
Tkinter – GUIs in Python

Dan Fleck

CS112

George Mason University

Coming up: What is it?

NOTE: This information is not in your textbook!

See references for more information!

What is it?

•! Tkinter is a Python interface to the Tk

graphics library.

–!Tk is a graphics library widely used and

available everywhere

•! Tkinter is included with Python as a

library. To use it:

–!import * from Tkinter

•!or

–!from Tkinter import *

What can it do?

•! Tkinter gives you the ability to create

Windows with widgets in them

•! Definition: widget is a graphical component

on the screen (button, text label, drop-down

menu, scroll bar, picture, etc…)

•! GUIs are built by arranging and combining

different widgets on the screen.

First Tkinter Window

File: hello1.py

from Tkinter import *

root = Tk() # Create the root (base) window where all widgets go

w = Label(root, text="Hello, world!") # Create a label with words

w.pack() # Put the label into the window

root.mainloop() # Start the event loop

Explain the code

File: hello1.py

from Tkinter import *

root = Tk()

w = Label(root, text="Hello, world!")

w.pack()

root.mainloop()

Create the parent window. All applications have a “root” window. This

is the parent of all other widgets, you should create only one!

A Label is a widget that holds text

This one has a parent of “root”

That is the mandatory first argument

to the Label’s constructor Tell the label to place itself into the

root window and display. Without

calling pack the Label will NOT be

displayed!!!

Windows go into an “event loop” where they wait for things to

happen (buttons pushed, text entered, mouse clicks, etc…) or

Windowing operations to be needed (redraw, etc..). You must tell

the root window to enter its event loop or the window won’t be

displayed!

Widgets are objects

•!We haven’t discussed objects, but in

graphical programming we will use

them.

•! An int is a data type that holds a

number and allows you to do things to it

(add, subtract, etc…)

•! An class is a CUSTOM data type that

holds information and defines

operations you can do to it

Classes and objects

•! A class is the definition of a something

or the “blueprint”

•! An object is an instantiation of that

class.

•! For example:

Class
3 objects of class BMW CS

Objects

•! Again… Objects combine data and

operations

•! For example, you could create a Car

class that has:

–!data – amount of gas in tank, odometer

reading, year built, etc…

–!operations – start car, apply brakes, start

windshield wipers, etc…

Do all objects of class Car have the same data values?

No! Amount of gas in the tank is different for each object

Tkinter objects

•! Label is a class, w is an object

–!w = Label(root, text="Hello, world!")

–!Call the “pack” operation:

•!w.pack()

•!Hint: An operation is just a function… nothing

more, nothing less.. it is just defined inside the

class to act upon the object’s current data.

Objects usually hide their data from anyone else
and let other programmers access the data only

through operations. (This is an OO concept

called encapsulation)

Build it (called

instantiation)

More objects we can build

#Button1.py

from Tkinter import *

root = Tk() # Create the root (base) window where all widgets go

w = Label(root, text="Hello, world!") # Create a label with words

w.pack() # Put the label into the window

myButton = Button(root, text="Exit")

myButton.pack()

root.mainloop() # Start the event loop

But nothing happens when we push the

button! Lets fix that with an event!

Making the button do something

#Button2.py

from Tkinter import *

def buttonPushed():

 print "Button pushed!”

root = Tk() # Create the root (base) window where all widgets go

w = Label(root, text="Hello, world!") # Create a label with words

w.pack() # Put the label into the window

myButton = Button(root, text="Exit",command=buttonPushed)

myButton.pack()

root.mainloop() # Start the event loop

This says, whenever someone pushes

the button, call the buttonPushed

function. (Generically any function

called by an action like this is a

“callback”)

Making the button close the window

#Button3.py

from Tkinter import *

Hold onto a global reference for the root window

root = None

def buttonPushed():

 global root

 root.destroy() # Kill the root window!

def main():

 global root

 root = Tk() # Create the root (base) window where all widgets go

 w = Label(root, text="Hello, world!") # Create a label with words

 w.pack() # Put the label into the window

 myButton = Button(root, text="Exit",command=buttonPushed)

 myButton.pack()

 root.mainloop() # Start the event loop

main()

Need later

Close the global root window

Use the global root window
Calling this also

ends the mainloop()

function (and thus

ends your program)

Creating text entry box

General form for all widgets:
1.!# Create the widget

widget = <widgetname>(parent, attributes…)

2.!widget.pack()

pack the widget to make it show up

def createTextBox(parent):

 tBox = Entry(parent)

 tBox.pack()

From main call:

createTextBox(root)

Using a text entry box

To use a text entry box you must be able

to get information from it when you need

it. (Generally in response to an event)

For us, this means make the entry box

global so we can get the info when a

button is pressed

#Textentrybox1.py

from Tkinter import *

Hold onto a global reference for the root window

root = None

Hold onto the Text Entry Box also

entryBox = None

def buttonPushed():

 global entryBox

 txt = entryBox.get()

 print "The text is:",txt

def createTextBox(parent):

 global entryBox

 entryBox = Entry(parent)

 entryBox.pack()

def main():

 global root

 root = Tk() # Create the root (base) window where all widgets go

 myButton = Button(root, text="Show Text",command=buttonPushed)

 myButton.pack()

 createTextBox(root)

 root.mainloop() # Start the event loop

main()

Using a text entry box

Call the get() operation on the entry box

to get the text when button is pushed

Create the global entry box!

#changeable_label.py

Use a StringVar to create a changeable label

from Tkinter import *

Hold onto a global reference for the root window

root = None

Changeable text that will go inside the Label

myText = None

count = 0 # Click counter

def buttonPushed():

 global myText

 global count

 count += 1

 myText.set("Stop your clicking, it's already been %d times!" %(count))

def addTextLabel(root):

 global myText

 myText = StringVar()

 myText.set("")

 myLabel = Label(root, textvariable=myText)

 myLabel.pack()

def main():

 global root

 root = Tk() # Create the root (base) window where all widgets go

 myButton = Button(root, text="Show Text",command=buttonPushed)

 myButton.pack()

 addTextLabel(root)

 root.mainloop() # Start the event loop

main()

Creating a label

you can change

Set the text in the label

(call set method with a

string actual parameter)

Link the label to the StringVar

Create a StringVar to hold text

Layout management

•! You may have noticed as we pack

widgets into the window they always go

under the previous widget

•!What if we want to get them to go side-

by-side or some other place?

•!Most windowing toolkits have layout

management systems to help you

arrange widgets!

Layout management

•! You’ve been using one – the packer is

called when you pack()

•! pack can have a side to pack on:

–!myWidget.pack(side=LEFT)

–!this tells pack to put this widget to the left

of the next widget

–!Let’s see other options for pack at:

–!http://epydoc.sourceforge.net/stdlib/

Tkinter.Pack-class.html#pack

Pack Examples

#pack_sample.py
from Tkinter import *

Hold onto a global reference for the root window

root = None

count = 0 # Click counter

def addButton(root, sideToPack):

 global count

 name = "Button "+ str(count) +" "+sideToPack

 button = Button(root, text=name)

 button.pack(side=sideToPack)

 count +=1

def main():

 global root

 root = Tk() # Create the root (base) window where all widgets go

 for i in range(5):

 addButton(root, TOP)

 root.mainloop() # Start the event loop

main()

Pack Examples

#pack_sample.py

from Tkinter import *

Hold onto a global reference for the root window

root = None

count = 0 # Click counter

def addButton(root, sideToPack):

 global count

 name = "Button "+ str(count) +" "+sideToPack

 button = Button(root, text=name)

 button.pack(side=sideToPack)

 count +=1

def main():

 global root

 root = Tk() # Create the root (base) window where all widgets go

 addButton(root, LEFT) # Put the left side of the next widget close to me

 addButton(root, BOTTOM) # Put bottom of next widget close to me
 addButton(root, RIGHT) # Put right of next widget close to me

 addButton(root, BOTTOM) # Put bottom of next widget close to me

 root.mainloop() # Start the event loop

main()

Packing Frames

•!Usually you cannot get the desired look

with pack unless you use Frames

•! Frame are widgets that hold other

widgets. (Frames are parents).

•!Usually root has Frames as children

and Frames have widgets or more

Frames as children.

Packing Frames

•! Lets say you want this GUI

•! Lets look at the frames

Packing Frames

•! You know how to create any one area

already. For example if I said create a

window with a list of buttons arranged

vertically you would do this:

•! addButton(root, TOP)

•! addButton(root, TOP)

•! addButton(root, TOP)

•! addButton(root, TOP)

•! addButton(root, TOP)

Packing Frames

•! To do that with a Frame you just do this

instead:

•! frame1 = Frame(root)

•! addButton(frame1 , TOP)

•! addButton(frame1 , TOP)

•! addButton(frame1 , TOP)

•! addButton(frame1 , TOP)

•! addButton(frame1 , TOP)

•! Now you can treat the frame as one

big widget!

Create the frame like

any other widget!

Packing Frames

•! To do that with a Frame you just do this

instead:

•! Now, assuming you created the frames

already:

•! redFrame.pack(side=LEFT)

•! brownFrame.pack(side=LEFT)

•! topYellow.pack(side=TOP)

•! green.pack(side=TOP)

•! bottomYellow.pack(side=TOP)

Who is the parent of the red and brown frames?

Ans: The green frame!

Other geometry managers

Python has other geometry managers (instead of pack)

 to create any GUI layout you want

•! grid – lets you specify a row,column grid location and how

many rows and columns each widget should span

•! place – specify an exact pixel location of each widget

•! In this class we will only use the pack manager, but for very

complicated GUIs you probably want the grid manager

WARNING: Never use multiple geometry managers in one

window! They are not compatible with each other and may cause

infinite loops in your program!!

Adding Menus

•! A menu is simply another type of widget.
create a toplevel menu

menubar = Menu(root)

create a pulldown menu, and add it to the menu bar

filemenu = Menu(menubar)

filemenu.add_command(label="Open", command=hello)

filemenu.add_separator()

filemenu.add_command(label="Exit”,command=root.destroy)

menubar.add_cascade(label="File", menu=filemenu)

root.config(menu=menubar)

The menubar is a container for Menus

Create a single menu

Call the hello function when the Open menu option is chosen

Add a line separator in the menu

Call the root.destroy function when the Exit menu option is chosen

Add the filemenu as a menu item under the menubar

Tell the root window to use your menubar instead of default

Adding Menus

create a toplevel menu

menubar = Menu(root)

create a pulldown menu, and add it to the menu bar

filemenu = Menu(menubar)

filemenu.add_command(label="Open", command=hello)

filemenu.add_separator()

filemenu.add_command(label="Exit”,command=root.destroy)

menubar.add_cascade(label="File", menu=filemenu)

root.config(menu=menubar)

Adding Sub-Menus

Adding sub-menus, is done by adding a menu to another menu

instead of the menubar.

Create another menu item named Hello

helloMenu = Menu(menubar)

helloMenu.add_command(label="Say hello", command=hello)

menubar.add_cascade(label="Hello", menu=helloMenu)

Create a submenu under the Hello Menu

subHello = Menu(helloMenu) # My parent is the helloMenu

subHello.add_command(label="English", command=hello) # Menu Item 1

subHello.add_command(label="Spanish", command=hello) # Menu Item 2

subHello.add_command(label="Chinese", command=hello) # Menu Item 3

subHello.add_command(label="French", command=hello) # Menu Item 4

Add sub menu into parent with the label International Hello

helloMenu.add_cascade(label="International Hello", menu=subHello)

Showing Images

An image is just another widget.

photo = PhotoImage(file=‘somefile.gif’)
Note: Tkinter only supports GIF, PGM, PBM, to read JPGs you

need to use the Python Imaging Library

im = PhotoImage(file='cake.gif') # Create the PhotoImage widget

Add the photo to a label:

w = Label(root, image=im) # Create a label with image

w.image = im # Always keep a reference to avoid garbage collection

w.pack() # Put the label into the window

Guess how you put an image in a Button?

Showing Images

A Canvas is a container that allows you to show images and draw on the

container. Draw graphs, charts, implement custom widgets (by drawing
on them and then handling mouse-clicks).

A canvas was the widget that Turtle Graphics uses to draw on!

myCanvas = Canvas(root, width=400, height=200)

myCanvas.create_line(0, 0, 200, 100)

myCanvas.create_line(0, 100, 200, 0, fill="red", dash=(4, 4))

myCanvas.create_image(0, 0, anchor=NW, image=myPhotoImage)

How to use a canvas: http://effbot.org/tkinterbook/canvas.htm

How can we change the background color

of a canvas?

Capturing mouse-clicks

•! To capture mouse events you can “bind”

events to a widget.

–!widget.bind(event, handler)

–!events can be:

•!<Button-1>

–!(1 is left mouse button, 2=right, 3=middle)

•!<Double-Button-1> - double clicked button 1

•!<Enter> - mouse entered the widget

•!<Leave> - mouse left the widget

•!<Return> - user pressed enter key

•!<key> (<a> for example) – user pressed “a”

Capturing mouse-clicks

For example, to make a button beg to be clicked:

def mouseEntered(event):

 button = event.widget

 button.config(text = "Please Please click me")

def mouseExited(event):

 button = event.widget

 button.config(text = "Logon")

def main():

 global root

 root = Tk() # Create the root (base) window where all widgets go

 b = Button(root, text="Logon")

 b.bind("<Enter>",mouseEntered)

 b.bind("<Leave>",mouseExited)

 b.pack()

 root.mainloop() # Start the event loop

main()

Step 1: Bind events to functions

Step 2: Write functions to

handle events. Notice:

event object automatically

passed into event handler!

Capturing mouse-clicks

def mouseEntered(event):

 button = event.widget

 button.config(text = "Please Please click me")

Notice how I say “event.widget”… that is because all events store as data

the widget that caused the event. In this case it is a button. (This again

is because event is an object of class Event. That object stores data
items – one of which is named “widget”.

Note: in the project you will need to bind left-button mouse events to the

canvas and then look at the x,y location of the click. Is x,y stored in the
event? Check the link below to see the names ot everything you can

get from an event object just by saying:

myVariable = event.attribute

http://www.pythonware.com/library/tkinter/introduction/events-and-bindings.htm

Common problem!

def main():

 global root

 root = Tk() # Create the root (base) window where all widgets go

 b = Button(root, text="Logon")

 b.bind("<Enter>",mouseEntered)

 b.bind("<Leave>",mouseExited)

 b.pack()

 root.mainloop() # Start the event loop

main()

WARNING: When you specify a

function, you must NOT use

parenthesis… using parenthesis

CALLS the function once.. you

want to pass the function as a

parameter!

b.bind(“<Enter>”, mouseEntered) # GOOD

b.bind(“<Enter>”, mouseEntered()) # BAD!

How mouse-clicks work: the event loop

•! In this GUI we are using event based

programming.”root.mainloop()” starts an event loop

in Python that looks like this:

•! while (True): # Loop forever

 wait for an event
 handle the event (usually call an event

 handler with the event information object)

•! Many events you never see (window resized,

iconified, hidden by another window and reshown…)

You can capture these events if desired, but Tkinter
handles them for you and generally does what you

want.

Event Driven Programming

•! Event driven programming – a programming

paradigm where the flow of the program is driven by

sensor outpus or user actions (aka events)
 – Wikipedia

•! Batch programming – programming paradigm where

the flow of events is determined completely by the
programmer

 – Wikipedia

BATCH

Get answer for question 1
Get answer for question 2

Etc…

EVENT-BASED

User clicked “answer q1 button”
User clicked “answer q3 button”

User clicked “answer q2 button”
Etc…

Which type is it (batch or event based?)

1.!Take all the grades

for this class and

calculate final grade

for the course

2.!World of Warcraft

3.!Any video game

4.!401K Lab

Batch

Batch

Event Based

Event Based

List boxes

•! List boxes allow you to select one (or

more) items from a list of items

•! See this link:

http://www.pythonware.com/library/

tkinter/introduction/x5453-patterns.htm

•! And the sample code:

–!listbox.py

Message Dialog Boxes

•! A dialog box is a small modal window that lets
you ask a question, show a message or do
many other things in a separate window from
the main window (File->Open usually opens a
dialog box)

•! You may notice that in many programs the
dialog box to open a file is very similar, or the
dialog box to select a file or choose a color.
These are very standard things, and most GUI
toolkits (including Tk) provide support to make
these tasks easy.

Message Dialog Boxes

•! Using tkinter to create a dialog box you do
this code:

import tkMessageBox # Another way you can import

tkMessageBox.showinfo(title=“Game Over”,
message=“You have solved the puzzle… good work!”)

•! You can also call showwarning, showerror
the only difference will be the icon shown
in the window.

Question Dialog Boxes

Question dialogs are also available

from tkMessageBox import *

ans = askyesno("Continue", "Should I continue?”)

ans will be True (for Yes) or False (for No).
What do you do with answer then?

Other questions available are: askokcancel, askretrycancel,
askquestion

Warning: askquestion by itself will return “yes” or “no” as
strings, NOT True and False!

File Dialog Boxes

•! See this link for some examples of

standard dialogs to

–!open a file

–!select a directory

–!selecting a file to save

http://www.pythonware.com/library/tkinter/introduction/

x1164-data-entry.htm

Data Input Dialogs

•! You can also use tkSimpleDialog to ask for a

number or string using a dialog box:

askstring(title, prompt),

askinteger…, askfloat...
from tkSimpleDialog import *

ans = askstring("Title", "Give me your name")

print ans

ans = askinteger(”Dialog Title", "Give me an integer")

print ans

ans = askinteger(”Num", "Give me an integer between 0 and 100",
minvalue=0, maxvalue=100)

print ans

More Info

•!More information about dialogs of all

types is at:

•! http://www.pythonware.com/library/

tkinter/introduction/standard-dialogs.htm

Adding a title to your window

•! This is actually very simple. You simply

call the title method of the root window:

root.title(“This is my window title”)

•! You should do this before you call

root.config()

Fixing some problems

•!My widgets don’t show up!

–!did you pack everything? and the frames

to?

•!How to “see” your frame:

–!x = Frame(parent, bg=‘green’,

borderwidth=10)

–!Lots of colors work

•!My stuff shows up in the middle, not on

the left or right

–!Use anchor… next slide

Fixing some problems

•!My stuff shows up in the middle, not on

the left or right

–!Use anchor… next slide

•!pack(side=TOP, anchor=‘e’) # Anchor EAST

•!Anchor says where should this widget go if I

have a lot more space!

References

•! http://www.ibm.com/developerworks/

library/l-tkprg/index.html#h4

•! http://epydoc.sourceforge.net/stdlib/

Tkinter.Pack-class.html#pack

•! http://effbot.org/tkinterbook

•! http://www.pythonware.com/library/

tkinter/introduction/

If you don’t get it, try reading

these links! Good stuff!

