.

Min entropy The min entropy of a discrete random variable X (intuitively of a random ex-
periment with a countable set of possible outcomes) is defined as − log2(p), with p
referring to the probability of the most probable value for X.

P

Partition encryption The term “partition encryption” refers to the complete encryption of a
partition of a data medium. The mechanisms used are similar to that of the disk
encryption.

Preimage resistance A function h : M → N is referred to as preimage-resistant if it is practi-
cally infeasible to find a x ∈ M for a given y ∈ N so that h(x) = y. It is referred
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to as resistant to the calculation of second preimages if it is virtually impossible to
calculate a x′ 6= x for a given x, y with h(x) = y so that h(x′) = y.

Public-key cryptography See asymmetric cryptography.

R

Related-key attack Attack on a cryptographic mechanism, in which the adversary may query
encryptions and decryptions not only under the key K which was actually used, but
also under a number of other keys unknown to the adversary, which are related to K
in a manner that is known to the adversary. This model is very advantageous to the
adversary. In some situations, related-key attacks can still be relevant in practice,
for example in connection to the construction of a cryptographic hash function based
on a block cipher.

S

Secret sharing The term “secret sharing” refers to mechanisms used to distribute secret data
(for example, of a cryptographic key) to several storage media. The original secret
can only be reconstructed by evaluating several shared secrets. For example, a
secret-sharing scheme can provide that, from a total of n shared secrets, at least k
have to be known in order to reconstruct the cryptographic key to be protected.

Security level (of cryptographic mechanisms) A cryptographic mechanism achieves a secu-
rity level of n bits if costs which are equivalent to 2n calculations of the encryption
function of an efficient block cipher (e.g. AES) are tied to each attack against
the mechanism which breaks the security objective of the mechanism with a high
probability of success.

Shannon entropy The Shannon entropy of a discrete random variable X (intuitively of
a random experiment with a countable set of possible outcomes) is defined as
−

∑
x∈W px log2(px), with W being the range of values of X and px the probability

with which X has the value x ∈W .

Side-channel attack Attack on a cryptographic system which makes use of the results of phys-
ical measurements at the system (for example, energy consumption, electromagnetic
emanation, time consumption of an operation) in order to gain insight into sensitive
data. Side-channel attacks are very relevant to the practical security of information-
processing systems.

Symmetric cryptography Generic term for cryptographic mechanisms in which all parties in-
volved must have predistributed shared secrets in order to be able perform the entire
mechanism.

T

TDEA Triple DES.

U

Uniform distribution In the context of this Technical Guideline, uniformly distributed gener-
ation of a random number from a base set M always means that it is practically
impossible to distinguish the generating process from an ideally random (i.e. a truly
random, uniformly distributed, independent) drawing of elements from M .
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V

Volume encryption See partition encryption.
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1. Introduction

With this Technical Guideline, the Federal Office for Information Security (BSI) provides an
assessment of the security and long-term orientation for selected cryptographic mechanisms.
However, no claim to completeness is made, i.e. mechanisms which are not listed are not
necessarily considered by the BSI to be insecure.

Conversely, it would be wrong to conclude that cryptographic systems which use as basic
components only mechanisms that are recommended in this Technical Guideline would auto-
matically be secure: The requirements of the specific application and the linking of different
cryptographic and non-cryptographic mechanisms can mean that in a given specific case the
recommendations given here cannot be implemented directly or that vulnerabilities occur.

Due to these considerations, it must be emphasised in particular that the recommendations
given in this Technical Guideline do not anticipate decisions, such as in the course of govern-
mental evaluation and approval processes.

This Technical Guideline rather addresses primarily, in a recommendatory man-
ner, developers who plan to introduce new cryptographic systems as from 2018.
Therefore, this document deliberately dispenses with the specification of cryptographic mecha-
nisms which are still considered to be secure at the time of the publication of this document,
but can no longer be recommended in the medium term, as they do not have vulnerabilities that
can be exploited yet, but have at least theoretical vulnerabilities.

Various other documents issued by the BSI and Federal Network Agency (BNetzA) can also
play an important role in the development of new cryptographic systems, such as [2, 3, 4, 18, 28,
29, 30]. For certain specific applications, the recommendations included in these documents are
even binding in contrast to the recommendations given in this Technical Guideline. A discussion
of the regulations covered (as of 2011) can be found in [52].

The following two sections describe first both the security objectives and the selection cri-
teria for the recommended cryptographic mechanisms. Moreover, very generic remarks on the
practical implementation of the recommended mechanisms are provided.

In Chapter 2 to 9, the recommended cryptographic mechanisms are listed for the following
applications

1. Symmetric encryption,

2. Asymmetric encryption,

3. Cryptographic hash functions,

4. Data authentication,

5. Instance authentication,

6. Key agreement,

7. Secret sharing and

8. Random number generators.

The key lengths required and other constraints to be observed are specified in the respective
sections.
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Often, various cryptographic algorithms must be combined with each other in order to ensure
that the mechanism used meets the security requirements. For example, it is often necessary
not only to encrypt confidential data, but the recipient must also be sure by whom the data was
sent and/or if it was manipulated during the transmission. The data to be transmitted must
therefore also be authenticated by means of an adequate method.

Key agreement schemes are another example. In this respect, it is important to know with
whom the key agreement is performed in order to eliminate so-called man-in-the-middle attacks
and unknown key share attacks [16]. This is achieved by means of schemes that combine key
agreement and instance authentication.

For this reason, corresponding schemes are given in Appendix A for these two use cases. These
schemes are designed by combining the schemes listed in Chapter 2 to 9 and comply with the
security level required in this Technical Guideline.

In addition to this, frequently used algorithms are recommended in Appendix B. These algo-
rithms are needed, for example, for the generation of prime numbers and other system parameters
for asymmetric schemes, for the key derivation for symmetric algorithms etc.

In Appendix C, recommendations are given for the use of selected cryptographic protocols.
In the current version of this Technical Guideline, this only applies to the SRTP protocol, since
recommendations for TLS, IPsec and SSH were transferred to TR-02102-2, TR-02102-3 and
TR-02102-4 [24, 25, 26].

It is planned to review the recommendations given in this Technical Guideline on
an annual basis and to adjust them if necessary.

1.1. Security objectives and selection criteria

The security of cryptographic mechanisms depends primarily on the strength of the underlying
algorithms. For this reason, this Technical Guideline recommends only mechanisms which can
be assessed accordingly based on the results available today from long-standing discussions and
analysis. Other factors relevant to security are the specific implementations of the algorithms
and the reliability of potential background systems, such as required public key infrastructures
for the secure exchange of certificates. The realisation of specific implementations, however, is
considered in this Technical Guideline just as little as any potential patent-related problems.
When choosing the mechanisms, care was taken to ensure that the algorithms are
not subject to patents, but the BSI cannot guarantee this. This Technical Guideline
also includes notes on potential problems occurring during the implementation of
cryptographic mechanisms. These remarks, however, should not be considered an
exhaustive list of such potential problems.

Overall, all cryptographic mechanisms specified in this Technical Guideline achieve, with
the parameters required in the specific sections, a security level of at least 100 bits. For the
prediction period beyond the end of 2022, the use of mechanisms that achieve a security level of
at least 120 bits is recommended. As a transitional measure, the use of RSA-based signature and
confidentiality mechanisms with a key size of at least 2000 bits will however remain conformant
to this Technical Guideline through 2023.1

The bit lengths recommended in this Technical Guideline for use in new cryptographic systems,
however, go by this minimum level only to the extent that it is not fallen short of for any
recommended mechanisms. The effective strength of the mechanisms recommended in this
Technical Guideline is higher than 100 bits in many cases. Thus, a certain security margin with
respect to possible future progress in cryptanalysis is achieved.

As has already been stated in the introduction, it is not true either that, by the reverse

1If RSA with a key length of less than 3000 bits is used for key transport, the transmitted keys should not be
used beyond the year 2023 (see also Remark 27 in Chapter 7).
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implication, mechanisms which are not mentioned in this Technical Guideline do not reach the
security level required.

Table 1.1 shows the key lengths of selected algorithms and types of algorithms for which will
just about reach, according to current understanding, the security levels of 100 and 120 bits
respectively.

Symmetric schemes Asymmetric schemes

Ideal block cipher Ideal MAC RSA DSA/DLIES ECDSA/ECIES

100 100 1900 1900 200

120 120 2800 2800 240

Table 1.1.: Examples of key sizes reaching a security level of 100 and 120 bits respectively

The recommended key lengths of different types of cryptographic primitive are summarised in
Table 1.2.

Table 1.2.: Recommended key lengths for different cryptographic mecha-
nisms

Block cipher MAC RSA DH Fp DH (elliptic curve) ECDSA

128 128 2000 a 2000 a 250 250
a For the period of use beyond 2022, the present Technical Guideline recommends

to use a key length of 3000 bits in order to achieve a similar security level for all
asymmetric schemes. The suitability of RSA, DSA and DLIES key sizes below
3000 bits will not be extended further. A key length of ≥ 3000 bits will be binding
for cryptographic implementations which are to conform to this Technical
Guideline as from 2023. Any key size ≥ 2000 is, however, in conformity with this
Technical guideline until the end of 2022. Transitionally, the use of RSA keys at
least 2000 bits in size will remain compliant until the end of 2023. More detailed
information can be found in the Remarks 4 and 5 in Chapter 3.

In the case of message authentication codes (MACs), the length of the digest output is an
important security parameter independently of the key length. Ideally, it should be impossible
in practice for an adversary to distinguish a MAC from a random function of the same digest
length. As long as this criterium is fulfilled, the adversary is reduced to forging messages by
guessing verification tags, and their probability of success per trial is 2−n, where n is the tag
length. In many applications, n = 64 will be acceptable under these circumstances, i.e. a tag
length of 64 bits.
In the case of block ciphers, the block width is also a security parameter which does not depend
on the key length. In the absence of structural attacks on a block cipher, the main effect of a
small block width is that keys have to be exchanged more frequently. The precise effects depend
on the mode of operation used. In this Technical Guideline, block ciphers with a block width of
less than 128 bits are not recommended.
Moreover, an important type of cryptographic primitives which do not process any secret data
at all are cryptographic hash functions. Here, the length of the returned digest value is the most
important security parameter and should be at least 200 bits for general applications in order to
ensure that the minimum security level required in this Technical Guideline is reached. The hash
functions recommended in this Technical Guideline have a minimum hash length of 256 bits.
Deviations from this rule for special applications will be addressed in this Technical Guideline
where appropriate.
Diffie-Hellman key exchange schemes are to be handled in Table 1.1 and Table 1.2 in accordance
with DSA/ECDSA.
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1.2. General remarks

Reliability of forecasts regarding the security of cryptographic mechanisms When
defining the size of system parameters (such as key length, size of the image set for hash func-
tions and the like), not only the best algorithms known today for breaking the corresponding
mechanisms and the performance of today’s computers must be taken into account, but foremost
a forecast of the future development of both aspects must be taken as a basis, see [?, 68].

In this context, it is comparatively easy to guess at the future development of the computa-
tional power of classical computers. However, fundamental scientific progress (such as regards
new algorithmic attacks or the development of a cryptographically relevant quantum computer)
is impossible to predict. Any forecast exceeding a period of 6-7 years is difficult, especially in
the case of asymmetric schemes, and even for this period of 6-7 years, the forecasts can
turn out to be wrong due to unpredictable developments.

The information in this Technical Guideline is therefore only provided limited to a period of
time up to the end of 2026.

General guidelines on the handling of confidential data with longer-term protection
requirements Since an adversary can store data and decrypt it later, there is a general risk
for the long-term protection of confidentiality. This results in the following direct consequences:

• The transmission and storage of confidential data should be limited to the extent necessary.
This not only applies to plaintexts, but, for example, also especially to avoiding the storage
of session keys on any type of non-volatile media and their undelayed secure deletion, as
soon as they are no longer required.

• The cryptosystem must be designed in such a manner that a transition to longer key
lengths and stronger cryptographic mechanisms is possible.

• For data the confidentiality of which is to be secured in the long term, it is recommended to
choose for the encryption of the transmission via generally accessible channels, such as the
Internet, the strongest possible mechanisms from the ones recommended in this Technical
Guideline right from the beginning. In most contexts, AES-256, for example, must be
considered to be stronger than AES-128 due its longer key length. Since such general
estimates are difficult, however, – in this particular example, AES-192 and AES-256 are
weaker against the best attacks known than AES-128 [14] in some (construed) scenarios –
an expert should already be consulted at this point if possible.

• With respect to the selection of cryptographic components for a new application, it must
generally be taken into account that the overall system will, as a general rule, not be
stronger than the weakest component. If a security level of 128 bits, for example, is thus
aimed at for the overall system, all components at least have to comply with this security
level. Choosing individual components which reach a higher security level against the best
attacks known than the overall system, can nevertheless make sense as described above,
since this increases the robustness of the system against progress in cryptanalysis.

• In order to minimise the possibility of side-channel attacks and implementation errors, the
use of open source libraries should be given preference to in-house development in software
implementations of the cryptographic mechanisms presented in this document if it can be
assumed that the used functions of the library were subjected to a broad public analysis.
When assessing a cryptosystem, the trustworthiness of all system functions must be tested.
In particular, this also includes dependencies of the solution on properties of the hardware
used.
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Focus of this document The security of the cryptographic mechanisms recommended in this
document is assessed without taking the use case into consideration. For specific scenarios, other
security requirements may arise. It is possible that these are requirements which the mechanisms
recommended in this Technical Guideline do not satisfy. Examples of this are the encryption of
storage devices, the encrypted storage and processing of data on systems operated by external
providers (

”
cloud computing“ and/or

”
cloud storage“) or cryptographic applications on devices

with extremely low computational resources (
”
lightweight cryptography“). Remarks on some

such situations can be found in Section 1.5.
This document can thus support the development of cryptographic infrastructures, but cannot

replace the assessment of the overall system by a cryptologist or anticipate the results of such
an assessment.

General recommendations on the development of cryptographic systems Below,
several basic principles are to be described in key points, which are generally recommended to
be observed when developing cryptographic systems.

• It is recommended to already seek the collaboration with experts in cryptography during
the early planning stages of systems for which cryptographic components are required.

• The cryptographic mechanisms listed in this Technical Guideline must be implemented in
trusted technical components in order to reach the required security level.

• Moreover, the implementations of the cryptographic mechanisms and protocols themselves
must be taken into account in the security analysis in order to prevent, for example, side-
channel attacks.

• The security of technical components and implementations must be demonstrated accord-
ing to the applicable protection profile by means of Common Criteria certificates or similar
BSI procedures, such as in the course of an approval process, if the compliance of a product
with the requirements of this Technical Guideline is to be shown.

• After the cryptographic system has been developed, the system should be evaluated by
experts who were not involved in the development before it is used in a production environ-
ment. An assessment of the security of the mechanism solely by the developers should not
be considered to be reliable even if the developers of the system have a sound cryptographic
knowledge.

• The consequences resulting from a failure of security mechanisms used should be docu-
mented thoroughly. Wherever possible, the system should be designed in such a way that
the failure or manipulation of individual system components is detected immediately and
the security objectives are maintained by means of a transition into an adequate secure
state.

1.3. Cryptographic remarks

Often, a cryptographic mechanism can be used for multiple applications, for example signature
algorithms for data authentication and instance authentication. In this case, different keys
should generally be used for the respective different applications.

Another example is symmetric keys for encryption and symmetric data authentication. Here,
it must be ensured in practical implementations that different keys which cannot be derived
from each other are used for both schemes, see also Section A.1.

In some cases, this Technical Guideline provides only an informative description of the cryp-
tographic primitives. The cryptographic security, however, can only be assessed within the
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framework of the respective precise specification and the respective protocol used. For this
reason, the corresponding standards referred to in this document are to be observed.

Further specific remarks are provided, where necessary, in the corresponding sections.

1.4. Handling of legacy algorithms

There are algorithms against which no practical attacks are known and which are still widespread
in some applications and thus have a certain significance, but are nevertheless generally no longer
assessed as conforming to the state of the art for new systems. Below, we briefly address the
most important examples.

1. Triple-DES (TDEA) with keying option 1 [88]: The main aspects speaking against the
use of 3-Key-Triple-DES in new systems are the small block width of only 64 bits, the
reduced security against generic attacks on block ciphers as compared to AES as well as
various cryptographic properties suboptimal even disregarding these preconditions. The
existence of related-key attacks against Triple-DES with a compute effort of ≈ 256 Triple-
DES calculations [64], for example, should be mentioned. Even without taking related-key
attacks into consideration, Triple-DES with keying option 1 has cryptographic properties
which, according to present knowledge, do not indicate practically usable vulnerabilities,
but are still more negative than one would expect for an ideal block cipher with an effective
key length of 112 bits [71]. All in all, it is recommended in this document not to use Triple-
DES in new systems unless it is absolutely necessary for reasons of backwards compatibility
with an existing infrastructure. In this case, too, a migration to AES in the foreseeable
future should be prepared.

2. HMAC-MD5: The lack of collision resistance of MD5 is not yet directly a problem for MD5
used in the HMAC construction [9], since the HMAC construction only requires a very
weak form of collision resistance of the hash function. However, it does in principle not
appear advisable to use primitives which were completely broken in their original function
in new cryptosystems. Systems which use MD5 for cryptographic purposes are therefore
not in conformity to the present Technical Guideline.

3. HMAC-SHA1: SHA-1 is not a collision resistant hash function; while the generation of
collisions for SHA-1 takes some effort, it is nonetheless doable in practice [70, 69, 101].
From a security-technical perspective, however, there is, according to present knowledge,
no reason speaking against using it in constructions which do not require collision resistance
(for example, as a basis for an HMAC, as part of the Mask Generation Function in RSA-
OAEP or as a component of a pseudo-random number generator). It is recommended to
use a hash function of the SHA-2 family or of the SHA-3 family also in these applications
as a general security safeguard.

4. RSA with PKCS1v1.5 padding: In principle, usage of this padding format is encouraged
neither for encryption nor for signature applications, since RSA-OAEP respectively RSA-
PSS offer more solid theoretical security guarantees. Moreover, RSA implementations with
PKCS1v1.5 padding turned out to be more susceptible to attacks exploiting side-channel
information or implementation errors.

Triple-DES with keying option 2 according to [88] shows overall significantly more serious vul-
nerabilities with respect to chosen plaintext and known plaintext attacks in the single-key setting
than with keying option 1 [76, 77]. Even though no ultimately practical attacks against TDEA
with keying option 2 are known, it is recommended in this document not to use this cipher not
only in new systems, but also to migrate existing cryptographic mechanisms using Triple-DES
with two keys to AES (or at least to keying option 1 according to [88]) as soon as possible.
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To the extent that Triple-DES is still being used, all recommendations for its use from [88] must
be taken into account.

1.5. Further relevant aspects

Without any claim to completeness, we list explicitly once again several important topics which
are not covered or not covered in detail in this Technical Guideline:

1. Lightweight cryptography: Here, particularly restrictive requirements are imposed on pro-
cessor and storage demands of the cryptographic methods used. Depending on the appli-
cation, the security requirements might also be different than is usually the case.

2. When using cryptographic mechanisms in areas in which narrow provisions regarding the
response times of the system have to be met, there may also be special situations which
are not covered in this Technical Guideline. The recommendations on the use of SRTP
given in Appendix C cover parts of this topic.

3. Hard disk encryption: Here, the problem is that encryption with data expansion as well
as a significant expansion of the amount of data which has to be read by the storage
medium and/or written to the storage medium are not acceptable in most contexts. None
of the encryption modes recommended is immediately suitable as a basis of an application
for hard disk encryption. Provided that an adversary cannot combine images of the disk
state at several different points in time with each other, XTS-AES offers relatively good
security properties and good efficiency [81]. If the adversary is able to create copies of
the encrypted storage medium at a larger number of different points in time, some not
necessarily insignificant leakage of information must be expected. The adversary can, for
example, by comparing two images of a hard disk encrypted with XTS-AES, that were
made at different points in time, immediately recognise which plaintext blocks on the hard
disk were changed within this period of time and which were not.

4. When encrypting a solid-state drive, it is important in this context that the SSD controller
does not implement the overwriting of the logical storage addresses physically in-place, but
distributed to different physical storage areas. Thus, the respective current state of an SSD
always also contains information about certain earlier states of the storage medium. An
adversary with sound knowledge of the functioning of the SSD controller could potentially
take advantage of this in order to track successive states of a logical storage address. When
an SSD is used, a single image of the encrypted storage medium is thus potentially more
valuable to an adversary than a single image of a hard disk.

5. Problems similar to those occurring in the case of the encryption of data media arise in the
case of the encrypted storage of entire logical drives on remote systems which are not under
the control of the data owner (

”
cloud storage“). If the provider of the remote server or their

security safeguards are not trusted to a great extent, however, it must then be assumed in
this situation that an adversary may prepare disk images at any point in time and without
being noticed. If files containing sensitive data are being held on a storage system that is
under third-party control, then strong file encryption should be applied before transmitting
the data. This is true even if volume encryption is applied prior to transmission of the data
to the storage medium. Using a volume encryption solution on its own is only recommended
if it includes an effective cryptographic protection against the manipulation of the data and
the other prerequisites for the use of the corresponding mechanism in general cryptographic
contexts are complied with (for example, the requirement of unpredictable initialisation
vectors).In particular, the choice of mechanism should ensure that, unlike in XTS mode,
no significant leakage of information by the application of frequency analysis to successive
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states of the storage medium is to be expected if the same data block is repeatedly written
to.

6. Side-channel attacks, physical security questions are only covered marginally. To the ex-
tent they are provided, statements on side-channel attacks in this Technical Guideline
should only be seen as exemplary references to possible threats from this direction with-
out any claim to completeness! This Technical Guideline mainly addresses only those
security aspects of cryptographic systems which can be reduced to the algorithms used.
Physical aspects such as the emission security of information-processing systems or crypto-
graphic systems the security of which is based on physical effects (for example, quantum-
cryptographic systems) are not covered in this Technical Guideline.

7. None of the data encryption schemes and protocols described in this Technical Guideline
achieves, by itself, the objective of traffic flow confidentiality. Traffic flow analysis, i.e.
an analysis of an encrypted flow of data taking into account source, target, time the
connection has been established, size of the data packets transmitted, data rate and time
of the transmission of the data packets, can allow significant inferences as to the contents
of encrypted transmissions, see for example [7, 33, 100]. Traffic flow confidentiality is an
objective which usually can be achieved only with a great deal of effort and which will thus
not be achieved in many applications processing sensitive information either. However, it
should be reviewed in each individual case by experts how much and which confidential
information in a given cryptosystem is disclosed by means of traffic flow analysis (and
other side-channel attacks, of course). Depending on the particular situation, the outcome
of such an examination can require significant changes to be made to the overall system.
It is therefore recommended to take into consideration the resistance to the disclosure of
sensitive information under traffic flow analysis in the development of new cryptographic
systems as an objective right from the beginning.

8. The security of the end points of a cryptographically secured connection is essential for
the security of the data transmitted. When developing a cryptographic system, it must
be documented clearly which system components have to be trusted so that the security
objectives aimed at are reached. These components have to be hardened against being
compromised in a manner that is suitable for the respective usage context. Corresponding
considerations must include the entire life cycle of the data to be protected as well as
the entire life cycle of the cryptographic secrets generated by the system. Cryptographic
mechanisms can reduce the number of components of an overall system the trustability of
which has to be ensured in order to prevent data from leaking, but cannot solve the basic
problem of endpoint security.

9. Encryption has to protect data sent over an insecure channel possibly for a long time.
As a risk management measure, attacks using future quantum computers should therefore
be taken into account. On the other hand, the standardisation of quantum resistant
cryptographic methods is work in progress, and knowledge on secure implementation issues
is not as developed as is the case for classical public key cryptography. Section 3.2 gives
some preliminary recommendations on this topic. An overview of the current state of
development of the technologies underlying quantum computation may be found amongst
others in the study [11].

This Technical Guideline does not give any recommendations or at least no comprehensive recom-
mendations with respect to the implementation of mechanisms in these areas. It is recommended
to involve experts from the corresponding fields right from the beginning when developing cryp-
tographic systems in general, but in these areas in particular.
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2. Symmetric encryption schemes

Symmetric encryption schemes are used to ensure the confidentiality of data which is exchanged,
for example, by means of a public channel, such as the telephone or Internet. The authenticity
and/or integrity of the data is thus not ensured. For integrity protection, see Chapter 5 and
Section A.1.

In this context, it should be emphasised that even in cases in which the protection of the
confidentiality of the data transmitted seems to be the dominating or even sole security objective
at first glance, neglecting integrity-securing mechanisms can easily result in vulnerabilities in the
cryptographic overall system, which make the system also prone to attacks on confidentiality.
Vulnerabilities to some types of active side-channel attacks may arise in such a manner. For an
example, see [104].

This chapter first addresses symmetric methods, i.e. methods, in which the encryption and
decryption keys are identical (in contrast to asymmetric schemes in which the secret key prac-
tically cannot be calculated on the basis of the public key without additional information). For
asymmetric encryption schemes, which are only used as key transport methods in practice, see
Chapter 3.

2.1. Block ciphers

General recommendations A block cipher is an algorithm which encrypts plaintext with
a fixed bit length (e.g. 128 bits) by means of a key to ciphertext with the same key length.
This bit length is also referred to as block size of the cipher. For the encryption of plaintexts
with another length, so-called modes of operation are used, see 2.1.1. For new applications, only
block ciphers the block size of which is at least 128 bits should be used.

The following block ciphers are recommended for use in new cryptographic systems:

AES-128, AES-192, AES-256, see [44].

Table 2.1.: Recommended block ciphers

In version 1.0 of this Technical Guideline, the block ciphers Serpent and Twofish were also
recommended. There are no negative findings regarding these block ciphers, but the security
of Serpent und Twofish has been examined far less intensively than that of the AES since the
end of the AES competition. This applies both to classical cryptanalytic attacks and to other
security aspects, for example the side-channel resistance of specific implementations. For this
reason, this version of this Technical Guideline refrains from recommending other block ciphers
apart from the AES.

Related-key attacks and AES In related-key attacks, it is assumed that the adversary has
access to encryptions or decryptions of known or chosen plaintexts or ciphertexts by means of
different keys which are related to each other in a way known to the adversary (i.e. for example
differ in precisely one bit position of the key). Certain attacks of this type on round-reduced
versions of the AES-256 [15] and on unmodified versions of the AES-192 as well as AES-256
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[14] are the only known cryptanalytic techniques so far towards which AES shows a significantly
poorer behaviour than an ideal cipher with a corresponding key length and block size.

At this point in time, these insights regarding the security of AES under specific types of
related-key attacks do not have an impact on the recommendations given in this Technical
Guideline. Due to the technical prerequisites of related-key boomerang attacks, a related-key
boomerang attack on AES-256 from [14] with compute effort and data complexity of 299.5, in
particular, is not viewed as a violation of the security level of 120 bits that is aimed at in the
medium term by this Technical Guideline.

The best known attacks on AES which do not require related-keys achieve only a minor
advantage over generic attacks [19].

2.1.1. Modes of operation

As has already been established in Section 2.1, a block cipher by itself only provides a mechanism
for the encryption of plaintexts of a single fixed length. In order to encrypt plaintexts of an-
other length, an encryption scheme for plaintexts of (virtually) any length must be constructed
based on the block cipher by means of an adequate mode of operation. As a further effect of a
cryptographically strong mode of operation, it must be mentioned that the resulting encryption
scheme will be stronger in some respects than the underlying block cipher, for example if the
mode of operation randomises the encryption process and thus makes it difficult to recognise
the same plaintexts that were encrypted several times.

Various modes of operation for block ciphers can initially only handle plaintexts the length of
which is a multiple of the block size. In this case, the last block of a given plaintext may still
be too short and must be padded accordingly, see Section 2.1.3 for adequate schemes. Among
the modes of operation recommended for block ciphers, however, only the CBC Mode needs a
padding step.

The easiest way to encrypt a plaintext the length of which is a multiple of the block size
is to encrypt each plaintext block with the same key (this mode of operation is referred to as
Electronic Code Book (ECB)). This results, however, in same plaintext blocks being encrypted
to the same ciphertext blocks. The ciphertext thus provides at least information on the structure
of the plaintext and a reconstruction of parts of the plaintext by means of frequency analysis
may become realistic if the entropy per block of plaintext is low. In order to avoid this, the nth
cipher block should not only depend on the nth plaintext block and the key used, but also on
an additional value, such as the (n− 1)th ciphertext block or a counter.

The following modes of operation are adequate for the block ciphers listed under 2.1:

1. Counter with Cipher Block Chaining Message Authentication (CCM), see [83],

2. Galois/Counter Mode (GCM), see [84],

3. Cipher Block Chaining (CBC), see [80], and

4. Counter Mode (CTR), see [80].

Table 2.2.: Recommended modes of operation for block ciphers

Remark 1 The Galois/Counter Mode (GCM) also ensures cryptographically secure data au-
thentication given that the tag length is sufficient. For the other two modes of operation, it is
generally recommended to provide separate mechanisms for data authentication in the overall
system.Ideally, no decryption or other processing should be performed for unauthenticated en-
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crypted data. If unauthenticated encrypted data is decrypted and further processed, there are
increased residual risks with regard to the exploitation of error oracles.

2.1.2. Conditions of use

The modes of operation listed under 2.1.1 require initialisation vectors. Furthermore, certain
constraints for secure operation must be complied with. These conditions are summarised as
follows below.

1. For CCM, GCM and CTR mode:

• Initialisation vectors must not repeat within the lifetime of a key. More precisely,
no two AES encryptions (i.e. applications of the underlying AES block cipher) must
ever be performed with the exact same input data (key, message).
Failure to enforce these conditions will lead to potentially complete loss of confiden-
tiality of the affected plain text blocks!

2. For CCM:

• The length of authentication tags must be chosen appropriately. For general crypto-
graphic applications, we recommend a tag size ≥ 64 bits. In general, the adversary
can surreptitiously change ciphertext or authenticated data with a probability of suc-
cess per try of ≈ 2−t when a tag of size t bits is used. If smaller tags are being used
than is here advised, the remaining risk that this implies must be carefully studied.

3. For GCM:

• [84] recommends a bit length of 96 bits for GCM initialisation vectors. This Tech-
nical Guideline follows that recommendation, with particular reference to the results
from [62]1. Furthermore, [84] demands that the probability of a repetition of ini-
tialisation vectors under a given key should be ≤ 2−32. This implies changing the
key after at most 232 calls to the authenticated encryption function. In case of a
deterministic generation of the initialisation vectors, it must be demonstrated that a
repetition of IVs is ruled out throughout the entire lifetime of a key. If the GHASH
initialisation vectors repeat themselves, there is the threat of a complete failure of
the authentication mechanism!

• For general cryptographic applications, GCM with a length of the GCM tags of at
least 96 bits should be used. For special applications, shorter tags can be used as well
upon consultation with experts. In this case, the guidelines for the number of allowed
calls of the authentication function with a shared key from [84] must be complied
with strictly.

4. For CBC: Only unpredictable initialisation vectors are to be used, see also Section B.2.

For methods recommended for generating unpredictable initialisation vectors, see Section B.2.

For applications for which the requirements mentioned in this document for the properties of
the initialisation vectors cannot be met, it is urgently recommended to involve an expert.

1In [62], errors in the proofs of security for the Galois/Counter Mode accepted until then are referred to and a
corrected analysis of the security of GCM is presented. In this corrected analysis, a nonce length of exactly
96 bits turned out to be advantageous.
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2.1.3. Padding schemes

As already explained in Section 2.1.1, the CBC Mode requires an additional padding step: When
partitioning a plaintext to be encrypted, it may occur that the last plaintext block is smaller
than the block size of the cipher used. Formatting realised by filling this last block in order to
achieve the size required is also referred to as padding.

The following padding schemes are recommended:

1. ISO padding, see [60], padding scheme 2 and [80], Appendix A.

2. Padding according to [94], Section 6.3.

3. ESP padding, see [93] Section 2.4.

Table 2.3.: Recommended padding schemes for block ciphers

Remark 2 In CBC mode, care must be taken to ensure that an adversary cannot find out based
on error messages or other side channels if the padding of an introduced data packet was correct
[104]. More generally, no side-channel information showing if a given ciphertext corresponds to a
valid plaintext or if its format is invalid must be available to an adversary when using encryption
schemes which allow an adversary to make changes to the ciphertext which, in turn, result in
controlled changes to the plaintext.

2.2. Stream ciphers

In the case of stream ciphers, a key and an initialisation vector are used in the generation of a
key stream, i.e. a pseudorandom bit sequence, which is then bitwise added to the message to be
encrypted.

At the moment, no dedicated stream ciphers are recommended. AES in counter mode, how-
ever, can, of course, be understood as a stream cipher.

If a stream cipher is used, it is urgently recommended to protect the integrity of the information
transmitted by means of separate cryptographic mechanisms. In the absence of such mechanisms,
an adversary can make bit-by-bit changes to the plaintext.

2.3. Side-channel attacks on symmetric schemes

In addition to the security of the schemes used against cryptanalysis, the security of the im-
plementation against side-channel and fault attacks is of vital importance for the security of
a cryptosystem. This also applies to symmetric encryption schemes. A detailed examination
of this topic is beyond the scope of this Technical Guideline and the countermeasures to be
taken also heavily depend on the individual case. Nevertheless, the following safeguards are
recommended in this document:

• Where it is possible at reasonable expense, cryptographic operations should be performed
in security-certified hardware components (for example on a suitable smart card) and the
keys used should not leave these components.

• Attacks which can be carried out by remote, passive adversaries are naturally difficult
to detect and can thus lead to a significant unnoticed leakage of data over a long period
of time. This includes, for example, attacks exploiting variable bit rates, file lengths or
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variable response times of cryptographic systems. It is recommended to thoroughly analyse
the effects of such side channels on system security when developing a new cryptographic
system and to take the results of the analysis into consideration in the development process.

• On the protocol level, the occurrence of error oracles should be prevented. This can be
ensured most effectively by means of protecting all ciphertexts by a MAC. The authenticity
of the ciphertexts should be verified before performing any other cryptographic operations
and there should be no further processing of inauthentic ciphertexts.

In general, the generic recommendation of, wherever possible, using components which have
already been subjected to an intensive analysis by a broad public and involving relevant experts
in the development of new cryptographic infrastructures at an early stage also applies to this
case.
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3. Asymmetric encryption schemes

Due to their low efficiency as compared to widely used symmetric schemes, asymmetric encryp-
tion schemes are used in practice mostly for the transmission of symmetric keys, see also Chapter
7. The message to be encrypted (i.e. the symmetric key) is encrypted with the public key of the
recipient. The recipient can then reverse the encryption using the secret key associated to the
public key. It has to be practically impossible to reconstruct the plaintext from the ciphertext
without knowing the secret key. This implies in particular that the secret key practically cannot
be derived from the public key. In order to safeguard the attribution of the public key to the
owner of the corresponding secret key, a public key infrastructure is usually needed.

For the specification of asymmetric encryption schemes, the following algorithms are to be
defined:

1. one algorithm for the generation of key pairs (including system parameters).

2. one algorithm for the encryption of data and one algorithm for the decryption of data.

Simplifying slightly, the most practically relevant asymmetric encryption schemes and signa-
ture algorithms are based either on the difficulty of the problem of calculating discrete logarithms
in suitable representations of finite cyclic groups or on the difficulty of decomposing large integers
into their prime factors. Occasionally, the question arises as to which of these two approaches
is to be regarded as cryptographically more stable. This Technical Guideline regards the fac-
torisation of large numbers, the RSA problem, the problem of calculating discrete logarithms
in suitable fields Fp (p prim), the problem of calculating discrete logarithms in suitable elliptic
curves and the corresponding Diffie-Hellman problems as well-studied, hard problems and, in
this respect, there is no reason for preferring mechanisms on the basis of discrete logarithms over
mechanisms based on factorisation or vice versa. For particularly high security levels, using EC
algorithms will be advantageous for reasons of efficiency, see also Table 3.2.

In addition to this, we give recommendations for minimum key lengths.

Remark 3 For asymmetric schemes, there is usually a number of equivalent, practically relevant
representations of private and public keys. The bit length of the keys on a storage medium can
vary depending on the chosen representation of the keys. For the definition of the key length for
the recommended asymmetric cryptographic mechanisms, the glossary is thus referred to (entry
Key length).

The following Table 3.1 provides an overview of the recommended asymmetric schemes and
the key lengths l in bit.
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Table 3.1.: Recommended asymmetric encryption schemes as well as key
lengths and normative references

Method ECIES DLIES RSA

l 250 2000 a 2000 a

Reference [1, 53, 72] [1, 53] [96]

More detailed information in Section 3.4 Section 3.5 Section 3.6
a For a period of use beyond 2022, it is recommended to use RSA/DLIES keys of

a length of 3000 bits in order to achieve a uniform security level in all
recommended asymmetric encryption schemes. The key length of 2000 remains
in conformance with the present Technical Guideline until 2022 for DLIES keys
and transitionally for RSA keys until end of 2023. For further details, see
Remark 4 as well as 5.

Remark 4 For mechanisms based on the Diffie-Hellman problem/calculation of discrete loga-
rithms in elliptic curves, these conforming key lengths have, as far as the time frame up to 2023
is concerned, a slightly greater security margin as compared to the minimal security objectives
of this Technical Guideline than it is the case with RSA schemes and schemes based on discrete
logarithms in finite fields. In short, this is due to the following reasons:

1. The parameter sets for EC algorithms are standardised. A given set of security parameters
is therefore used by a large number of users for many different applications and is thus a
particularly worthwhile target for attack.

2. For generic elliptic curves, the most efficient known way of solving random instances of
the Diffie-Hellman problem is to calculate discrete logarithms using various versions of
Pollard’s rho algorithm. In many cases, however, curve parameters are used in EC algo-
rithms (for example for reasons of efficiency), which have obvious, non-generic properties
or their generation was not documented fully. It is possible particularly for those curves
that special properties are found which make the calculation of discrete logarithms easier
there than in the generic case.

3. The computation of discrete logarithms in elliptic curves can be parallelized almost per-
fectly. Parallelising the number field sieve (i.e., the factoring of large integers/the com-
putation of discrete logarithms in finite fields) is more difficult, especially as regards the
matrix step.

With the current provisions, there is only a small buffer remaining between the security level
of about 125 bits achieved by the recommended ECC bit lengths and the security level of 120
bits which this Guideline aims to meet for 2023 and beyond. In certain applications which have
particularly high demands on security or which need security guarantees substantially exceeding
the prediction period of the present Technical Guideline, it may be reasonable to arrange for
significantly higher key sizes in ECC-based mechanisms. One example for such a situation is
for instance given by the provisions on the key sizes of the Country Signer CA in [30]. As the
security of Elliptic Curve Cryptography depends crucially on the adverary’s inability to use any
of the mathematical structure present in a given elliptic curve to compute discrete logarithms
on the curve more efficiently than is allowed by the Pollard-Rho method, it remains conceivable
that the requirements of this Technical Guideline may be revised upwards as part of applying
precautionary principles.

It is recommended as a general security safeguard to use curve parameters in EC algorithms
which were generated verifiably at random, the construction of which was documented in a
traceable manner, and the security of which was subjected to a thorough analysis. An example
of such curve parameters are the Brainpool curves [39].
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Remark 5 Based on currently known factoring methods and assuming that quantum computers
will not be used in such attacks, there is no indication that RSA moduli of length 2000 bit will
be factorable in the near term. However, the security margin of cryptographic mechanisms
with an assumed security level of about 100 bits is not large any more once any progress in
cryptanalysis is assumed in addition to advances in computing technology. Within the last
few years, the use of RSA keys with higher security levels has become technically more feasible.
Moreover, raising the security level aimed at in this Technical Guideline enables on the one hand
a harmonisation of the security margins of the schemes here recommended, and on the other hand
a convergence in terms of security objectives to corresponding current international regulations,
e.g. the SOGIS crypto catalogue [99]. The use of 3000 bit keys is therefore being recommended
as a fundamental security measure for RSA as well as for cryptographic schemes based on the
finite field Diffie-Hellman problem as from early 2023 and is mandatory for conformity with the
present Technical Guideline for any systems with a projected lifetime extending to the year 2023
(DH-based systems) or 2024 (RSA) respectively.

Remark 6 The asymmetric cryptographic functions recommended in this document require
further subcomponents (such as hash functions, message authentication codes, random number
generators, key derivation functions, block ciphers) which must meet the requirements of this
Technical Guideline if the security level aimed at is to be reached. In relevant standards [53, 72],
sometimes the use of cryptographic methods is recommended which are not recommended in this
Technical Guideline, and indeed in some cases for reasons of security (e.g. Two-Key Triple-DES
in [53]). In general, it is recommended to follow two principles when implementing a standard:

• As cryptographic subcomponents, only the mechanisms recommended in this Technical
Guideline should be used.

• If this is not compatible with standards compliance, an expert must be involved. The final
decisions taken with respect to the cryptographic subcomponents chosen must be docu-
mented thoroughly and should be justified in the documentation under security aspects.

When selecting the recommended asymmetric encryption schemes, it has been ensured that
only probabilistic algorithms1 are used. Here, a new random value is required every time a
ciphertext is calculated. The requirements for these random values cannot always be met directly
by generating uniformly distributed values of a fixed bit length. More detailed information on
these values is provided, where necessary, in the sections regarding the respective schemes.

3.1. Preliminary remark on asymmetric key lengths

3.1.1. General preliminary remarks

The assessments of the security of cryptographic mechanisms and key lengths included in this
Technical Guideline are only valid until 2025, as has already been mentioned in the introduc-
tion. This restriction of the validity of this Technical Guideline is of particular importance for
asymmetric encryption schemes. Below, we briefly explain the reasons for this. Afterwards, the
question as to how the key lengths specified can be derived is briefly addressed.

3.1.1.1. Security of asymmetric schemes

As far as the mechanisms addressed in this Technical Guideline are concerned, the security
of asymmetric cryptographic mechanisms is based on the assumed difficulty of problems in
algorithmic number theory. In the case of RSA, it is the problem of calculating eth rooths in

1The RSA algorithm itself is not probabilistic, but the padding scheme recommended for RSA is.
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Zn, where n is a sufficiently large number of unknown factorisation into two prime factors p, q
and e > 216 is coprime to ϕ(n) = (p − 1)(q − 1). The security of DLIES and ECIES can (as
far as concerns the asymmetric component) be reduced to the Diffie-Hellman problem in the
groups used. Thus, there are reductions to natural problems which are generally considered to
be difficult for all recommended mechanisms.

However, as compared to the situation with symmetric encryption schemes, the long-term
security of which is, of course, also generally threatened by unforeseen scientific progress, the
following aspects have to be emphasised:

• With respect to the factorisation problem for general composite numbers and the problem
of calculating discrete logarithms in F∗p, there has been more progress relevant to practice
since the introduction of asymmetric cryptographic mechanisms than in the cryptanalysis
of the most thoroughly studied block ciphers.

• In symmetric ciphers, the threat of active attacks (especially chosen-plaintext and chosen-
ciphertext attacks) can partially be fended off by means of an adequate key management,
especially by securely deleting symmetric keys after their intended lifetime has expired.
In addition, if a symmetric cryptographic mechanism shows the first signs of vulnerability
regarding chosen-plaintext attacks or chosen-ciphertext attacks, it is possible to migrate to
another mechanism. In the case of asymmetric cryptosystems, however, at least the public
keys associated to the ciphertexts of interest will always be available to the adversary.

• Furthermore, the asymmetric schemes primarily recommended in this Technical Guideline
would become insecure in case of significant progress in the development of quantum
computers.

As compared to the situation with digital signature algorithms, an adversary can also save any
ciphertexts they can access for decryption at any later point in time. The objective of securing
the authenticity of a signed document, on the other hand, can also be ensured retroactively
by generating a new signature in a timely manner as long as the evidential value of the old
signature algorithm can be considered to be given at the time the new signature is generated.
Conversely, on the legal side of the issue, it is also possible to no longer accept signatures
with cryptographically broken mechanisms at the time the signature is verified if there was no
signature renewal with a valid mechanism. In contrast, there are usually no retroactive measures
available to protect the confidentiality of a plaintext for a given ciphertext.

3.1.1.2. Equivalent key lengths for asymmetric and symmetric cryptographic
mechanisms

The recommendations of this Technical Guideline for the key lengths of asymmetric crypto-
graphic mechanisms are based on calculations on equivalences of symmetric and asymmetric key
lengths, which are based on the following basic assumptions:

• For mechanisms based on elliptic curves: It is assumed that there is no method that solves
the Diffie-Hellman problem on the curve used considerably faster than calculating discrete
logarithms on the same curve. Moreover, it is assumed that the calculation of discrete
logarithms on the elliptic curve used is not possible with significantly less complexity
(measured by the number of performed group operations) than for generic representations
of the same cyclic group2. For a generic group G, a computational complexity for the
calculation of discrete logarithms of ≈

√
|G| group operations is assumed.

2Algorithms operating on the generic representation of a group have only black box access to group operations
and elements. Intuitively, one may imagine an oracle that accepts encrypted group elements as input and
which outputs the result of any group operations encryptedly.
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log2(R) ECDLP Factorisation / DLP in F∗p
60 120 700

70 140 1000

100 200 1900

128 256 3200

192 384 7900

256 512 15500

Table 3.2.: Approximate computing power R required (in multiples of the computing power
needed for a simple cryptographic operation, e.g. one-time evaluation of a block
cipher on a single block) for the calculation of discrete logarithms in elliptic curves
(ECDLP) and/or the factorisation of general composite numbers of the specified bit
lengths.

• For RSA and methods based on discrete logarithms in F∗p: It is assumed that attacks which
are more efficient than the general number field sieve when the parameters are chosen as
recommended in this Technical Guideline will not become known throughout the prediction
period of this Technical Guideline. For RSA and schemes based on discrete logarithms in
F∗p, the same key lengths are recommended. In the case of schemes based on discrete
logarithms, it is assumed that there is no method available to solve the Diffie-Hellman
problem in a subgroup U ⊂ F∗p with ord(U) prime more efficiently than by calculating
discrete logarithms in U .

• It is assumed that attacks will not be carried out using quantum computers.

These assumptions are pessimistic from the adversary’s point of view, because they do not
include any scope for structural progress in the cryptanalysis of asymmetric schemes. Progress
which is incompatible with the assumptions above can be of a very specialised nature and, for
example, relate to new insights regarding a single elliptic curve. Although a calculation with
2100 elementary operations is considered to remain impractical within the timeframe relevant to
this Technical Guideline, all recommended key lengths are therefore above the minimum security
level of 100 bits aimed at in this Technical Guideline.For 2023 and beyond, a security level of
120 bits is consistently being aimed for, although a certain security margin is retained also under
this regime for the methods based on elliptic curves. For RSA-based methods, the old security
level will still be accepted through 2023.
With respect to mechanisms the security of which is based on the difficulty of calculating discrete
logarithms, especially discrete logarithms on elliptic curves, attacks requiring oracle access to
operations with the private key of a user can also be relevant. Such attacks can considerably
simplify the calculation of discrete logarithms in a group; see, for example, attacks using a static
Diffie Hellman oracle from [23, 34].
For the assessment of runtimes, we follow [40], Chapter 6. In particular, we assume, as [40],
that the factorisation of a 512-bit number of general form corresponds approximately to the
computing power needed for 250 DES operations. Using the methods mentioned there results in
the equivalences shown in Table 3.2, without any security margins for progress with respect to
factorisation techniques and/or techniques for the efficient calculation of discrete logarithms in
the groups in question (see [40], Table 7.2). For recommended key lengths, see Table 3.1.
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3.1.2. Key lengths for information worthy of protection for a long period of
time and in systems with a long planned period of use

For the purposes of this Section, information worthy of protection for a long period of time
refers to information the confidentiality of which is to be maintained considerably longer than
the period of time for which this Technical Guideline forecasts the suitability of cryptographic
mechanisms, i.e. for a period of time that is well beyond 2026. A reliable forecast on the suit-
ability of cryptographic mechanisms is then no longer possible across the entire life cycle of the
system. For this situation, it is recommended to provide security mechanisms which significantly
exceed the minimum requirements of this Technical Guideline by involving an expert. By way
of example, various possibilities of minimizing risks are illustrated below:

• When developing new cryptographic systems with a long projected period of use, it is rec-
ommended to provide already at the development stage the possibility of a future operation
with larger key lengths. A change of the mechanisms used that might become necessary
in the future and/or the practicability of such changes of the mechanisms should, if a long
period of use is planned, also be taken into account already in the development of the
original system wherever possible.

• Higher asymmetric key lengths than those required in this Technical Guideline should
already be used when the system is introduced. One obvious possibility is to aim at
achieving a uniform security level of ≥ 128 bits for all system components. Remarks on
the minimum asymmetric key lengths required for different security levels can be found in
Table 3.2 in this case.

• Generally speaking, the amount of information required to be protected in the long term,
which is transmitted via public networks, should be reduced to the absolutely necessary
extent. This applies in particular to information which is transmitted after it has been
encrypted by means of a hybrid or asymmetric cryptographic mechanism.

• Quantum computing has seen significant experimental and theoretical progress in the last
few years. In the context of protecting encrypted information in the long term, there is
therefore a growing need to safeguard against the threat of quantum attacks (when public
key encryption is being used).

Fundamentally, there are two ways of meeting this threat. On the one hand, public key
mechanisms may be strengthened by the use of a pre-shared symmetric secret, for instance
by using such a secret as part of a key exchange mechanism. On the other hand, key
exchange or key transport may be realized using asymmetric methods that are not quantum
vulnerable.

The first option is suitable when the required symmetric key material can be securely and
reliably pre-shared to all users of a communications system. The joint use of symmetric
and asymmetric methods for key transport then means that adversaries are able to break
the overall mechanism only if they can both break the underlying public key cryptography
and know the symmetric secret used.

The second option solves the problem on a more fundamental level. This is the subject of
the next section.

Depending on the application, the measures to be taken should be weighed against each
other early and continuously – adapted to current developments – as part of risk manage-
ment.

For a more detailed discussion regarding key lengths secure in the long term for asymmetric
cryptographic mechanisms that are currently in wide use, we refer to [40, 68].
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3.2. Quantum safe cryptography

General considerations In the sequel, we will primarily cover the problem of maintaining
confidentiality of data transmitted over an insecure network against adversaries having scal-
able quantum computers (and a large amount of classical computing power) at their disposal.
Mathematical methods that achieve this goal will by a slight abuse of notation be called PQC
encryption. Strictly speaking, PQC confidentiality mechanisms will, if viewed in isolation, usu-
ally achieve secure key exchange or key transport (this is not different to other public key
confidentiality mechanisms).

QKD versus PQC Fundamentally, there are two approaches being considered in current
research that promise to deliver quantum safe communications. On the one hand, it is possible
to use quantum effects for secure key distribution (quantum key distribution or QKD for short),
while on the other hand, it is also possible to use algorithms that can run on classical hardware
and which are based on mathematical problems now believed to not be efficiently solvable to a
quantum computer (post quantum cryptography or PQC).

QKD: Properties and applicability QKD needs specialised networks and a classically au-
thenticated auxiliary communications channel. The present Technical Guideline views QKD as a
way to physically secure a communications line. As such, it is outside the scope of this guideline.
It should be noted, however, that for an ubiquitous use of QKD in practice several challenges
remain to be solved, e.g. the to date limited transmission distance. In addition, practical QKD
systems have been broken in the past by attacks on the implementation, see e.g. [106] and the
references cited therein.

Post Quantum Cryptography From a technical point of view, PQC methods face signifi-
cantly less hurdles: a number of methods and associated security parameters exist that appear
cryptographically suitable to allow for the establishment of secure communications over insecure
networks even in the presence of quantum adversaries. These methods can be implemented on
general-purpose hardware and the security properties of the resulting cryptographic systems are
broadly speaking identical to classical public key based solutions.

Current PQC solutions face problems regarding relatively large public key sizes, still ongoing
standardisation, and compared to classical methods, a not very mature understanding of possible
side channel issues and implementation flaws. In addition, existing protocols will have to be
adapted in order to allow for the use of PQC cipher suites.

International standardisation of PQC methods for key transport and digital signature is fore-
seen to happen in the next few years as a consequence of a project of the National Institute
of Standards and Technology (NIST). This implies that introducing current, non standardised
methods into new cryptographic systems always carries with it a risk of creating systems that
will be incompatible with near-future standards. For applications that aim at guaranteeing the
confidentiality of information that needs to be protected for a long time, those shortcomings are
outweighed by the possibility of future attacks from BSI’s point of view.

Recommendations On this basis, the present Technical Guideline gives the following recom-
mendations and assessments:

• Recommended mechanisms FrodoKEM-976 (Section 2.5 in [5]), FrodoKEM-1344 (Sec-
tion 2.5 in [5]) and Classic McEliece with the parameters listed in Section 7 of [13] in the
categories 3 and 5 are viewed as cryptographically suitable for long-term confidentiality
protection at the security level aimed at by this Technical Guideline. This is a fairly con-
servative assessment which leaves a significant security margin with regards to possible
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future cryptanalytic progress. It is possible that future revisions of this document will
assess other parameter choices as technically suitable as well.

• Combining classical and PQC security The secure implementation of these methods
(in particular as concerns side channel security, avoidance of implementation errors and
secure hardware) as well as their classical cryptanalysis are less well studied than s the
case for RSA- and ECC-based methods. In addition, there are currently no standardised
versions of these schemes. For these reasons, their productive use is currently only rec-
ommended if they are combined with classical ECC- or RSA-based key exchange or key
transport. This Technical Guideline suggests using PQC key encapsulation alongside ECC-
based key exchange using brainpool or NIST curves of length at least 256 bits. The two
common secrets so generated should be combined using the key derivation method covered
in Section B.1.1 of this Technical Guideline. NIST intends to update the document [86]
cited in Section B.1.1 in regards to this matter. A ‘hybrid’ approach is also described as
the most plausible way of deploying these methods in the near future for instance in [5].

• Grover attacks on classical cryptography Currently, there is no evidence that sym-
metric cryptographic mechanisms are significantly threatened by quantum computers.

Generically, an adversary having acces to k universal quantum computers can launch a key
recovery attack against a block cipher with n bit key size by running the Grover algorithm

in parallel on all of their quantum computers in time roughly π2
n−4

2 /
√
k [50, 107], where

the unit of time corresponds to running the block cipher once on one of the quantum
computers.

If it is very optimistically assumed that one unit of time corresponds to a nanosecond in
the case of a specific quantum implementation of AES-128, and that the adversary has
to exhaust a size 2120 key space (e.g., exploiting weak randomness), this kind of attack
is expected to succeed within ≈ 30 years on one quantum computer. In order to shorten
this timeframe to a single year, the adversary could run 900 of their quantum computers
in parallel. In multi target attack settings, the advantage of the adversary over classical
computation is smaller than here implied.

For the foreseeable future, Grover attacks on classical cryptographic primitives with the
classical security level aimed at in this Technical Guideline therefore do not appear rel-
evant. In principle, however, they can be thwarted at very low cost by switching to a
higher (classical) security level; for instance, one might use AES-256 instead of AES-128
as symmetric block cipher. In such a case, it is important to also adjust the requirements
on the random bit sources used for keying. The use of mechanisms with a classical security
level significantly above 128 bits can also be advisable insofar as finding for instance one
of l random AES-128 keys has a generic expected workload of ≈ 2127/l.

• Other security models Parts of the literature discuss attacks which presuppose that
the victim uses a quantum computer for symmetric encryption, see e.g. [63]. The present
Technical Guideline does not consider this setting.

• Perfect forward secrecy and PQC In principle, the present Technical Guideline rec-
ommends using cryptographic mechanisms that offer perfect forward secrecy whenever
technically possible. With the PQC methods mentioned, fresh public keys have to be
generated and authenticated at every connection establishment if perfect forward secrecy
against quantum adversaries is desired. After weighing up additional costs and residual
risks, the combined use of a PQC-based key transport mechanism that is not perfectly for-
ward secure against quantum adversaries with a classical key exchange mechanism offering
perfect forward secrecy against non-quantum attacks may be advisable. Such combined
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mechanisms achieve perfect forward secrecy against all classical adversaries and effectively
prevent quantum adversaries without access to the PQC long term keys from reading
plaintexts. Adversaries with access to PQC long term secrets will also be forced to use a
quantum computer in order to decrypt single key establishment sessions.

3.3. Other remarks

3.3.1. Side-channel attacks and fault attacks

In the context of asymmetric encryption schemes and/or asymmetric digital signature algo-
rithms, various side-channel attacks can be relevant, the applicability of which must be reviewed
for each given situation. This topic cannot be covered comprehensively in this Technical Guide-
line. The security of the implementation against side-channel attacks should be reviewed if there
are relevant threat scenarios. The same applies to fault attacks.
More detailed recommendations on this topic can be found in [4] for cryptographic mechanisms
on the basis of elliptic curves. A corresponding document for RSA, Fp-DH and the corresponding
signature algorithms is being prepared.

Of course, side-channel attacks also affect symmetric primitives, see Section 2.3.

3.3.2. Public key infrastructures

The asymmetric encryption schemes described in this Technical Guideline alone do not provide
any protection against man-in-the-middle attacks. The security guarantees of the mechanisms
described are only valid if man-in-the-middle attacks can be prevented reliably by additional
methods.

Such attacks can only be fended off reliably if an authentic distribution of the public keys of
all parties involved is ensured. For this purpose, there are various options available. However,
generally, a public key infrastructure (PKI) is used. In a PKI, the problem of an authentic
distribution of public keys is reduced to the distribution of the root certificates of the PKI.

When planning a PKI for an asymmetric encryption or signature system, it is recommended to
take the aspects listed below into consideration. This list is not an exhaustive list of development
requirements to be met by public key infrastructures, but only a list of relatively generic aspects
the consideration of which seems reasonable when developing a PKI. Further requirements,
which are not listed here, will usually arise when a system is developed and evaluated. The
development of an adequate PKI for a new cryptographic application is not a trivial task and
should be dealt with in close coordination with experts in these fields.

1. When issuing certificates, the PKI should verify if the applicant is in possession of a
private key for their public key. This is possible, for example, by means of a challenge-
response scheme for instance authentication requiring knowledge of the private key. It is
also possible to generate the key pairs in an environment that is secure from the PKI’s
perspective, if it is ensured that the generated key pairs are subsequently transported to
the end user securely.

2. There should be ways to deactivate certificates in a timely manner and the adversary
should not be able, without being noticed, to prevent information on the current status of
a certificate from being available to the verifying party at the time of the verification.

3. Certificates should only be issued with a limited validity.

4. All issuers of certificates must be trusted.

34 Federal Office for Information Security (BSI)



Technical Guideline – Cryptographic Algorithms and Key Lengths

5. A certificate should provide information as to whether authorisation for signing further
certificates is granted. In general, each system that comes into contact with a certificate
should be able to determine clearly what this certificate may be used for.

6. The length of certificate chains should be limited (by a value that is as low as possible).

3.4. ECIES encryption scheme

General description The abbreviation ECIES stands for Elliptic Curve Integrated Encryp-
tion Scheme. It is a hybrid encryption scheme. The security of the asymmetric component is
based on the Diffie-Hellman problem in the respective elliptic curve used. Below, we describe a
version of ECIES that is consistent with the other recommendations of this Technical Guideline.
When describing the scheme, we closely follow [1].
The description of ECIES provided in this document is almost entirely identical to the descrip-
tion of the closely related DLIES scheme in Section 3.5. The main reason for addressing these
two schemes separately is the difficulties which could result from differences in the notations as
well as the recommendations regarding secure key lengths which differ for the two schemes. As
a normative reference, ECIES-HC in [72] is recommended.
For an overview of the standardisation of ECIES and DLIES, we recommend [73].

Components ECIES requires the following components:

• A symmetric encryption scheme EK . Here, all combinations of block ciphers and modes
of operation recommended in this Technical Guideline are suitable.

• A Message Authentication Code MACKM . The schemes recommended in Section 5.3 can
be used.

• A key derivation function H. H can simply be a hash function if its output has at least
the length of the total symmetric key material to be derived. As an alternative, the key
derivation function recommended in Section B.1 or one of the key derivation functions
suggested in [72] can be used in order to generate key material of the desired length the
given data.

Moreover, key material is needed as described in the section below on key generation.

Generation of keys

1. Generate cryptographically strong EC system parameters (p, a, b, P, q, i), see Section B.3.

2. Choose d randomly and uniformly distributed in {1, . . . , q − 1}.

3. Set G := d · P.

Then, the EC system parameters (p, a, b, P, q, i), together with G, form the public key and d
the secret key.

It is recommended to use the curve parameters specified in Table B.3.

Encryption Assume as given a message M ∈ {0, 1}∗ and a public key (p, a, b, P, q, i, G) which
can be attributed reliably to the authorised recipient R of the message. For encryption, the
sender S then chooses a random number k ∈ {1, . . . , q − 1} and calculates B := k · P . S then
calculates X := k ·G and, based on this, h := H(X). From h, sufficiently many bits are taken
in order to create a key K for the symmetric encryption scheme as well as a key KM for the
MAC. Based on the message M , a ciphertext C := EK(M) and a MAC T := MACKM (C) are
then calculated. In the end, S sends the tuple (B,C, T ) to R.
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Decryption R receives (B,C, T ) and calculatesX := d·B as well as, based on this, h := H(X),
K and KM . R calculates T ′ := MACKM (C) and checks if T = T ′. If this is not the case, the
decryption process is aborted. If, however, T = T ′, then R recovers the message byM = E−1

K (C).

Key length As concerns the order q of the base point P , at least q ≥ 250 should apply.

A necessary prerequisite for the security of the ECIES scheme is the practical infeasibility
of solving the Diffie-Hellman problem in the subgroup generated by P . According to current
knowledge, this is the case for the recommended curve parameters.

Remark 7 Like DLIES, the scheme presented here is a probabilistic algorithm. Accordingly,
a random value k ∈ {1, . . . , q − 1} must be chosen at random from an approximately ideal
distribution. See Section B.4 for an algorithm recommended for the calculation of the random
value k.

3.5. DLIES encryption scheme

General description The abbreviation DLIES stands for Discrete Logarithm Integrated En-
cryption Scheme. It is a hybrid encryption scheme which, in the asymmetric component, is
based on the difficulty of solving instances of the Diffie-Hellman problem in a suitable subgroup
of F∗p. Below, we describe a version of DLIES that is consistent with the other recommendations
of this Technical Guideline. When describing the scheme, we closely follow [1].

A normative description can be found in [53].

Components DLIES requires the following components:

• A symmetric encryption scheme EK . Here, all combinations of block cipher and mode of
operation recommended in this Technical Guideline are suitable.

• A Message Authentication Code MACKM .

• A key derivation function H. H can simply be a hash function if its output is at least
equal in length to the entirety of the key material to be derived.

With respect to the recommended realisation of these components, the respective recommenda-
tions from Section 3.4 apply accordingly. Moreover, key material is needed as described in the
following section on key generation.

Generation of keys

1. Choose randomly a prime q of suitable bit length (see the section on key size), such that
q is prime.

2. Choose then k randomly with a bit length sufficient to ensure that kq is of the length of
the key to be generated. Repeat until p := kq + 1 is prime.

3. Choose x ∈ Z∗p such that xk 6= 1. Set g := xk. Then g is an element of order q in Z∗p.

4. Choose randomly a natural number a with 2 ≤ a < q and set A := ga.

Then (p, g, A, q) is the public key and a the secret key.
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Encryption Assume as given a message M ∈ {0, 1}∗ and a public key (p, g, A, q) which can
be attributed reliably to the authorised recipient R of the message. For encryption, the sender
S then chooses a random number b ∈ {1, . . . , r − 1} and computes B := gb. S then computes
X := Ab and, based on this, h := H(X). From h, sufficiently many bits are taken in order to
create a key K for the symmetric encryption scheme as well as a key KM for the MAC. Based
on the message M , a ciphertext C := EK(M) as well as a MAC T := MACKM (C) are then
calculated. In the end, S sends the tuple (B,C, T ) to R.

Decryption R receives (B,C, T ) and calculates X := Ba as well as, based on this, h := H(X),
K and KM . R calculates T ′ := MACKM (C) and checks if T = T ′. If this is not the case, the
decryption process is aborted. If, however, T = T ′, then R recovers the message byM = E−1

K (C).

Key length The length of the prime number p should be at least 2000 bits for a period of
use until 2022, and thereafter at least 3000 bits. The length of the prime number q should in
either case be at least 250 bits. Footnote a) for Table 3.1 and Remark 4 as well as Remark 5
from Chapter 3 apply accordingly.

A necessary prerequisite for the security of the DLIES scheme is the practical infeasibility
of determining the discrete logarithm in the subgroup generated by g. According to current
knowledge, this is the case with the recommended sizes of p and q. However, the difficulty of the
problem of determining discrete logarithms in F∗p can be reduced significantly by precomputations
which only depend on p and not, for instance, on the chosen subgroup or their generator. As a
general precaution, it is therefore recommended (but not strictly required for conformity with
this Technical Guideline) to use key lengths of at least 3000 bits even before 2023 in cases in
which a large number of users use a shared DH modulus instead of the minimum key length of
2000 bits required .

Remark 8 The DLIES scheme is a probabilistic algorithm, i.e. a random number k is required
for the calculation of the ciphertext. Here, k ∈ {1, . . . , r − 1} should be chosen with respect to
the uniform distribution on {1, . . . , r− 1} . In Section B.4, two algorithms for the generation of
k are discussed.

Remark 9 The efficiency of the scheme described at the beginning of this section can be im-
proved if multiple users share the values (p, q, g), so that they can be precomputed. Alternatively
it is also possible to use published parameter sets. The present Technical Guideline recommends
in this case the use of the MODP groups from [92] or of the ffdhe groups from [49], in each
case assuming a suitable choice of key sizes (this means that, for instance, MODP-1536 is not
regarded as suitable, independently of the projected period of use). In the mentioned groups,
one finds q = (p− 1)/2 and has g = 2.
The use of a common p by multiple users is recommended only if log2(p) ≥ 3000, since the
computation of discrete logarithms can be simplified by precomputation attacks which depend
only on p.

3.6. RSA

Generation of keys

1. Choose two prime numbers p and q at random and independently of each other. For further
advice on prime generation see section B.5.

Here, p and q should be of comparable bit length and not too close to each other: when
for instance p and q are chosen independently of each other from too narrow an interval,
attacks based on knowing the leading bits of p and q will apply. If p and q are chosen
according to section B.5, no security problem appears here.
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2. With the recommended key length of 2000 bits (see below), choose the public exponent
e ∈ N under the constraints

ggT(e, (p− 1) · (q − 1)) = 1 and 216 + 1 ≤ e ≤ 21824 − 1.

3. Calculate the secret exponent d ∈ N depending on e under the constraint

e · d = 1 mod kgV(p− 1, q − 1).

With n = p · q (the so-called modulus), (n, e) is then the public key and d the secret key.
Moreover, the two prime numbers p and q must, of course, be kept secret, since otherwise
anyone could calculate the secret exponent based on the public key (n, e) as described above in
Item 3. It is recommended to not save any data from the generation of keys persistently apart
from the keys generated and to overwrite all generated data in the computer memory after the
keys have been generated. Furthermore, it is recommended to store private keys on a protected
storage medium and/or in encrypted form in such a manner that only authorised users are able
to perform decryption operations.

Remark 10 (i) The order in which the exponents are chosen, i.e. choosing e first and then d
is intended to prevent small secret exponents from being chosen, see [21].

(ii) When using probabilistic primality tests to generate the two prime numbers p and q, the
probability that one of the numbers is still composed should be at most 2−100. See Section B.5
for suitable methods.

Encryption and decryption For encryption and decryption, see [96]. However, the message
must be formatted to the bit length of the modulus n before the secret key d is applied. In this
respect, the formatting method must be chosen carefully. The following scheme is recommended:

EME-OAEP, see [96].

Table 3.3.: Recommended formatting scheme for the RSA encryption algorithm

Usage of the older PKCS#1v1.5 paddings is not recommended, as in this context variations
of the Bleichenbacher attack [17] have repeatedly turned out to be a problem, see e.g. [20] for a
recent example.

Key length The length of the modulus n should be at least 2000 bits when the expected
period of use extends at most to the end of 2022. Therafter, the present Technical Guideline
requires a key size of at least 3000 bits. Foot note a) for Table 3.1 and Remarks 4 as well as 5
from Chapter 3 apply accordingly.

A necessary prerequisite for the security of the RSA scheme is the practical infeasibility of
decomposing the modulus n into its prime factors without knowing p and q. According to current
knowledge, this is the case for the recommended minimum bit length of 2000 bits.
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4. Hash functions

Hash functions map a bit string m ∈ {0, 1}∗ of any length1 to a bit string h ∈ {0, 1}n of a fixed
length n ∈ N. These functions play an important role in many cryptographic mechanisms, for
example when deriving cryptographic keys or when authenticating data.

Hash functions H : {0, 1}∗ −→ {0, 1}n which are used in cryptographic mechanisms must
meet the following three conditions depending on the application:

One-way property: For a given h ∈ {0, 1}n, it is practically impossible to find a value m ∈
{0, 1}∗ with H(m) = h.

2nd preimage property: For a given m ∈ {0, 1}∗, it is practically impossible to find a value
m′ ∈ {0, 1}∗\{m} with H(m) = H(m′).

Collision resistance: It is practically impossible to find two values m,m′ ∈ {0, 1}∗ so that
m 6= m′ and H(m) = H(m′) apply.

A hash function H which meets all of the conditions mentioned above is referred to as crypto-
graphically strong.

Each of these three terms can be described more precisely in mathematical terms by comparing
the best attacks known against these properties with optimal generic attacks.

The length of the hash output is a security parameter of crucial importance, because it deter-
mines the effort required for generic attacks. For the minimum security level of 120 bits required
in this Technical Guideline, at least the condition n ≥ 240 must be imposed on a hash function
H : {0, 1}∗ −→ {0, 1}n due to the birthday problem. It is not necessary here to distinguish dif-
ferent cases depending on the usage period of a system, as all hashing mechanisms recommended
in this Technical Guideline already have a digest length ≥ 256 bits.

Remark 11 There are cryptographic applications of hash functions in which not all of the three
mentioned properties of a strong hash function are required. On the other hand, there are further
reasonable cryptographic requirements for hash functions which do not result from the three
properties mentioned above. An example is the property of Zero Finder Resistance (resistance
to the search for preimages of the hash value zero, [22]), which is important in connection with
ECDSA signatures. The hash functions recommended in this Technical Guideline do not have
any known cryptographic weaknesses that are of relevance to the cryptographic mechanisms
recommended in this Technical Guideline, in which they are used.

According to present knowledge, the following hash functions are considered to be crypto-
graphically strong and can thus be applied with all mechanisms used in this Technical Guideline:

• SHA-256, SHA-512/256, SHA-384 and SHA-512; see
[42].

• SHA3-256, SHA3-384, SHA3-512; see [45].

Table 4.1.: Recommended hash functions

1Specifications of real hash functions usually include a length restriction which is so high that it is not exceeded
by real input strings.
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Remark 12 The hash function SHA-224 is no longer among the recommended algorithms. On
the other hand, two families of hash functions are represented. The following remarks are in
order:

1. Technically speaking, SHA-224 is in the context of this Technical Guideline a legacy mecha-
nism. With a security level of approximately 112 bits, however, it has still to be considered
as quite strong. The reason for its removal is that there are no advantages over the use
of SHA-256 and SHA-224 fails to achieve the security level of 120 bits aimed at in this
Technical Guideline for 2023 and beyond.

2. The hash functions of both the SHA-2 family and SHA-3 family are considered to be
cryptographically strong. With respect to classical attacks on collision resistance and one-
way properties, there is no practically relevant difference between the two function families
that is known today. In certain other scenarios, there are differences; the functions of the
SHA-3 family, for example, are resistant to length extension attacks.

Remark 13 (i) Examples of colliding SHA-1 messages were first published in [101]. Owing
to significant cryptanalytic progress [69, 70], the cost of generating such collisions have now
dropped to roughly 10000 e, and even chosen-prefix collisions are now within reach of academic
groups. SHA-1 should never be used as a secure cryptographic hash function (use of it in other
cryptographic applications, for instance in the HMAC construction, is not ruled out by this
argument, but should as well be avoided).
(ii) Please note that a single collision of a hash function can already result in security problems
in signature algorithms, see, for example, [37] and [48].
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5. Data authentication

5.1. Preliminaries

In this Technical Guideline, data authentication refers to cryptographic mechanisms which en-
sure that transmitted or saved data cannot be changed by unauthorised persons. More precisely,
the proving party (usually the sender of the data) uses a cryptographic key to calculate the tag
of the data to be authenticated. The verifying party (usually the recipient of the data) then
verifies if the received tag of the data to be authenticated corresponds to the tag which they
would expect if the data is authentic and the correct key is used.

A distinction is made between symmetric and asymmetric schemes. In the case of symmetric
schemes, the party giving proof and the verifying party use the same cryptographic key, which
means that a third party cannot verify in this case who has calculated the tag or if it was
calculated properly at all. In the case of asymmetric schemes, the private key is used for the
calculation of the tag and verified with the associated public key.

In principle, the verifier of a message can therefore also forge messages when symmetric meth-
ods are used for data authentication. Such mechanisms are thus only suitable if the additional
risk of compromise arising from the distribution of the symmetric key and its availability to (at
least) two parties is acceptable. In addition, it must not be of concern if the verifying party
forges a message. If one of these conditions is not met, symmetric data authentication methods
are unsuitable and digital signatures must be used. In scenarios where these properties are un-
problematic, the use of symmetric methods is more efficient. The integrity-protected transport
of encrypted data over a network after negotiation of ephemeral keys is a standard case in which
the use of symmetric methods for data authentication suggests itself.

5.2. Security objectives

When using cryptographic mechanisms for data authentication, a clarification of the security
objectives to be achieved in the respective scenario is of crucial importance for the selection of
mechanisms. Roughly speaking, for instance the following scenarios can be distinguished, which
are important in many applications:

• Ensuring the integrity of data transmitted over a network on the way from the sender to
the receiver. Here, sender and receiver usually have a common secret, and the receiver
is not interested in producing forged transmissions. In this case, the use of a symmetric
method for data authentication is therefore natural.

• Ensuring the non-repudiation of a message. This is to ensure that the owner of a particular
key can be reliably identified as the originator of a message, and that even the author
themselves can not create a signed message in such a way that doubts can subsequently be
cast upon the validity of the signature. In such a situation, the verifiers of a message must
not have the signature key. Therefore, in this case, only the use of digital signatures is
possible. In addition to this, depending on the concrete scenario and the level of protection
sought, the private signature key must also be protected from the signer themselves. This
is, for example, the case if it is conceivable that the signer might subsequently invalidate
past signatures by deliberately spreading their own private key. In addition, it must be
ensured that the recipient is shown the message in the same way as the sender, and that
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any unsigned portions (for example, the unsigned subject line in the case of a signed e-mail)
can be unambiguously identified as such by the recipient and also by the sender.

• Protection of an asymmetric key exchange against man-in-the-middle attacks. In this case,
no shared secret is available, and therefore an integrity-protected transmission of the key
exchange messages must be ensured by means of digital signatures.

Remark 14 Special situations can lead to special requirements on the involved applications.
For instance, code signatures have as security objectives the integrity of the transmitted ap-
plication as well as the non-repudiation of possible malicious functionality within the deployed
software, but the signed data can usually not be displayed in any meaningful way either to the
recipient or to the originator, nor can a meaningful inspection of the signed content be per-
formed with reasonable effort. The security functionality of a secure viewing component for the
originator is therefore completely transferred to the originator’s quality assurance processes and
the security of the technical components they employ.

Remark 15 When processing authenticated data, only the data components that have actually
been signed must be treated as having data integrity. It is not always trivial to enforce this
principle, partly because the cases that may be critical to an application will never appear
in legitimately signed data. In particular when using more complex signature formats (e.g.
XML signatures) or when dealing with situations where security objectives which have not
been foreseen by the developers of the components employed are to be enforced by the use of
digital signatures, an expert should always carefully check whether additional safeguards may
be necessary.

Remark 16 A signature may not yet be sufficient confirmation of the authenticity of signed
data, because for instance replay attacks may be possible. Such attacks must be thwarted
by additional measures. Generically, it is possible to achieve this by suitably combining data
authentication schemes with instance authentication based on challenge-response methods. In
some situations (e.g. software updates, key update) it can also be sufficient to check a version
counter or a time stamp which is covered by the employed signature.

5.3. Message Authentication Code (MAC)

Message authentication codes are symmetric methods for data authentication which are usually
based on block ciphers or hash functions. The proving party and the verifying party must
have agreed upon a shared symmetric key beforehand. These mechanisms are usually used if
large amounts of data are to be authenticated or if the verification or generation of tags have
to be particularly efficient for other reasons. In many cases, both the confidentiality and the
authenticity of the data must be ensured. See Section A.1 for those mechanisms. Moreover, see
Chapter 7 for methods by means of which keys can be exchanged via insecure channels.

In general, the following schemes are considered to be secure if a block cipher listed in Table
2.1 is used in the CMAC scheme and in the GMAC scheme and/or a hash function listed in
Table 4.1 is used in the HMAC scheme and the length of the key is at least 16 bytes for both
schemes:
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• CMAC, see [82],

• HMAC, see [9],

• GMAC, see [84].

Table 5.1.: Recommended MAC schemes

For the application of these schemes, the following recommendations must be observed:

1. As for the tag length, ≥ 96 bits are recommended for general cryptographic applications in
all three schemes. As an absolute minimum for general applications, this Technical Guide-
line recommends 64 bits. Shorter tag lengths should only be used after all circumstances
affecting the respective application have been taken into consideration by experts. For
GMAC tags, there are attacks in which forgeries of tags of the length t for messages of
a length of n blocks are possible with a probability of 2−t+log2(n) per attempt and where
this probability increases further if successful forgeries are detected [46]. This means that,
with the same tag length, GMAC (and thus also the authenticated encryption mode GCM)
provides a weaker protection of integrity than it is expected for CMAC or HMAC with
the block ciphers and/or hash functions recommended in this Technical Guideline. The
practical relevance of these attacks grows significantly if short authentication tags (< 64
bits) are used. The use of short tags with GMAC/GCM is therefore strongly discouraged.

2. The authentication keys used must be protected just as well as other cryptographic secrets
in the same context.

3. In general, all requirements from [9, 82, 84] must be met for the scheme used respectively
and their compliance documented.

With respect to the GMAC scheme, the other remarks regarding the usage conditions for GCM
from Section 2.1.2 apply accordingly as far as the authentication function is concerned. The
following table summarises the recommendations on key and tag length when MAC schemes are
used:

Scheme CMAC HMAC GMAC

Key length ≥ 128 ≥ 128 ≥ 128
Recommended tag length ≥ 96 ≥ 96 ≥ 96

Table 5.2.: Parameters for recommended MAC schemes

5.4. Signature algorithms

In signature algorithms, the data to be signed is hashed first and, based on this hash value, the
tag and/or the signature is then calculated with the secret key of the prover. The verifier then
checks the signature using the public key. As was already the case for asymmetric encryption
schemes, it must not be possible in practice to calculate the signature without knowing the secret
key. This implies in particular that the secret key cannot be practically derived from the public
key.

For the distribution of the public keys to verifiers, a public key infrastructure is usually used.
In any case, a reliable way of distributing the public keys (that is protected against manipulation)
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is essential as is the case for all public key schemes.An in-depth discussion of the technical and
organisational options to solve this problem would, however, exceed the scope of the present
Technical Guideline, and the subject is therefore only treated on the margins.

For the specification of signature algorithms, the following algorithms must be defined:

1. An algorithm for the generation of key pairs.

2. A hash function which maps the data to be signed to a data block with a fixed bit length.

3. An algorithm for the signing of the hashed data and an algorithm for the verification of
the signature.

In addition to this, we give recommendations for minimum key lengths.

For the calculation of the hash value, basically all hash functions listed in Table 4.1 are suitable.
In the following four subsections, we only have to specify the algorithms and key lengths listed
in Item 1. and 3. Furthermore, all recommended schemes can be used both for the signing of
data and for the issuing of certificates.

Table 5.3 provides an overview of the signature algorithms recommended below.

1. RSA, see [56],

2. DSA, see [57] and [43],

3. DSA versions on elliptic curves:

a) ECDSA, see [28],

b) ECKDSA, ECGDSA, see [28, 57], and

4. Merkle signatures, see [32]a

aMerkle signatures differ from the other signature algorithms recom-
mended here in essential aspects. For a more detailed description
of the most important aspects, see Section 5.4.4.

Table 5.3.: Recommended signature algorithms

Given a suitable choice of security parameters, all signature mechanisms here recommended
reach a comparable level of security according to current knowledge if the private keys are reliably
kept confidential and if in particular they cannot be determined by exploiting weaknesses of the
implementation, for instance using side channel attacks, fault attacks or mathematical attacks
aimed at weaknesses of key generation.

In the context of generating qualified electronic signatures under the scope of the Trust Services
Act, formally different regulations may apply despite the fact that from a security technical point
of view all recommended mechanisms are suitable. For further information, please refer to the
SOGIS guidance on recommended cryptographic algorithms [99].

Remark 17 Apart from DS 3 (see Table 5.4), the asymmetric signature algorithms recom-
mended are probabilistic algorithms1. Here, a new random value is required every time a
signature is calculated. Requirements for these random values are specified in the corresponding
sections.

1The RSA algorithm itself is deterministic, but not the padding schemes recommended for RSA, except for DS
3.
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Remark 18 In contrast to all other signature algorithms mentioned in this document, Merkle
signatures are considered to be secure against attacks using quantum computers [32]. Moreover,
they are the only scheme among those mentioned here that is forward secure in the sense of [10],
see also [61] for more information on the topic of Forward Security.

5.4.1. RSA

The security of this scheme is based on the assumed difficulty of calculating eth rooths in Z/(n),
where n is an integer of unknown factorisation into two prime factors p, q and e is an exponent
which is co-prime to ϕ(N) = (p− 1)(q − 1).

Generation of keys Key generation is identical to that of the RSA encryption scheme. For
details, see Section 3.6. The signature verification key is of the form (n, e) (n composite, e
invertierbar mod ϕ(n), 216 < e < 21824) and the signature key is d := e−1(mod ϕ(n)).

Generation and verification of signatures For the generation and/or
verification of signatures, see [56]. However, the hash value of the message must be padded to
the bit length of the modulus n before the secret key d is used. The padding scheme must be
chosen carefully, see [35] for instance. The following schemes are recommended:

1. EMSA-PSS, see [96].

2. Digital Signature Scheme (DS) 2 and 3, see [59].

Table 5.4.: Recommended padding schemes for the RSA signature algorithm

Key length The length of the modulus n should be at least 2000 bits (for a usage period up
to 2023) and at least 3000 for use from 2024 onwards. Footnote a) for Table 3.1 and Remarks
4 as well as 5 from Chapter 3 apply accordingly.

5.4.2. Digital Signature Algorithm (DSA)

The security of this scheme is based on the assumed difficulty of the discrete logarithm problem
in F∗p.

Key generation

1. Choose two prime numbers p and q so that the following applies:

q divides p− 1

.

2. Choose x in F∗p and calculate g := x(p−1)/q mod p.

3. If g = 1, go to 2.

4. Choose a number a ∈ {1, . . . , q − 1} and set A := ga.

Then, (p, q, g, A) is the public key and a the secret key.
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Generation and verification of signatures For the generation and/or
verification of signatures, see [57] and [43].
The generation and verification of signatures require a cryptographic hash function. One of the
hash functions recommended in this Technical Guideline should be used. The length of the hash
values should correspond to the bit length of q. If none of the hash functions recommended
in Table 4.1 has a suitable hash length, the q leading bits of the hash output should be used.
If the length LH of the hash value is shorter than the bit length of q, the resulting signature
algorithm will have a security level of (maximum) LH/2 bits.

Key length For a usage period up to and including 2022, the length of the prime p should be
at least 2000. For signatures which are meant to remain valid beyond the end of 2022 without
further measures (e.g. signature renewal), a key length ≥ 3000 bits is recommended.

Remark 19 The DSA scheme is a so-called probabilistic algorithm, since a random number k
is needed to calculate the signature. Here, k ∈ {1, . . . , q − 1} should be chosen according to the
uniform distribution on {1, . . . , q − 1}. Otherwise, there are attacks, see [90]. In Section B.4,
two algorithms for the calculation of k are reviewed.

Remark 20 Regarding the generation of system parameters, see remark 9.

5.4.3. DSA versions based on elliptic curves

The security of these mechanisms is based on the assumed difficulty of the discrete logarithm
problem on elliptic curves.

Key generation

1. Generate cryptographically strong EC system parameters (p, a, b, P, q, i), see Section B.3.

2. Choose d randomly and uniformly distributed in {1, . . . , q − 1}.

3. Set G := d · P.

Then, the EC system parameters (p, a, b, P, q, i), together with G, form the public key and d
the secret key.

Generation and verification of signatures The following algorithms are principally suit-
able:

1. ECDSA, see [28].

2. ECKDSA, ECGDSA, see [28, 57].

Table 5.5.: Recommended signature algorithms based on elliptic curves

For the generation and verification of signatures, a cryptographic hash function is required.
In general, all hash functions recommended in this Technical Guideline are suitable. The length
of the hash values should correspond to the bit length of q. The other remarks on how to select
the hash function from Section 5.4.2 apply correspondingly.
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Key length All signature algorithms listed in Table 5.5 ensure a security level of n bits if
q ≥ 22n holds for the order q of the base point P and if it is assumed that the calculation
of discrete logarithms on the curves used is not possible more efficiently than with generic
mechanisms. It is recommended to choose q ≥ 2250.

Remark 21 Like the DSA scheme, all signature algorithms recommended in this section are
probabilistic algorithms. Here, too, a random value k ∈ {1, . . . , q− 1} must be chosen according
to the uniform distribution, since otherwise there are attacks. See [90]. In Section B.4, two
methods for the calculation of k are presented.

5.4.4. Merkle signatures

In contrast to the signature algorithms described so far, the security of the algorithm described in
[32] is only based on the cryptographic strength of a hash function and a pseudo-random function
family. In particular, no assumptions on the absence of efficient algorithms for problems from
algorithmic number theory such as the RSA problem or the calculation of discrete logarithms are
needed. It is therefore generally assumed that Merkle signatures would, unlike all other signature
algorithms recommended in this Technical Guideline, also remain secure against attacks using
quantum computers.2

As hash functions, all hash functions recommended in Table 4.1 are suitable. The required
pseudo-random function family can be constructed through the HMAC construction based on
the hash function used.

For a detailed description of the scheme, see [32].
Due to the generally low complexity theoretical assumptions on which the security of Merkle

signatures is based, Merkle signatures seem to be a good scheme for the generation of long-term
secure signatures. This also applies if it is assumed that attacks by quantum computers are not
used during the period of time in which the signature is to remain valid.

Unlike in the case of the other signature algorithms described in this Technical Guideline,
however, only a limited number of messages can be authenticated when Merkle signatures with
a given public key are used. Furthermore, the compute effort for generating the public key
is proportional to this number of messages to be authenticated und thus relatively high if a
large number of messages is to be signed without the intermediate generation and authenticated
distribution of a new public key. Results of practical experiments regarding the efficiency of
all substeps (creation of signatures, generation of signatures, verification of signatures) of the
scheme described in [32] and regarding the resulting key lengths and signature sizes can be found
in Section 6 in [32].

5.4.5. Long-term preservation of evidentiary value for digital signatures

If the time during which the authenticity and integrity of the data to be protected by means of
a data authentication system is to remain secure exceeds the prediction period of this Technical
Guideline considerably, then irrespective of the recommendations given for mechanisms and key
lengths for digital signatures and irrespective of the corresponding recommendations for qualified
electronic signatures in [18], it is recommended to provide for the possibility of a future migration
of the system to new signature algorithms or longer signature keys already at the development
stage. This should include mechanisms for the signature renewal of old signed documents using
the updated schemes.
More detailed information on this topic can be found in the Technical Guideline 03125 (TR-
ESOR) [31].
It is explicitly not recommended to use MAC schemes for long-term data authentication, since
the verifying party needs to have knowledge of the secret MAC key and the long-term risk

2A discussion of quantum security of the collision resistance of hash functions can be found in [12].
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of a compromise of the secret key is therefore significantly higher than in the case of digital
signatures.
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6. Instance authentication

In this Technical Guideline, instance authentication refers to cryptographic protocols in which a
prover demonstrates to a verifier that they are in possession of a secret. In the case of symmetric
schemes, this is a symmetric key which has to be exchanged in advance. In asymmetric schemes,
the prover shows that they are in the possession of a secret key. In this case, a PKI is usually
required so that the verifier is able to attribute the associated public key to the prover. Password-
based schemes are primarily used to activate chip cards or other cryptographic components.
Here, the owner of the component demonstrates that they are in the possession of a password
or a PIN. In this document, a PIN (Personal Identification Number) is simply considered to be
a password consisting of the numbers 0-9.

Authentication should, where reasonable and possible, be reciprocal and may be accompanied
by a key agreement in order to ensure the confidentiality and integrity of subsequent communi-
cations. See Chapter 7 for recommended key exchange and key agreement schemes and Section
A.2 for recommended protocols which combine the two schemes.

Therefore, this chapter includes for the first two schemes (Sections 6.1 and 6.2) only general
ideas on instance authentication and recommendations only regarding the corresponding cryp-
tographic primitives. For the cryptographic protocols required, Section A.2 is referred to. In
particular, only recommendations for key lengths etc. are given there, too.

6.1. Symmetric schemes

To obtain evidence from the prover (P) to the verifier (V) that P is in possession of the secret
symmetric key, V sends a random value r to P. In order to ensure that the scheme reaches the
minimum security level aimed at in this Technical Guideline, r should have a min entropy of 100
bits. If a large number of authentications is performed with the same secret key, the probability
that two of these challenge values will ever collide should be limited to ≤ 2−32. P then uses
the shared secret key K to calculate an authentication code of r and returns it to V. Then, V
verifies this tag. Such schemes are also referred to as challenge-response methods, see Table 6.1
for a schematic representation.

Prover (P) Verifier (V)

Choose random value r
r←−

(Challenge)

Calculate authentication code c
c−→

(Response)

Verify authentication code

Table 6.1.: Schematic representation of a challenge-response method for instance authentication

The calculation and verification of the authentication code depends on the selected scheme. In
general, all encryption schemes recommended in Chapter 2 and all MAC schemes recommended
in Section 5.3 can be used. For recommended bit lengths and constraints on the random values
used, see Section A.2.
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6.2. Asymmetric schemes

As was already the case in the section above, challenge-response protocols are also used for
instance authentication using asymmetric schemes. Here, the prover uses their secret key to
calculate a tag for a random value r sent by the verifier. The verifier then verifies the tag by
using the corresponding public key. In general, all schemes recommended in Section 5.4 can be
used for this purpose. For recommended bit lengths and constraints to be met by the random
values used, see also Section A.2.

Remark 22 Even if the signature algorithms for data authentication recommended in Section
5.4 can also be used for instance authentication, it should be ensured that the keys used differ.
This means that a key used for the generation of signatures should not be used for instance
authentication. This must also be indicated in the corresponding certificates for the public keys.

6.3. Password-based methods

Passwords to activate the cryptographic keys made available on cryptographic components, such
as signature cards, are short in most cases to ensure that the owner of the components can also
remember the password. In many situations, the character set allowed is also restricted to the
numbers 0-9. In order to still reach an adequate security level, the number of access attempts
is usually limited.

6.3.1. Recommended password length for the access to cryptographic
hardware components

The following constraints are recommended:

1. In general, it is recommended to use passwords with an entropy of at least log2(106)
bits. This can be achieved, for example, by means of an ideally random assignment
of six-digit PINs (see also [41], Section 4.3.3).

2. The number of consecutive unsuccessful attempts to gain access must be limited
tightly. In the case of a password entropy of log2(106) bits, a restriction to three
attempts is recommended.

Table 6.2.: Recommended password lengths and recommended number of attempts to gain access
for the access protection of cryptographic components

Remark 23 If access passwords for cryptographic components are not at least generated ap-
proximately ideally randomly by a technical process, but set by the user, it is urgently recom-
mended to raise the user’s awareness with respect to the selection of secure passwords. It is
recommended to refrain from using purely numerical passwords (PINs) in this case. For pass-
words which are created using an alphabet which at least includes the letters A-Z, a-z and 0-9, a
length of eight characters is recommended. Furthermore, it is recommended to take safeguards
which exclude passwords that are easy to guess (for example, individual words in the respective
national language or an important foreign language as well as dates in formats that are easy to
guess). For an assessment of the security level of user-generated PINs and passwords, we refer
to [87], Table A.1.
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Remark 24 In some applications, using passwords with a lower entropy than recommended
above may also be compatible with this Technical Guideline after all circumstances have been
taken into consideration by experts. A single unauthorised attempt to gain access, however,
should never be successful with a probability of success of more than ≈ 10−4. The number
of consecutive unsuccessful attempts to gain access must be restricted tightly. The precise
restrictions depend on the application. The residual risks should be documented thoroughly. It
is recommended to inform the authorised user, in situations in which this is applicable, about
any unauthorised attempts to gain access even if the component was not blocked subsequently.

Remark 25 (i) In order to prevent denial-of-service attacks or the deliberate blocking of the
component, a mechanism to unblock the blocking must be provided. The entropy of the personal
unblocking key (abbreviated PUK) should be at least 100 bits if offline attacks are possible.

(ii) If no offline attacks on the PUK are possible, it is recommended to use a PUK with
a min entropy of 32 bits (for example, 10 digits) and to irrevocably delete the cryptographic
secrets contained in the component after a relatively low number of attempts to gain access (for
example, 20).

(iii) The general recommendation given above, which has an entropy of at least approximately
20 bits for the password used in a password-based authentication scheme, applies, of course, only
to the authentication to a security component which does not allow offline attacks and which can
reliably implement the restrictions stated regarding the number of permissible attempts to gain
access. In other situations, in which these conditions are not met (for example, if a cryptographic
secret that provides access to sensitive information is derived directly from the password), it is
recommended to choose passwords by means of a method which offers an entropy of at least
100 bits. For access to data or for the authentication of transactions with high protection
requirements, using one-factor authentication is generally advised against. In this situation,
two-factor authentication by means of knowledge (of a password) and ownership (of a secure
hardware component) is recommended.

6.3.2. Recommended methods for password-based authentication to
cryptographic hardware components

For contact-based chip cards, the method is very straightforward. The password is entered on
the PIN pad of the card reader and transmitted to the chip card without any cryptographic
protection. Although there are no cryptographic mechanisms on the part of the card reader,
a certified card reader should be used in order to prevent attacks by manipulation of the card
reader itself.

For contactless chip cards, the communication between the card reader and the chip card can
be intercepted even from some distance. Here, the password to activate the chip card cannot
simply be sent from the card reader to the chip card.

The following password-based method is recommended for the protection of access to contact-
less chip cards:

PACE: Password Authenticated Connection Establishment, see [27].

Table 6.3.: Recommended password-based method for the protection of access to contactless
chip cards

The method recommended in Table 6.3 does not only demonstrate to the contactless chip
card that the user is in possession of the correct password, but also carries out a key agreement
method so that confidential and authenticated communications can be performed afterwards.
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Remark 26 Here, too, the number of attempts must be restricted. It is recommended to block
the chip card after three unsuccessful attempts. The other remarks from Section 6.3.1 apply
accordingly.
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7. Key agreement schemes, key transport
schemes and key update

Key agreement schemes are used to exchange an encryption key via an insecure channel. It
is absolutely crucial that these schemes are combined with instance authentication schemes.
Otherwise, it is not possible to decide with which party the key agreement is carried out (data
authentication alone is not sufficient here, since an adversary might have recorded communica-
tions which were performed in the past in order to exploit the data recorded for an attack). For
this reason, as has already been the case in Chapter 6, we only give very general ideas for key
agreement schemes and refer to Section A.2 for specific schemes, i.e. for key agreement schemes
which also include instance authentication.

After a successful key agreement, both parties are in the possession of a shared secret. For
methods recommended for the generation of symmetric keys based on this secret, see Section
B.1. Basically, using a key derivation function is recommended there.

In some situations, it may make sense to integrate a predistributed secret into the key deriva-
tion function. Thus, a separation of different user groups, for example, can be achieved. It is also
possible to establish an additional line of defence against attacks on the key agreement scheme
in this way. With respect to a separation of different user groups, it may also make sense to
integrate additional public data which is specific to both communication partners into the key
derivation.

It is recommended to use only key agreement schemes in which both communication partners
contribute equal shares to the new key. The entropy contributed by both sides should at least
equal 100 bits. When choosing a key agreement scheme for a specific application, it should also
be taken into account whether, in the chosen protocol, one side has greater control of the key
material than the other side and whether such an asymmetry has security-related effects in the
respective application.

In addition to key agreement schemes, key transport schemes are also of practical importance.
Secret key data is generated by one party and transported secured to one or several recipients. In
this case, the recipients do not have any control over the distributed session keys. The generating
party can be a trusted third party or one of the parties involved in the communcation. In the
latter case, it is recommended that all parties involved only use keys which they have generated
themselves for the transmission of their own sensitive data.

This section will also cover key update schemes. In this case, two parties already share a
shared secret and derive a new key on the basis of this secret at the end of a key change period.
This can be achieved by deriving new session keys from a permanent master key or also through
an update transformation generating a new key based on the current key and possibly some
additional data.

Remark 27 When cryptographic keys are negotiated using a key agreement scheme or securely
transmitted using a key transport scheme, these keys, or the mechanisms using these keys, have
at most the same security level as the key agreement or key transport scheme. Since there
is a possibility that an attacker could store the communication during key agreement or key
transport, changed recommendations for key agreement or key transport schemes have also
effects on previously negotiated or transferred keys. If, for example, the key agreement or key
transport scheme ceases to comply with this Technical Guideline, the keys negotiated with it
should also no longer be used.
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Preliminary remark: asymmetric versus symmetric key agreement schemes With
asymmetric key agreement schemes, security properties can be achieved which cannot be re-
alised solely using symmetric cryptography. For example, both recommended asymmetric key
agreement schemes have the property of (perfect) forward secrecy. This means that an adver-
sary who knows all long-term secrets (if any) of the two parties involved in the communication1

can still not determine the key negotiated during an uncompromised execution of the protocol
if they cannot efficiently solve the mathematical problem (the Diffie-Hellman problem in the
schemes presented here) on which the asymmetric scheme used is based. In comparison, sym-
metric key agreement schemes can at most assure that an adversary who knows all long-term
secrets of the two parties involved cannot determine the results of previous properly performed
key agreements.2

7.1. Symmetric schemes

Key transport In general, all of the symmetric encryption schemes recommended in Chapter
2 can be used to transport session keys. It is recommended to combine an encryption scheme
recommended in Chapter 2 with a MAC from Section 5.3 (in the encrypt-then-MAC mode) in
order to achieve a manipulation-resistant transmission of the key material.

Key agreement Key agreement schemes, too, can be realised solely on the basis of symmetric
schemes provided that the existence of a shared long-term secret can be assumed. Key establish-
ment mechanism 5 from [54] is a suitable scheme. If an implicit confirmation of the key through
the possession of the same session keys is not sufficient for the respective given cryptographic
application, it is recommended to extend this protocol by a further step for the confirmation of
the key. As key derivation function (KDF), the mechanism recommended in Section B.1 should
be used.

Key update In some situations, it may be useful to exchange the keys used in a cryptographic
system synchronously for all parties involved without any further communication taking place.
In this case, key update mechanisms can be used. Below, we assume that the master key Kt of a
cryptosystem is to be replaced at the time t by means of such a scheme. For general applications,
we recommend the following mechanism:

1. Kt+1 := KDF(s, label, context, L,Kt).

2. Here, KDF is a cryptographic key derivation function according to [86]. s is the salt value
used in the extraction step. Label and context are included in the key expansion step
according to [89] provided in [86]. Here, label is a string which indicates the function of
the key to be derived and context includes information on the further protocol context. L
refers to the length of the key Kt+1 to be derived and is also included in the expansion
step.

It is absolutely necessary to ensure that, in the case of a derivation of additional key material from
Kt, derivation parameters other than those for the derivation of Kt+1 according to the scheme
described are used. It is recommended to enforce this using suitable label values. Moreover, it
is recommended to also encode at least the cryptoperiod t in label or context. As an additional
safeguard, it can make sense to use a new salt value for each key derivation. It is recommended
to securely delete Kt immediately after the calculation of Kt+1 as well as all interim results of

1Primarily the long-term secrets which have to be used to the secure the connection against man-in-the-middle
attacks.

2Merkle puzzles are exempted in this respect insofar as they constitute a key agreement scheme with public keys
solely using symmetric primitives [75]. This scheme, however, is only of academic relevance.
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the calculation. For further recommendations on the implementation of these schemes, [86, 89]
is referred to.

7.2. Asymmetric schemes

In general, all asymmetric encryption schemes recommended in Chapter 3 can be used for the
transport of new session keys.

The following methods are recommended as asymmetric key exchange schemes:

1. Diffie-Hellman, see [78],

2. EC Diffie-Hellman (ECKA-DH), see [28].

Table 7.1.: Recommended asymmetric key agreement schemes

One needs to specify:

1. An algorithm for the definition of the system parameters,

2. An algorithm for key agreement.

7.2.1. Diffie-Hellman

The security of this mechanism is based on the assumed difficulty of the Diffie-Hellman problem
in groups Fp, p a prime number.

System parameters

1. Randomly choose a prime number p.

2. Choose an element g ∈ F∗p with ord(g) prime and q := ord(g) ≥ 2250.

The triplet (p, g, q) must be exchanged authentically between the parties involved in the
communication beforehand. In principle, the same system parameters may be used by many
users. See remark 9 regarding the generation of suitable system parameters.

Key agreement

1. A chooses according to the uniform distribution a random value x ∈ {1, . . . , q − 1} and
sends QA := gx to B.

2. B chooses according to the uniform distribution a random value y ∈ {1, . . . , q − 1} and
sends QB := gy to A.

3. A calculates (gy)x = gxy.

4. B calculates (gx)y = gxy.

The key agreement, too, must be secured by means of strong authentication in order to prevent
man-in-the-middle attacks. The negotiated secret is then gxy. A mechanism for the subsequent
key derivation from the shared secret is recommended in Section B.1.
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Key length The length of p should at least be 2000 bits. For a period of use beyond the year
2022, the key length should be at least 3000 bits. Footnote b) for Table 3.1 and Remarks 4 as
well as 5 from Chapter 3 apply accordingly.

Remarks on the implementation When implementing the Diffie-Hellman protocol, there
are several common implementation errors. Some of these implementation problems are ad-
dressed in [91]. It is recommended to observe Section 7 of [91] in particular.

7.2.2. EC Diffie-Hellman

The security of this mechanism is based on the assumed difficulty of the Diffie-Hellman problem
in elliptic curves.

System parameters Choose cryptographically strong EC system parameters (p, a, b, P, q, i),
see Section B.3. We refer to the elliptic curve defined as C. The cyclic subgroup generated by
P is referred to as G.

The system parameters must be exchanged authentically between the parties involved in
the communication beforehand.

Key agreement

1. A chooses uniformly distributed a random value x ∈ {1, . . . , q − 1} and sends QA := x · P
to B.

2. B chooses uniformly distributed a random value y ∈ {1, . . . , q − 1} and sends QB := y · P
to A.

3. A calculates x ·QB = xy · P.

4. B calculates y ·QA = xy · P.

The key agreement, too, must be secured by means of strong authentication. The negotiated
secret is then xy · P .

A mechanism for the subsequent key derivation from the shared secret is recommended in
Section B.1.

Wherever possible, it is recommended to test during the execution of the key agreement on
both sides whether the points QA and QB have been chosen according to the protocol require-
ments and to abort the protocol when the test result is negative. When the protocol mentioned
above is executed correctly, QA ∈ G, QB ∈ G, QA 6= O and QB 6= O should hold. As part of the
testing of QA, QB ∈ G, it should also be tested explicitly whether QA, QB ∈ C.

Further remarks can be found in Section 4.3.2.1 of [28].

Key length The length of q should be at least 250 bits.

Remarks on implementation When implementing Diffie-Hellman key exchange, there are
several common implementation errors. Some of these implementation problems are addressed
in [91]. It is recommended to observe Section 7 of [91] in particular. The remarks in Section 4.3
of [28] and AIS46 [4] must also be taken into account.
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8. Secret sharing

In many cases, cryptographic keys have to be stored over a long period of time. This requires
in particular that copies of these keys have to be created in order to prevent the loss of the
keys. The more copies are generated, however, the greater is the probability that the secret to
be protected is compromised.

In this chapter, we therefore describe a method which allows dividing a secret, such as a
cryptographic key K, into n shared secrets K1, . . . ,Kn so that any t ≤ n of these shared secrets
are sufficient to reconstruct the secret, but t− 1 shared secrets do not provide any information
about K.

Another application of this scheme is to ensure a four-eye principle or, more generally, a t-of-
n-eye principle in order to distribute, for example, the password for a cryptographic component
in such a way to n different users that at least t users are required to reconstruct the password.

The secret-sharing algorithm presented in this Technical Guideline was developed by A.
Shamir, see [98]. Below, we assume that the secret to be distributed is a key K of bit length r:
K = (k0, . . . , kr−1) ∈ {0, 1}r.

For computing secret shares to n user so that t users can reconstruct the secret K, proceed
as follows:

1. Choose a prime number p ≥ max(2r, n+ 1) and set a0 :=
∑r−1
i=0 ki · 2i.

2. Independently of each other, choose t− 1 random values a1, . . . , at−1 ∈ {0, 1, . . . , p−
1}. The values a0, a1, . . . , at−1 then define a random polynomial

f(x) =
t−1∑
j=0

ajx
j

via Fp, for which f(0) = a0 =
∑r−1
i=0 ki · 2i holds.

3. Calculate the values Ki := f(i) for all i ∈ {1, . . . , n}.

Table 8.1.: Calculation of the secret shares in Shamir’s secret-sharing algorithm

The shared secrets Ki, together with i, are then transferred to the ith user.

Remark 28 The coefficients a0, . . . , at−1 of an unknown polynomial f of the degree t−1 can be
found by means of the so-called Lagrange interpolation formula when given t points (xi, f(xi))
as follows:

f(x) =
t∑
i=1

f(xi)
∏

1≤j≤t,i 6=j

x− xj
xi − xj

.

In this way, it is possible in particular to calculate a0 = f(0) (and thus K) given t points. This
is the basis for the algorithm described above.

In order to reconstruct the secret K based on t shared secrets Kj1 , . . . ,Kjt (with pairwise
different jl), a0 =

∑r−1
i=0 ki · 2i is calculated as follows (please note that the calculation in Table

8.1 and Table 8.2 is carried out in Fp, i.e. modulo p):
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1. Calculate the value cj =
∏

1≤l≤t,jl 6=j

jl
jl−j for all j ∈ {j1, . . . , jt}.

2. Calculate K =
∑t
l=1 cjlKjl .

Table 8.2.: Reassembly of the shared secret in Shamir’s secret-sharing algorithm

Remark 29 The condition p ≥ max(2r, n+ 1) ensures that the secret can be represented as an
element of Fp on the one hand and, on the other hand, that at least n independent shared secrets
can be generated. The algorithm achieves information-theoretical security, which means that
it is not possible even for an adversary with unlimited resources to reconstruct the distributed
secret without finding out t shared secrets or a value that was derived from the knowledge of t
shared secrets in a suitable manner.
The security of the scheme does thus not depend on other security parameters that go beyond
the condition above. However, it must be ensured by means of organisational and technical safe-
guards that an adversary is not able to gain knowledge of t shared secrets. Any communication
about the secret shares must therefore take place in encrypted and authenticated form to the
extent that an adversary can physically record or manipulate this communication.

In addition, information-theoretic security is only achieved if the ai are for all i > 0 chosen
truly at random and according to the uniform distribution on Fp. In order to achieve at least
complexity theoretic security, the ai should therefore be generated using a physical random
number generator of the functionality classes PTG.2 or PTG.3 or a deterministic random number
generator of functionality class DRG.3 or DRG.4. The values returned by the random number
generator must be post-processed in such a way that they follow the uniform distribution on Fp.
Methods suitable to achieving this are given in section B.4.
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9. Random number generators

A large number of cryptographic applications require random numbers, such as for the gener-
ation of cryptographic long-term keys, ephemeral keys and system parameters or for instance
authentication. This applies to symmetric and asymmetric encryption schemes as well as to
signature and authentication schemes and padding schemes.

In the generation of random numbers, the goal is usually to produce values uniformly dis-
tributed on {0, 1}n. This is, however, not always the application required in a given application.
For special applications, Appendix B contains algorithms with which random values with desired
properties (e.g. uniformly distributed on {0, . . . , q−1}) can be calculated from the output values
of a random number generator.

For most cryptographic applications, unpredictability and secrecy of the random numbers
and/or the values derived from them are essential. Even if an adversary knows long subse-
quences of random numbers, this should not enable them to determine predecessors or succes-
sors. In general, unsuitable random number generators can crucially weaken otherwise strong
cryptographic mechanisms. For this reason, suitable random number generators must be used
for cryptographic applications.

In the German certification scheme, AIS 20 [2] (for deterministic random number generators)
and AIS 31 [3] (for physical random number generators) are binding. The common mathematical-
technical annex [66] is of vital importance. Reference [66] supersedes the previous documents
[97] and [65].

The mathematical-technical annex [66] defines functionality classes for physical random num-
ber generators (PTG.1 – PTG.3), for deterministic random number generators (DRG.1 – DRG.4)
and for non-physical non-deterministic random number generators (NTG.1). The old function-
ality classes K2, K3, K4, P1 and P2 from [97] and [65] were retained (under new names) for the
most part (with partially higher requirements) and new functionality classes were added: hy-
brid deterministic random number generators (functionality class DRG.4), hybrid physical ran-
dom number generators (functionality class PTG.3) and non-physical non-deterministic random
number generators (functionality class NTG.1). Furthermore, [66] explains the mathematical
background and illustrates the concepts with numerous examples.

Below, the recommendations for random number generators in general cryptographic applica-
tions, which are given in the individual sections of this chapter, are summarised in key points:

• When using a physical random number generator, it is generally recommended to use a
PTG.3 generator. This applies in particular to the generation of ephemeral keys when gen-
erating digital signatures and when negotiating keys based on the Diffie-Hellman method.
In contexts in which the use of a certified cryptographic component is necessary for the
generation of random numbers, this recommendation applies, of course, only if compo-
nents that are certified accordingly are available. In other contexts, a PTG.3 generator
can usually be constructed through cryptographic post-processing of the output of a PTG.2
generator, where the post-processing is implemented in software and compatible with the
requirements of the functionality class PTG.3.

• For certain specific cryptographic applications, PTG.2 generators can also be used. This
is the case if the advantage resulting for an adversary from the existence of minor biases
or dependencies in the distribution of the generated random values is demonstrably low,
for example when generating symmetric session keys.
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• In general, PTG.3 generators and DRG.4 generators have, compared to PTG.2 generators
and DRG.3 generators, the advantage of an improved resistance to side-channel attacks
and fault attacks. In the case of a PTG.3 generator, for example, the permanent inflow of
large amounts of entropy into the internal state means that possible side-channel attacks
directed at the cryptographic post-processing are made considerably more difficult, since
an adversary can combine information on the internal state at two consecutive points in
time t and t+ 1 only with great difficulty.

• When using a deterministic random number generator, it is recommended to use a DRG.3
generator or a DRG.4 generator. It is advisable to generate the seed from a physical
random number generator of class PTG.2 or PTG.3. If such a random number generator
is not available, using a non-physical, non-deterministic random number generator might
also be considered. For details, see Section 9.3 and Section 9.5.

• These requirements for the min entropy of the seed of a deterministic random number
generator, of course, increase accordingly if an overall security level of more than 100 bits
is aimed at for a cryptographic system. In the general case, a min entropy of the RNG
seed of n bits is required for a system security of n bits.

• Using PTG.2 generators or DRG.3 generators in security-critical functions (e.g. generation
of keys, generation of nonces in DSA-like methods) is advised against if the planned active
period of use extends beyond 2020. The active period of use of a random number generator
refers to the period of time throughout which the random number generator is actually used
to generate security-critical secrets. The reason for this is the generally higher sensitivity
of such random number generators to side-channel attacks, fault attacks, and, in the case
of PTG.2 generators, also to the exploitation of statistical biases in the output of the
random number generator.

• In applications in which it is plausible that an adversary who could use minor biases
in the distribution of the generated random numbers would also be able to exploit this
retroactively, PTG.2 random number generators should wherever possible be replaced by
random number generators of the functionality classes PTG.3 or DRG.4 if the currently
generated random values can be expected to still be targets of attack after 2020. In these
cases, thus also the passive period of use of a random number generator is relevant to
current planning.

• Both for physical and for deterministic random number generators, a resistance to high
attack potential should be shown in the respective application context.

9.1. Physical random number generators

Physical random number generators use dedicated hardware (usually an electronic circuit) or
physical experiments to generate ’true’ randomness, i.e. unpredictable random numbers. Usu-
ally, one uses unpredictable behaviour of simple electronic circuits, as may be caused by various
forms of noise within the circuit. In the end, the entropy of the signal is generally due on a
physical level to quantum effects or to the amplification of environmental influences within a
chaotic system, where the influences cannot be controlled or separately measured. Even if an
adversary knows parts of the generated sequence of random numbers and knows the random
number generator well, including the physical environmental conditions at the time of random
number generation, they should only have a negligible advantage (ideally none at all) over blindly
guessing the random numbers.

In many cases, a deterministic post-processing of the ’raw noise data’ (usually digitised noise
signals) is required to eliminate any biases or dependencies.
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If a physical random number generator is used, it is generally recommended to use a PTG.3
generator in accordance with AIS 31 (see [66], Chap. 4). This applies in particular to applications
in which an adversary is at least in principle able to combine information about different random
numbers. For certain specific applications, a class PTG.2 random number generator is sufficient.
This is generally the case if the potential damage caused by minor deviations from assumed
properties of uniform distribution and independence for the outputs of the random number
generator can be assessed with reasonable certainty to be negligible in the given application. An
example of such a situation is the generation of symmetric keys for a block cipher. Provided
that an implementation of the random number generator is required in a certified cryptographic
component, the recommendation of using a PTG.3 generator, of course, only applies to the
extent that there are suitable certified components.

It is possible to construct a PTG.3 generator from of a PTG.2 generator by cryptographically
post-processing the output of the PTG.2 generator in a suitable manner. This post-processing
can usually be implemented in software. The precise requirements for the post-processing can
be found in [66]. Roughly speaking, the post-processing must implement a DRG.3-compatible
deterministic random number generator and at least as much new entropy must always be added
by a class PTG.2 random number generator to the internal state of the random number generator
as is requested by the cryptographic application.

Random numbers from PTG.2-conformant random number generators have a high entropy,
but can also show certain biases and/or dependencies. The question as to whether a PTG.2
generator is sufficient in a specific application should be clarified with an expert.

Broadly speaking, PTG.2- and/or PTG.3-conformant random number generators must fulfil
the following properties:

1. The statistical properties of the random numbers can be described sufficiently well by
means of a stochastic model. On the basis of this stochastic model, the entropy of the
random numbers can be reliably estimated.

2. The average increase in the entropy per random bit is above a given minimum limit (close
to 1).

3. The digitised noise signals are subjected to statistical tests online, which are suitable to
detect inacceptable statistical defects or deteriorations in the statistical properties within
a reasonable period of time.

4. A total failure of the noise source is de facto identified immediately. Random numbers
which were generated after a total failure of the noise source must not be output.

5. If a total failure of the noise source or inacceptable statistical defects of the random num-
bers are identified, this results in a noise alarm. A noise alarm is followed by a defined,
appropriate response (e.g. shutting down the noise source).

6. (Only PTG.3-conformant random number generators) The (possibly supplementary)
strong cryptographic post-processing ensures that the security level of a DRG.3-
conformant deterministic random number generator is still assured even if a total failure
of the noise source is not noticed.

Hybrid random number generators combine the security properties of deterministic and phys-
ical random number generators. In addition to a strong noise source, hybrid physical random
number generators of the functionality class PTG.3 are equipped with strong cryptographic
post-processing with memory. This is typically realised by post-processing cryptographically
the random numbers of a PTG.2-conformant random number generator in an appropriate man-
ner.
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The development and security-critical assessment of physical random number generators re-
quire comprehensive experience in this field. It is recommended to seek advice of experts
in this field at an early stage as needed.

9.2. Deterministic random number generators

Deterministic random number generators (also called pseudo-random number generators) can
compute a pseudo-random bit sequence of practically any length from a random value of a fixed
length, the so-called seed. For this purpose, the internal state of the pseudo-random number
generator is initialised with the seed first. Publicly known parameters can also be included
in the computation. In each step, the internal state is then renewed, and a random number
(usually, a bit sequence of a fixed length) is derived from the internal state and output. Hybrid
deterministic random number generators refresh the internal state from time to time with ’true’
random values (reseed / seed update). In this respect, various seed update schemes can be used
(for example, at regular intervals or upon the request of the application).

The internal state of a deterministic random number generator must be protected reliably
against readout and manipulation.

If a deterministic random number generator is used, it is recommended to use a DRG.3- or
DRG.4-conformant random number generator against the potential of attack high in accordance
with AIS 20 (see [66]). Roughly speaking, this means among other things:

1. It is practically impossible for an adversary to calculate predecessors or successors for a
known random number sequence or to guess them with a significantly higher probability
than would be possible without knowing this subsequence.

2. It is practically impossible for an adversary to calculate previously outputted random
numbers based on the knowledge of an internal state or to guess them with a significantly
higher probability than would be possible without knowing the internal state.

3. (Only DRG.4-conformant random number generators) Even if an adversary knows the
current internal state, it is practically impossible for them to calculate random numbers
which are generated after the next reseed / seed update or to guess them with a significantly
higher probability than would be possible without knowing the internal state.1 Also with
respect to implementation attacks, DRG.4 generators have certain advantages over DRG.3-
conformant random number generators.

9.3. Non-physical non-deterministic random number generators

For many cryptographic applications, such as in e-business or e-government, neither a physical
nor a deterministic random number generator are available, since they generally run on comput-
ers without certified cryptographic hardware. Non-physical non-deterministic random number
generators (NPTRNG) are usually used instead.

Like physical random number generators, non-physical non-deterministic random number gen-
erators also generate ’truly random’ random numbers. However, they do not use dedicated hard-
ware, but system resources (system time, RAM contents etc.) and/or user interaction (keyboard
input, movement of the mouse etc.). Non-physical non-deterministic random number generators
are usually used on computers which were not developed specifically for cryptographic applica-
tions, for example on all common types of PCs, laptops or smartphones. Like physical random
number generators, they aim for information-theoretic security by producing enough entropy.

1The term “significantly higher probability” refers to a probability which is at least higher than the probability of
guessing the truly random values that are generated for the seed update. For each seed update, a min entropy
of at least 100 bits must be generated.
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A typical approach is as follows: Long bit strings of ’random data’ (or more precisely: non-
deterministic data) are generated, with the entropy per bit being usually rather low. This bit
string is mixed with an internal state. On the basis of the internal state, random numbers
are calculated and output afterwards. The best known representative of non-physical non-
deterministic random number generators is /dev/random. In the mathematical-technical annex
[66], a functionality class for such random number generators (NTG.1) is defined. Roughly
speaking, NTG.1 random number generators must reliably estimate the amount of entropy
collected during operational use and the output data must have a Shannon entropy of > 0.997
bit per bit of output.

Broadly speaking, this means among other things

1. The entropy of the internal state is estimated. If a random number is output, the entropy
counter is reduced accordingly.

2. Random numbers may only be output if the value of the entropy counter is high enough.

3. It is virtually impossible for an adversary to calculate previous random numbers based on
the knowledge of the internal state and the random bit strings used previously for seed
updates or to guess them with a significantly higher probability than would be possible
without knowing the internal state and bit strings.

For NPTRNG, it is of vital importance that the entropy sources used by the random num-
ber generator cannot be manipulated by an adversary in terms of a reduction in the entropy
or become predictable if the adversary is equipped with precise information on the execution
environment. This prerequisite is not a matter of course even if an actually good NPTRNG is
used. An example of a situation which is critical in this respect is the usage of virtualisation
solutions [95]. In this case, the output of an NPTRNG can be fully predictable in extreme cases
if the system is started twice from the same system image and all entropy sources of the virtual
system are controlled by the host computer.
When it is planned to use an NPTRNG as the sole or most important random number generator
for a system that is intended to be used for the processing of sensitive data, an expert should
always be consulted.

9.4. Various aspects

Hybrid random number generators combine security properties of deterministic and physical
random number generators. The security of a class DRG.4 hybrid deterministic random number
generator is primarily based on the complexity of the deterministic part which belongs to class
DRG.3. While the random number generator is used, new randomness is added again and again.
This may be (for example) at regular intervals or upon the request of an application.

In addition to a strong noise source, hybrid physical random number generators of the class
PTG.3 are equipped with strong cryptographic post-processing with memory. Compared to
PTG.2-conformant random number generators, the functionality class PTG.3 also has the ad-
vantage that the random numbers have neither biases nor exploitable dependencies. Especially
for applications in which a potential adversary is at least in principle able to combine informa-
tion about many random numbers (e.g. ephemeral keys), a physical random number generator
should belong to functionality class PTG.3.

The derivation of signature keys, ephemeral keys and prime numbers (for RSA) or the like
from the generated random numbers should be carried out using suitable algorithms (for elliptic
curves, see [4], Sections 5.2 and 5.5.1). Roughly speaking, as little information as possible about
the derived values (to be kept secret) should be available to a potential adversary. Ideally, all
values within the respective permissible range of values occur with the same probability and
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different random numbers should at least have no relations which can be exploited in practice.
Just like the signature algorithms, the generation of signature keys, ephemeral keys and prime
numbers which are to be kept secret can also become the target of side-channel attacks ([48, 4]
etc.). This aspect is addressed explicitly in [66].

The functionality classes from [97] and [65] that are relevant to security-critical applications
were retained in [66] for the most part under new names and with partially higher requirements
(P2→ PTG.2, K3→ DRG.2, K4→ DRG.3). Furthermore, new functionality classes were added
, which may be considered for use in these contexts (PTG.3, DRG.4, NTG.1).

9.5. Seed generation for deterministic random number
generators

For the initialisation of a deterministic random number generator, a seed with an sufficiently high
entropy is required. The seed should be generated with a physical random number generator
of the functionality classes PTG.2 or PTG.3. On PCs, a physical random number generator is
usually not available or this random number generator was at least not subjected to a thorough
manufacturer-independent certification. In this case, using a non-physical non-deterministic
random number generator is recommended.

For this purpose, NTG.1-conformant random number generators are suitable (high potential
for attack). At the moment, there are no NTG.1-certified random number generators. Therefore,
we specify suitable methods for seed generation for the two most important PC operating systems
below.

The use of the seed generation methods recommended in the following two sub-
sections, however, can only be viewed as secure if the computer is under the full
control of the user and no third-party components have direct access to the entire
internal state of the computer, as may be the case, for example, when the entire
operating system is run in a virtual environment. This means that the existence of
viruses or Trojan horses on this computer can be ruled out. The users must be informed about
these risks.

9.5.1. GNU/Linux

The following method is recommended for the seed generation when running the GNU/Linux
operating system.

Reading of data from the /dev/random device file

Table 9.1.: Recommended method for seed generation under GNU/Linux

Remark 30 The randomness supplied by the device file /dev/random has so far only been
reviewed by the BSI for certain kernel versions and found to be suitable if used within a PC-like
system. The Linux-RNG is in this context deemed to be suitable for cryptographic applications
if it fulfills the requirements of the functionality class NTG.1 according to [66]. Random number
generators of this functionality class have to block if they do not receive sufficient entropy to
generate the requested amount of random bits (see criterion NTG 1.6 in [66]). Cryptographically,
this requirement is justified by noting that a guarantee on the amount of entropy contained in
the seed value is needed when generating a seed for a pseudo random number generator. Since,
on the other hand, not much randomness is required in seed generation, this requirement should
furthermore normally not be problematic. However, /dev/random does not fulfil the NTG.1
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criteria to the same extent for all versions of the Linux kernel. For more specific information
regarding the cryptographic assessment of /dev/random in various versions of the Linux kernel,
please refer to [108].

Remark 31 In principle, the recommended method should also work with Linux systems
which have a relatively low number of entropy sources, for example embedded systems. Since
/dev/random blocks if the internal entropy pool is used up, however, it is possible in this case
that the generation of random numbers gets very slow.If, however, entropy sources are so scarce
that the generation of for instance a 128 bit seed to be used in a deterministic random bit gen-
erator becomes difficult, then it must be assumed that using a non-blocking mechanism would
be a highly dubious choice from a security perspective.

Remark 32 Using /dev/urandom may be problematic from a security point of view in some
contexts [51]. Independently thereof, /dev/urandom does not fulfill the requirements of func-
tionality class NTG.1 according to [66]. In practice, this means that it is not obvious how much
entropy will in fact be contained in a key generated using /dev/urandom. By consequence,
also the security level of an application relying on such key material ultimately not possible to
determine. For this reason, it is recommended to read from /dev/random only a seed value of
suitable bit length and to generate cryptographic key material by using a strong deterministic
random bit generator seeded by this value. Ideally, this deterministic random number generator
should regularly receive fresh entropy from /dev/random.

Remark 33 In principle, it is of course possible to use /dev/random not just for the seeding of
a pseudo random generator, but also to directly generate cryptographic keying material.

9.5.2. Windows

In contrast to the GNU/Linux system, there is currently no function examined by the BSI for
operating systems of the Windows family which ensures adequately high entropy. For the gen-
eration of secure seeds, several entropy sources should therefore be combined in an appropriate
manner. For example, under Windows 10 the following method may be considered for generating
a seed value of 128 bit entropy:

1. Read 128 Bit of random data from the Windows API function CryptGenRandom into a
128 bit buffer S1.

2. Get a bit string S2 with at least 100 bits of entropy from a different source. There are
various ways to do this, for instance:

• Utilise the timing of successive keystrokes made by the user: if these can be time
to a precision of a millisecond (which needs to be checked!), then it is possible to
conservatively estimate per-keystroke entropy to about three bits. In order to assess
the temporal resolution of the measured time intervals, the entire processing chain
must be investigated for the entropy-limiting factors. For instance, it is possible
that the accuracy of the internal clock gives one limit to resolution, the polling fre-
quency of the key board another, and the interval at which the used system timers
are being updated yet another. It is recommended to also measure the distribution
of keystroke timings in practical tests and to examine it for any anomalies. The
sequence of obtained timings can then be encoded in a binary string B. One then
sets S2 := SHA256(B) and erases the gathered keystroke timing data (and any other
data gathered in the process) from working memory by zeroizing the relevant memory
blocks.
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• User-initiated events: The timings T1, T2, T3, T4, T5 of five user-triggered events are
recorded using the Windows API functions QueryPerformanceCounter() or GetSys-
temTimePreciseAsFileTime(). These timings are usually accurate to about a mi-
crosecond precision. Under preconditions which will be detailed in the sequel and
which have to be checked for plausibility in each particular case, one may then assume
that the bit string T := T1||T2||T3||T4||T5 will contain around 100 bits of entropy from
the point of view of an adversary. The preconditions just mentioned are as follows:

a) Each Ti must not be guessable with precision more than one second, even if the
adversary knows Tj for all j 6= i.

b) In this situation, it must not be possible to constrain the value of Ti to less
than 220 possibilities by other considerations (for instance, regarding the polling
frequency of the key board), if any interval of one second length is given which
contains Ti.

As in the previous example, one then sets S2 := SHA256(T ) and erases T from
memory.
It is not always entirely easy to fulfill the requirements on the independence and
unpredictability of user-initiated events. The problem here is that the point in time
at which the software asks the user to initiate an event may be tightly predictable
if the timing of an earlier event is known. Likewise, it is possible that the temporal
delay between the user being prompted to supply input and the user initiating the
event may be predicted with an accuracy exceeding one second. The plausibility of
such entropy estimates should be studied in each particular case.

• In a similar manner, also mouse movements initiated by the user may be used for
gathering entropy. It is not easy to precisely determine the amount of entropy that
may be gathered from mouse movements, but it seems very implausible that for
instance the sequence of pointer positions corresponding to 60 seconds of discretionary
mouse movements can be losslessly compressed to less than 100 bit of data. One then
defines S2 again by a SHA-2 hash over the recorded mouse events.

3. In all of these cases, a seed value S for a suitable random number generator can then be
derived by setting S := SHA256(S1||S2).

Remark 34 There is nothing known to the BSI to indicate that in the above example a 128 bit
value read from CryptGenRandom() will not already contain approximately 128 bits of entropy.
It is for this reason that it is acceptable to gather only 100 bits of entropy from an additional
source, if for the seed value of a pseudo random number generator a total 128 bits of entropy are
desired. However, CryptGenRandom() has been less intensively studied by parties independent
of the vendor than is the case for example for the random number generator integrated into the
Linux kernel. As a basic precautionary measure, it is therefore advisable to combine randomness
taken from CryptGenRandom() with the output of another entropy source.
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Appendix A.

Application of cryptographic mechanisms

The mechanisms explained in the previous chapters often have to be combined with each other in
order to ensure the protection of sensitive data. In particular, sensitive data to be transmitted
should not only be encrypted, but also authenticated in order to ensure that any change is
noticed by the recipient.

Moreover, a key agreement must always be combined with instance authentication and an
authentication of all messages transmitted during the key agreement in order to ensure that
both parties can be sure with whom they are communicating. Otherwise, the communication
can be compromised by a so-called man-in-the-middle attack. Other types of attacks on the
authenticity of the communication than the man-in-the-middle attack can, depending on the
application, also threaten the security of an information-processing system without instance
authentication or without data authentication (e.g. replay attacks).

In this chapter, we provide adequate mechanisms both for encryption with data authentication
and for authenticated key agreement.

A.1. Encryption schemes with data authentication (secure
messaging)

In general, all schemes recommended in Chapter 2 and/or Section 5.3 can be used when encryp-
tion and data authentication are combined.

However, the following two constraints must be complied with:

1. Authentication covers only the encrypted data and the associated non-confidential data,
if any, that is to be transmitted in unencrypted form and subject to authentication.Other
data which is sent within the same transmission is not authenticated.

2. Encryption and authentication keys should be different and it should not be possible to
derive them from each other.

Remark 35 It is possible to derive encryption and authentication keys from a shared key.
Recommended schemes are summarised in Section B.1.

Remark 36 For the authenticated transmission of encrypted data, it is recommended to use a
MAC in encrypt-then-MAC mode.

Remark 37 If data is being transmitted encryptedly for which non-repudiation of the plain
text is a security objective, the plain text should be digitally signed. In this case, one may first
sign the plain text, then encrypt it, and finally protect the integrity of the ciphertext by means
of a MAC against tampering in transit. Using a signature on the ciphertext may be reasonable
if in addition the ciphertext is meant to be non-repudiable or if only the sender should be able to
change the ciphertext. However, usually the signer cannot meaningfully examine the ciphertext
before signing it.
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A.2. Authenticated key agreement

As has already been explained in the introduction to this chapter, key agreement must always
be combined with instance authentication. After some general preliminary remarks, we not only
provide schemes which are based on purely symmetric algorithms, but also schemes which are
based on purely asymmetric algorithms.

A.2.1. Preliminary remarks

Objectives The objective of a key exchange scheme with instance authentication is that the
parties involved have a shared secret and that they are sure with whom they share it after the
protocol has been executed.

For the derivation of symmetric keys for encryption and data authentication schemes from
this secret, see Section B.1.

Requirements on the environment Symmetric schemes for an authenticated key exchange
always assume the existence of predistributed secrets. In the case of asymmetric schemes, the
existence of a public key infrastructure which can reliably bind keys to identities and authenticate
the origin of a key by means of corresponding certificates is usually assumed. Moreover, it is
assumed that the root certificates of the PKI have been made known to all parties involved
via reliable channels and that all parties involved are able to properly check the validity of all
relevant certificates at all times.

Remarks on the implementation In the specific implementation of the schemes presented,
the following two conditions must be met.

1. The random values used for the authentication must differ with high probability every
time the protocol is executed. This can be achieved, for example, by choosing a random
value of length at least 100 bits with respect to the uniform distribution from {0, 1}100

each time.

2. The random values used for the key agreement must at least reach an entropy that corre-
sponds to the desired key lengths of the key to be agreed upon1. In addition, each party
involved in the key agreement should at least contribute a min entropy of 100 bits to the
key to be negotiated.

A.2.2. Symmetric schemes

In principle, each scheme from Section 6.1 for instance authentication can be combined with
each scheme from Section 7.1 for key exchange. The schemes must be combined with each other
in such a way that the exchanged keys are actually authenticated, which means that man-in-
the-middle attacks can be excluded.

The following scheme is recommended for this application:

Key establishment mechanism 5 from [54].

Table A.1.: Recommended symmetric methods for authenticated key agreement

Remark 38 As encryption methods, all authenticated encryption schemes recommended in this
Technical Guideline can be used in key establishment mechanism 5 from [54] (see Section A.1).
1Here, it is assumed that only symmetric keys are negotiated.
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A.2.3. Asymmetric schemes

As already described for symmetric schemes, each scheme from Section 6.2 for instance authen-
tication can also in principle be combined with each scheme from Section 7.2 for key agreement.

In order to prevent mistakes in self-designed protocols, however, the schemes for key agree-
ment with instance authentication on the basis of asymmetric schemes listed in Table A.2 are
recommended.

All recommended schemes need as a precondition a mechanism for the authentic distribution
of public keys. This mechanism must have the following properties:

• The public key generated by a user must be bound reliably to the user’s identity.

• The associated private key should also be bound reliably to the identity of the user (a user
should not be able to register a public key under their identity for which they cannot use
the associated private key).

There are several ways to achieve this. The authentic distribution of keys can be achieved by
means of a PKI. Compliance with the requirement that the owners of all certificates issued by the
PKI should actually be the users of the associated private keys can be tested by the PKI before
issuing the certificate by executing one of the protocols for instance authentication described in
Section 6.2 with the applicant, using their public key.
If the PKI does not carry out such testing, it is recommended to supplement the schemes recom-
mended below by key confirmation step, in which it is verified that both sides have determined
the same shared secret K and in which this secret is bound to the identities of the two parties
involved. For the confirmation of the key, the scheme described in [85], Section 5.6.2, is recom-
mended. In the second recommended method (KAS2-bilateral-confirmation according to [85]),
this step is already included.

1. Elliptic curve key agreement of ElGamal type (ECKA-EG), see [28].

2. Instance authentication with RSA and key agreement with RSA, see KAS2-bilateral-
confirmation according to [85], Section 8.3.3.4.

3. MTI(A0), see [55], Annex C.6.

Table A.2.: Recommended asymmetric schemes for key agreement with instance authentication

Remark 39 In order to comply with this Technical Guideline, care must be taken in the specific
implementation of the protocols that only the cryptographic components recommended in this
document are used.

Remark 40 In the case of the ECKA-EG scheme, there is no mutual authentication. Here,
only one party proves to the other to be in possession of a private key, and this also takes place
only implicitly after the execution of the protocol via possession of the negotiated secret.
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Appendix B.

Additional functions and algorithms

For some of the cryptographic mechanisms recommended in this Technical Guideline, additional
functions and algorithms are required to, for example, generate system parameters or to generate
symmetric keys from the output of random number generators or key agreement schemes. These
functions and algorithms must be chosen carefully in order to achieve the security level required
in this Technical Guideline and to prevent cryptanalytic attacks.

B.1. Key derivation

B.1.1. Key derivation following key exchange

After key agreement, both parties hold a shared secret. In many cases, several symmetric
keys, for example for encryption and data authentication, have to be derived from this secret.
Moreover, the following objectives can also be achieved by using a key derivation function:

1. Binding of key material to protocol data (for example, name of the sender, name of the
recipient ...) by using the protocol data in the key derivation function.

2. Derivation of session keys or keys for various distinct purposes from a master key also in
purely symmetric cryptosystems.

3. Post-processing of random data with the aim of eliminating statistical biases when gener-
ating cryptographic keys.

The following method is recommended for all applications of key derivation functions:

Key derivation through extraction-then-expansion according to [86].

Table B.1.: Recommended method for key derivation

It is recommended to use one of the MACs recommended in Section 5.3 as a MAC function
in the mentioned method.

B.1.2. Password-based key derivation

neuIn password-based key derivation, a cryptographic key (for instance, a drive encryption key)
is derived directly from a password entered by a user. If user generated passwords are used, a
security level of 120 bits will usually be impossible to attain due to lack of entropy in human-
generated passwords.

In such situations, this Technical Guideline primarily recommends to use a MAC with a secret
key used only for this purpose to derive the required secret from the password entered by the
user. The MAC should be computed on a cryptographically secure hardware element that is
locally present in the system that checks the password. The MAC used should be a CMAC or
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HMAC with a secret key of length at least 128 bits and the passwort should be combined with a
salt value of at least 32 bits. If authentication or key derivation fails, the hardware component
should implement a delayed response in order to thwart local brute force attacks. Password
quality in this case needs to meet the requirements of section 6.3.1, wherein offline attacks can
be treated as inapplicable.

If it is impossible to use a cryptographic hardware token for password based key derivation in
this manner, then the hash function Argon2id should be used. The deployed security parameters
and the requirements on the strength of passwords must then be discussed with an expert, as
they depend on the intended usage setting.

B.2. Generation of unpredictable initialisation vectors

As already described in Section 2.1.2, initialisation vectors for symmetric encryption schemes
which use the “cipher block chaining” (CBC) mode of operation must be unpredictable. This
does not mean that the initialisation vectors have to be treated confidentially, but merely that a
potential adversary shall be practically unable to guess initialisation vectors used in the future .
Furthermore, the adversary shall not be able to influence the choice of the initialisation vectors
either.

Two methods are recommended for the generation of unpredictable initialisation vectors (with
n being the block size of the block cipher used):

1. Random initialisation vectors: Generate a random bit sequence with a length n
and use it as initialisation vector. The entropy of the random bit sequence must be
at least 95 bits.

2. Encrypted initialisation vectors: Use a deterministic method to generate pre-
initialisation vectors (e.g. a counter). Encrypt the pre-initialisation vector with the
block cipher and key currently in use and use the ciphertext as an initialisation
vector.

Table B.2.: Recommended methods for the generation of unpredictable initialisation vectors

For the second method, it must be ensured that the pre-initialisation vectors do not repeat
themselves during the service life of the system. If a counter is used as a pre-initialisation vector,
this means that counter overflows must not occur throughout the entire service life of the system.

B.3. Generation of EC system parameters

The security of asymmetric schemes based on elliptic curves rests on the assumed difficulty of
the discrete logarithm problem in these groups.

In order to define the EC system parameters, the following information is required:

1. a prime number p,

2. curve parameters a, b ∈ Fp with 4a3 + 27b2 6= 0, which define an elliptic curve

E = {(x, y) ∈ Fp × Fp; y2 = x3 + ax+ b} ∪ {OE}

and

3. a base point P on E(Fp).
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The values (p, a, b, P, q, i) then form the EC system parameters, where q := ord(P ) describes
the order of the base point P in E(Fp) and i := #E(Fp)/q is the so-called co-factor.

Not all EC system parameters are suitable for asymmetric schemes based on elliptic curves
which are recommended in this document, or in other words, the discrete logarithm problem in
the groups generated by the unsuitable elliptic curves can be solved efficiently. In addition to
an adequate bit length of q, the following conditions must also apply:

1. the order q = ord(P ) of the base point P is a prime number differing from p,

2. pr 6= 1 mod q for all 1 ≤ r ≤ 104, and

3. the class number of the maximal order of the endomorphism ring of E is at least 200.

For an explanation, see [39].

EC system parameters which fulfil the conditions above are also referred to as cryptographically
strong.

Remark 41 It is recommended not to generate the system parameters on one’s own, but to
use standardised values instead which are provided by a trusted party.

The system parameters listed in Table B.3 are recommended:

1. brainpoolP256r1, see [39],

2. brainpoolP320r1, see [39],

3. brainpoolP384r1, see [39],

4. brainpoolP512r1, see [39].

Table B.3.: Recommended EC system parameters for asymmetric schemes which are based on
elliptic curves

B.4. Generation of random numbers for probabilistic
asymmetric schemes

In this Technical Guideline, several asymmetric schemes are addressed which require random
numbers k ∈ {1, . . . , q− 1} (e.g. as an ephemeral key), whereby q is usually not a power of 2. It
has already been pointed out in the Remarks 8, 7, 19 and 21 that k should be chosen (at least
nearly) uniformly distributed if possible.

The random number generators described in Chapter 9, however, generate uniformly dis-
tributed random numbers in {0, 1, . . . , 2n− 1} (’random n bit strings’). The task is therefore to
derive (at least nearly) uniformly distributed random numbers in {0, 1, . . . , q} from this.

In Table B.4, two methods are described with which this can be done. Here, n ∈ N is chosen
in such a way that 2n−1 ≤ q < 2n − 1 (in other words: q has the bit length n).
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Method 1.

1. Choose k ∈ {0, 1, . . . , 2n − 1} uniformly distributed.

2. if k < q return k

3. else go to 1.

Method 2.

1. Choose k′ ∈ {0, 1, . . . , 2n+64 − 1} uniformly distributed.

2. k = k′ mod q (i.e. 0 ≤ k < q).

3. return k.

Table B.4.: Computation of random values in {0, . . . , q − 1}

Remark 42 (i) Method 1 transfers a uniform distribution on {0, . . . , 2n − 1} into a uniform
distribution on {0, . . . , q − 1}. In fact, method 1 provides the conditional distribution on
{0, . . . , q − 1} ⊂ {0, . . . , 2n − 1}. In contrast, method 2 does not create a (perfect) uniform
distribution on {0, . . . , q − 1}, not even for ideal random number generators with values in
{0, . . . , 2n − 1}. The deviations, however, are so small that they cannot be exploited by an
adversary on the basis of the current state of knowledge.

(ii) The second method, however, has the advantage that any skewnesses on {0, . . . , 2n −
1} should usually be reduced. Therefore, this method is recommended for random number
generators in conformity with PTG.2.

(iii) Furthermore, method 1 has the disadvantage that the number of iterations (and thus the
runtime) is not constant. For some applications, however, it can be necessary to guarantee an
upper runtime limit. (It should be noted that the probability that a random number distributed
uniformly in k ∈ {0, 1, . . . , 2n − 1} is smaller than q is q/2n ≥ 2n−1/2n = 1/2.)

B.5. Prime generation

B.5.1. Preliminary remarks

When defining the system parameters for RSA-based asymmetric schemes, two prime numbers
p, q must be chosen. For the security of these schemes, it is also necessary to keep the prime
numbers secret. This requires, in particular, that p and q have to be chosen randomly. On
the other hand, with regards to the usability of the application it is also important that prime
generation be efficient. In the course of striving for efficiency, however, proprietary speed op-
timisations in key generation can cause significant cryptographic weaknesses, see e.g. [79]. As
a general cautionary remark, it is therefore recommended to use mechanisms that are publicly
known and which have been validated for their security.

Routines for generating random primes are also needed when system parameters for cryp-
tosystems based on elliptic curve or finite field arithmetic without special properties are to be
generated. Technical requirements on these routines, however, will differ because these prime
numbers do not need to be kept secret, while on the other hand it may be important that their
generation be verifiably random. Information on this topic can be found in section B.3.
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B.5.2. Conforming methods

Three methods of prime generation are in conformance to the present Technical Guideline.
Briefly summarising, these are given as follows:

1. Uniform prime generation by rejection sampling;

2. Uniform generation of an invertible residue class r with respect to B#, where B# is the
primorial of B, i.e. the product of all primes less than B, followed by the choice of a prime
p of suitable size with r ≡ p mod B# by rejection sampling.

3. Generation of a random number s of the desired size which is coprime to B# followed by
a search for the next prime number in the arithmetic sequence with step size B# starting
with s.

The first two methods are equally recommended here. The third method induces certain
statistical biases in the distribution of the generated primes which are generally unwanted. It is,
however, a widely used method (see e.g. Table 1 of [103]) and there is no indication that these
biases can be used for attack. Hence, this method is accepted as a legacy method in the present
Technical Guideline.

The following tables give an overview of the three methods supported by this Technical Guide-
line:

Input: an interval I := [a, b] ∩ N, in which a prime is to be found.

1. Choose an odd number p according to the uniform distribution on I.

2. If p is not prime, return to step 1.

3. Output p.

Table B.5.: Recommended method 1: prime generation by rejection sampling

Input: an interval I := [a, b]∩N in which a prime is to be found, as well as a small natural
number B satisfying Π := B# � b − a. Π may be a fixed value here if it is clear that it
is much smaller than b− a.

1. Choose randomly according to the uniform distribution an invertible element r ∈
Z/(Π). This is equivalent to randomly choosing r < Π coprime to Π.

2. Randomly choose k ∈ N subject to the constraint that p := kΠ + r ∈ I. Hence, k is
to be selected according to the uniform distribution on [d(a− r)/Πe, b(b− r)/Πc].

3. If p is not prime, return to step 2.

4. Output p.

Table B.6.: Recommended method 2: prime generation by more efficient rejection sampling

74 Federal Office for Information Security (BSI)



Technical Guideline – Cryptographic Algorithms and Key Lengths

Input: an interval I := [a, b]∩N in which a prime is to be found, as well as a small natural
number B satisfying Π := B# � b − a. Π may be a fixed value here if it is clear that it
is much smaller than b− a.

1. Choose randomly according to the uniform distribution an invertible element r ∈
Z/(Π). This is equivalent to randomly choosing r < Π coprime to Π.

2. Randomly choose k ∈ N subject to the constraint that p := kΠ + r ∈ I ist. Hence, k
is to be selected according to the uniform distribution on [d(a− r)/Πe, b(b− r)/Πc].

3. Check if p is prime. If it is not, add Π and repeat step 3. If the new p is outside the
interval I, return to step 1.

4. Output p.

Table B.7.: Legacy method: prime generation by incremental search

Primality testing will in the above algorithms usually be done by probabilistically, for reasons
of efficiency. The following algorithm is recommended:

Miller-Rabin, see [78], algorithm 4.24.

Table B.8.: Recommended probabilistic primality test

Remark 43 (i) In addition to the number p to be examined, the Miller-Rabin algorithm needs
a random value a ∈ {2, 3, . . . , p− 2}, the so-called basis. If a has been chosen in {2, 3, . . . , p− 2}
with respect to the uniform distribution, the probability that p is a composite number, although
the Miller-Rabin algorithm says that p is a prime number, does not exceed 1/4.

(ii) (Worst case) In order to restrict the probability that a fixed number p is identified as a
prime number by means of the Miller-Rabin algorithm, although it is a composite number, to
1/2100, the algorithm must be called up 50 times with bases a1, . . . , a50 ∈ {2, 3, . . . , p− 2} that
were chosen independently of each other with respect to the uniform distribution. See Section
B.4 for recommended methods for the calculation of uniformly distributed random numbers in
{2, 3, . . . , p− 2}.

(iii) (Average case) In order to test with the desired certainty an odd number
p ∈ [2b−1, 2b − 1] that has been chosen with respect to the uniform distribution for pri-
mality, considerably less iterations of the Miller-Rabin algorithm than the estimate represented
above would suggest are sufficient, see [36], [43], Appendix F and [58], Annex A. For example,
only 4 iterations are required for b = 1024 in order to exclude, with a remaining error probability
of 2−109, that p is a composite number, although the Miller-Rabin algorithm identifies p as
a prime number [58]. Here, too, the bases must be chosen independently of each other and
with respect to the uniform distribution on {2, 3, . . . , p − 2}. The specific number of necessary
operations depends on the bit length of p, since the density of numbers to which the estimates of
the worst case scenario apply is decreasing significantly with the increasing size of the numbers.

(iv) (Optimisations) To optimise the runtime of, for instance, algorithm B.5 it may make sense
to eliminate composite numbers with very small factors by means of trial division or sieving
techniques prior to applying the probabilistic primality test. Such a preliminary test has only
minor impacts on the probability that numbers classified by the test as probable prime numbers
are still composite numbers. The recommendations for the required number of repetitions of the
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Miller-Rabin primality test therefore apply unchanged to versions optimised to this type.

(v) (Other comments) In accordance with [43], Appendix F.2, it is also recommended in this
Technical Guideline to perform a verification of the prime number property with 50 rounds of the
Miller-Rabin primality test when generating prime numbers which are to be used in particularly
security-critical functions in a cryptosystem or the generation of which is not very time-critical.
This applies, for example, to prime numbers which are generated once as permanent parameters
of a cryptographic mechanism and are not changed over a longer period of time or possibly used
by many users.

A random bit generator of functionality class PTG.3 or DRG.4 may be used to generate the
required randomness. Until the end of 2022 it is also permissible to use a random bit generator
of functionality class PTG.2 or DRG.3. While from an information theoretic point of view, usage
of a deterministic random bit generator precludes any possibility of uniform prime generation,
security is not affected: a random bit generator of functionality class DRG.3 should under
cryptographic standard assumptions generate an output distribution that cannot by any known
potentially practical (non-quantum) attack be distinguished from an ideal distribution.

However, it should be noted in this context that the security level of the generated RSA
moduli may be limited by the security level of random bit generation. This would for instance
be the case if a random bit generator with 100 bit security is used to generate RSA keys of 4096
bit length.

(vi) (Alternative primality tests) The choice of primality test is from a cryptanalytic point
of view not security critical if the chosen test does not misclassify primes as composite and if
the probability that composite numbers will pass is negligible. It is therefore possible to use
other tests instead of Miller-Rabin without losing conformance to this Technical Guideline if
these properties are evident from the scientific literature. However, with regards to verifying
the correctness of an implementation and checking side channel resistance the use of the very
widely known Miller-Rabin method is advantageous.

B.5.3. Generating prime pairs

To ensure the security of key pairs for which the underlying RSA modulus has been generated by
multiplying two primes generated independently of each other with one of the approved methods,
it is important that the interval I := [a, b] ∩ N not be too small. If the modulus is supposed to

have a predetermined bit length n, it is natural to take I = [d2(n/2)
√

2 e, b2
(n/2)c] ∩ N.

Different choices of I are in conformance to the present Technical Guideline if p and q are
drawn from the same interval I and if Card(I) ≥ 2−8b.

B.5.4. Notes on the security of the recommended mechanisms

For the rest of the section, let π be the prime number function, i.e. π(x) := Card({n ∈ N :
n ≤ x, n prim }). According to the prime number theorem, π(x) is asymptotically equivalent

to x/ ln(x), i.e. ln(x)·π(x)
x tends to one when x → ∞. The security of the methods for prime

generation here recommended rests on the following observations:

• All three methods are capable of generating any prime contained in the given interval if
the underlying random bit generator is capable of generating all prime candidates from
the interval.

• The methods B.5 and B.6 generate prime numbers the distribution of which cannot be
distinguished in a practically relevant way from uniform selection of primes when the
recommended security parameters are used. This is obvious for method B.5. For method
B.6, this is heuristically due to the quantitative version of Dirichlet’s theorem on arithmetic
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progressions: the relative frequency of primes among all numbers is asymptotically the
same in all invertible residue classes modulo Π, and the residue class modulo Π of the
prime to be generated is chosen according to the uniform distribution auf (Z/Π)∗.

• The argument just given in support of method B.6 being secure does not strictly give any
guarantee that with a concrete Π and a given interval I the incidence of prime numbers is
independent of the chosen residue class. Indeed, it is obvious that this will not be the case
as Π approaches the order of magnitude of b−a. It is however expected that no significant
differences among the residue classes will exist if the number of primes within each residue
class is large. The interval I contains π(b)−π(a) primes. Therefore, the expected number

of primes per residue class mod Π is π(b)−π(a)
ϕ(Π) . For numbers of order 1000 bits the relative

error in the approximation b ln(a)−a ln(b)
ln(a) ln(b)ϕ(Π) should be very low if ϕ(Π) is small compared to

the numerator. It is recommended to choose Π in such a way that b ln(a)−a ln(b)
ln(a) ln(b)ϕ(Π) ≥ 264.

• The qualitative reasoning given above is sufficient to assess method B.6 as suitable. More
detailed investigations of closely related methods of prime generation can, however, be
found in the scientific literature, see e.g. [47].

• Method B.7 generates primes that deviate from a uniform distribution. The probability of
a prime p ∈ I to be chosen by this method is proportional to the length of the preceding
prime-free stretch within the arithmetic sequence p− kΠ, p− (k− 1)Π, . . . , p−Π, p which
is terminated by p. As the density of primes in these sequences tends to increase with Π
it is expected that this effect is most pronounced for Π = 2. Even then, it implies only
a very modest loss of entropy in practice. The bias of the induced distribution can be
limited further by terminating and restarting the search for a prime if after a reasonable
number k of steps no prime has been found: in this case all primes that follow a gap of
length ≥ k will be chosen with the same probability. The biases induced by method B.7
do not appear a cause of concern as regards possible exploitation by an adversary.
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Appendix C.

Protocols for special cryptographic
applications

In this section, we describe some protocols which can be used as modules of cryptographic
solutions. At the current time, the only protocol discussed here is SRTP, since the corresponding
content on TLS, IPsec and SSH was moved to parts 2-4 of the present Technical Guideline. In
general, using established protocols when developing cryptographic systems has the advantage
that a comprehensive public analysis can be fallen back on. In contrast, in-house developments
can easily contain vulnerabilities which the developer may only recognise with difficulty. It is
therefore recommended to prefer publicly available protocols that have been evaluated several
times over in-house protocol developments in cases in which this is possible.

C.1. SRTP

SRTP is a protocol which supplements the audio and video protocol RTP by functions to secure
the confidentiality and integrity of the transmitted messages. It is defined in RFC 3711 [8].
SRTP must be combined with a protocol for key management, as it does not provide its own
mechanisms for the negotiation of a cryptocontext.

We recommend the following use of SRTP:

• As symmetric encryption scheme with combined integrity protection, AES in Ga-
lois/Counter Mode as described in [74] is recommended.

• As alternative encryption schemes, both AES in the counter mode and in the f8 mode as
described in [8] are recommended. Here an HMAC based on SHA-1 may be used for the
protection of integrity, because in [8] the use of hash functions of the SHA-2 or SHA-3
family is not specified. This HMAC may be reduced to 80 bits in the context of this
protocol.

• As key management system, MIKEY [6] should be used. In this respect, the following key
management schemes from [6] are recommended: DH key exchange with authentication
via PKI, RSA with PKI, and pre-shared keys. In general, only cryptographic mechanisms
recommended in this Technical Guideline should be used as components within MIKEY
and SRTP.

• zRTP should only be used if it involves disproportionately high effort to solve the problem
of the key distribution by means of a public-key method using a PKI or by the pre-
distribution of the secret keys.

• It is urgently recommended to use the replay and integrity protection mechanisms provided
in [8] in SRTP.

When using applications for the secure transmission of audio and video data in realtime, par-
ticular attention should be paid to minimising the development of side channels, for example,
by means of the data transmission rate, the chronological sequence of different signals or other
traffic analyses. Otherwise, attacks as in [7] become possible.
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