
(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 7, 2020 

Fast Side Information Generation for High-Resolution 
Videos in Distributed Video Coding Applications 

Shahzad Khursheed1, Nasreen Badruddin2, Varun Jeoti3 

Department of Electrical and Electronic Engineering 
Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia 

Manzoor Ahmed Hashmani4 

Department of Computer and Information Sciences 
Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia 

 
 

Abstract—Distributed video coding (DVC) is an attractive 
and promising scheme that suits the constrained video 
applications, such as wireless sensor networks or wireless 
surveillance systems. In DVC, estimation of fast and consistent 
side information (Տ į) is a critical issue for instant and real-time 
decoding. This issue becomes even more serious for high-
resolution videos. Therefore, to minimise the side information 
estimation computational complexity, in this work, a 
computationally low complex DVC codec is proposed, which uses 
a simple phase interpolation (Phase-I) algorithm. It performs 
faster for all resolutions videos, and significant results are 
achieved for high-resolution videos with a large group of pictures 
(GOP). For the proposed technique, the computation time 
rapidly decreases with an increase in resolution. It performs 
221% to 280% faster from conventional frame interpolation 
method for high-resolution videos and large GOP at the cost of 
little degradation in the visual quality of estimated side 
information. 

Keywords—Fast side information algorithm; phase-based 
interpolation (Phase-I); DVC; DVC decoder for high-resolution 
videos; real-time DVC decoding; real-time side information 

I. INTRODUCTION 
Wireless video sensor networks (WVSNs) are capable of 

capturing video at distributed video sensor nodes. 
Conventional video codecs are ill-suited for these nodes. 
Compression of the captured video has received significant 
interest in literature. The availability of high-resolution CMOS 
image sensors at low cost makes the WVSNs more trending 
[1], especially for real-time surveillance and environment 
monitoring [2, 3] and medical applications [4], etc. The new 
applications of WVSN are emerging very rapidly and 
demanding efficient pre-processing and transmission [5]. Due 
to challenges of being battery supported, there is a need for 
efficient use of storage resources and lower energy 
consumption in WVSNs [6]. Such video sensors, therefore, 
demand low encoding techniques to compress the video to the 
lower bit rate before storing or transmitting it [7] and to 
reduce the transmission delay [8]. One of the supportive 
coding approaches is distributed video coding (DVC) that 
redistributes the coding complexity in such a way that there is 
much low encoding computation [9] while decoding can be 
more complex [10]. 

In DVC codecs, the frames are organised in a group of 
pictures (GOP) of size 2, 4 or more. The key-frames are Intra-
encoded first and then transmitted, and intermediate frames 
are WZ encoded. At the decoder, these WZ frames are 
estimated by the Intra-decoded key-frames. These DVC 

coding schemes achieved high compression while maintaining 
low encoding complexity by utilising the Intra-encoding at the 
encoder, and Inter-decoding (because the Տ į estimation 
depends on key-frames) at the decoder [11]. The DVC 
encoder is deliberately kept computationally very simple but 
the decoder is computationally very complex since it needs to 
accurately estimate the replica of the WZ frames known as 
side information (Տ į). The traditional Տ į generation algorithms 
are computationally extensive due to the complex nature of 
the prediction process and take a lot of time even for a low-
resolution video. 

A. Motivation and Contribution 
The Տ į is estimated either by interpolation or 

extrapolation, and its quality determines the overall coding 
efficiency of codec [12]. Both prediction processes are 
considered to be time-consuming [13] activity of the decoding 
process. The huge computational complexity [14] is associated 
with these prediction processes, and it takes considerable time 
even for the low-resolution videos, and the decoding process 
slows down due to it  [13]. The efforts were carried out mostly 
on low-resolution 1k-pixel and 176x144 pixels per frame 
videos [15] to improve the RD performance. The researchers 
are putting an effort to design the framework to achieve the 
low complex and real-time decoding for such low-resolution 
video [15] while achieving a consistent and high RD 
performance comparable with conventional codec.  

As a low-cost standard definition (SD) and high definition 
(HD) mini video sensors [16] are widely available, so there is 
a need for real-time DVC decoding framework for such high-
quality videos. However, no DVC framework for real-time or 
fast Տ į generation is found in the literature for high-quality 
videos. Therefore, herein, an attempt is made to design a 
suitable DVC framework with low computational Տ į 
generation algorithms for high-quality videos. In this work, a 
Phase interpolation (Phase-I) is incorporated for Տ į generation 
in the DVC decoder. 

The rest of the paper is organised as follows: Section II 
discusses the background, and Section III describes the 
proposed DVC model for fast Տ į generation for high-
resolution videos. In Section IV, results have been presented, 
and the performance of the proposed model in terms of 
computational complexity and quality analysis with (peak 
signal to noise ratio) PSNR is discussed. In Section V, the 
future directions are proposed. Finally, the conclusion is in 
Section VI. 
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II. BACKGROUND 
The DVC [17] structure follows the Slepian Wolf [18] and 

Wyner-Ziv [19] theories proposed in the early 1970s. These 
theories proposed that the correlated sources can be 
independently encoded and jointly decoded. This way, they 
can still achieve the same rate as they are jointly encoded and 
decoded as long as the correlated Տ į is available and used in 
the decoder side. In WVSN, the video sensor nodes acquire 
frames at some rate, and the consecutive frames are highly 
correlated. These correlated frames are independently encoded 
because the prediction loop is not involved in the DVC 
encoding process, and that is how the DVC provides codec-
independent scalability.  

DVC compression efficiency highly depends on Տ į quality 
[20]. It is important to remember that high-quality Տ į leads to 
better rate-distortion (RD) performance [21, 22] which plays a 
significant role in achieving low bit rate and less error 
correction [23], which are the main factors for the low latency 
optimal transmission [24]. However, high-quality Տ į 
estimation is a difficult task, even for low-resolution videos. 
The WZ encoding and decoding are carried on either in the 
transform domain (TD) or the pixel domain (PD). Aaron et al. 
first time at Stanford proposed TD-based DVC framework 
[25]. In this framework, only the intra-frame statistical 
reliance is explored. It outperforms other codecs due to 
superior coding efficiency. Afterwards, the codec known as 
PRISM (Power-efficient, Robust, hIgh compression Syndrome 
based Multimedia coding) for TD was proposed by Puri et al. 
[26, 27]. Most of the adequate DVC codecs are found on the 
Stanford TD based framework. The DISCOVER  [28] also 
complies with the Stanford framework [25]. 

Despite all the developments made by the DVC codecs [6, 
10, 21, 29-31], consistent RD performance [32] is still an issue 
and, does not meet the superior performance of conventional 
codecs for all acute and non-uniform motion feature videos. 
This commonly happens due to the substandard quality of the 
WZ frame replica (known as Տ į) which is estimated by 
interpolation or extrapolation [33] at the decoder. The superior 
coding efficiency and even the low bit-rate are achieved by 
making use of a highly correlated estimated replica of WZF 
[34]. However, the Տ į generation process consumes a lot of 
time due to the computationally complex prediction (motion 
estimation and compensation) activities [35]. These prediction 
activities are highlighted as a major source of high 
computational complexity at the decoder and cause latency in 
the decoding process [13] even for low-resolution videos. 
Moreover, the feedback channel for error-resilience also 
imposes the delay and increases the decoder complexity [36] 
due to the iterative requests for more bits that are required for 
error-correction. This, in turn, increases computation 
complexity and decreases the life of the video sensor because 
the transmission requires more resources as compared to other 
operations [37]. 

III. PROPOSED DVC MODEL WITH SIDE INFORMATION 
GENERATION SCHEME  

In video processing, the vast amount of computation is 
involved in the estimation of the in-between frame due to 
prediction and estimation. Specifically, Տ į estimation is the 

most challenging task in DVC decoding. The conventional 
interpolation methods require extensive computation resources 
and time; therefore, this extended computation complexity 
prolongs the decoding activity, especially for high-resolution 
videos. 

Fig. 1 shows the proposed DVC Model for Տ į generation 
with Phase-I and residual frame (Ɽ) calculation to reduce the 
transmission rate. The coding efficiency is associated with the 
transmission rate; therefore, to reduce the transmission rate, 
the Ɽ is calculated and encoded with WZ coding. The 
consecutive frames have the similarity and taking their 
difference will extract the motion part only which can be 
encoded in lesser bits than the actual WZ frame encoding, and 
WZ coding gives further lossy compression. The information 
will be encoded in fewer bits. The Ɽ can be calculated by (1). 

Ɽ=Ⱳ - Ԟ              (1) 

In (1), the Ⱳ is a current actual WZ frame, and K defines 
the previous key-frame. 

Phase-I computes the pixel-wise phase modification 
without any extensive global optimisation and estimates 
pixel's motion by phase shifting of the individual pixels. In 
addition to this, the phase shift correction feature combines the 
phase information across all the levels of a multi-scale 
pyramid [38] in a very short time. 

Avoiding the expensive global optimisation, which is a 
typical part of optical flow techniques, allows interpolating in-
between frames in a fraction of time of the traditional 
interpolation methods. Therefore, in the DVC decoder, its 
deployment exclusively decreases Տ į generation complexity 
and overall decoding time and complexity, even for the high-
resolution videos. 

 
Fig. 1. Proposed DVC Model-Fast Side Information Generation for High-

Resolution Videos. 

278 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 11, No. 7, 2020 

The Phase-I algorithm summarises the execution steps of 
Phase-I. The input of Phase-I are two images and interpolation 
parameter α, and the process starts with steerable pyramid 
decompositions of both images and calculation of their 
amplitudes. The output of this algorithm is the interpolated 
image. 

Phase-I Algorithm 

Inputs: Two input images are: 𝐼1and 𝐼2 

Interpolated parameter: α 

Initialisation: Steerable pyramid decompositions: 𝑃1and 𝑃2 

Amplitudes Calculation: 𝐴1and 𝐴2  

Output: Output (interpolated image) : 𝐼𝛼  

Step1:     (𝑃1, 𝑃2)   ←  Decompose (𝐼1, 𝐼2) 

Step2:     (𝐴1, 𝐴2)  ←  Amplitude (𝐼1, 𝐼2) 

Step3:     (𝜙1, 𝜙2)  ←  Phase (𝑃1, 𝑃2)     

Step4:     𝜙𝑑𝑖𝑓𝑓   ←  Phase Difference (𝜙1, 𝜙2)   

Step5:     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑙 = 𝐿 − 1 𝑑𝑜 

Step6:         𝜙�𝑑𝑖𝑓𝑓𝑙  ←  Shift Correction (𝜙�𝑑𝑖𝑓𝑓𝑙+1 ) 

Step7:     𝑒𝑛𝑑 𝑓𝑜𝑟 

Step8:     𝜙�𝑑𝑖𝑓𝑓   ←  Adjust Phase (𝜙𝑑𝑖𝑓𝑓,  𝜙�𝑑𝑖𝑓𝑓 )  

Step9:     𝜙𝛼  ←  Interpolate ( 𝜙1, 𝜙�𝑑𝑖𝑓𝑓, α ) 

Step10:   𝐴𝛼←  Blend (𝐴1, 𝐴2, α ) 

Step11:   𝑃𝛼←  Recombine (𝜙𝛼 , 𝐴𝛼 ) 

Step12:   𝐼𝛼←  Reconstruct (𝑃𝛼 ) 

In Fig. 2, the flowchart defines the basic steps for Տ į 
interpolation with Phase-I. All mathematical notations are 
available in [38]. The flowchart presents the step by step 
process for estimation of the Տ į. The Phase-I first decomposes 
the input images into the steerable pyramids, which is a linear 
multi-scale, multi-orientation image decomposition and 
calculates the amplitudes as well [38]. The Phase-I approach 
has a few intuitive parameters. The main parameters mainly 
used to control the number of orientations and levels 
corresponding to the different scales of the steerable pyramid. 
Better motion separation is achieved with a higher number of 
levels and orientations. The parameters setting used for 
generation of Տ į is as follows; the number of orientations used 
is 8, and the number of levels L is determined such that the 
coarsest level has a minimum width of 10 pixels. For the 
limitation factor, we use τ = 0.2. The size of the coarsest level 
together with this choice of τ leads to a theoretical limit of 
motion which can be modelled reliably as 2% of the image 
width. 

Depending on the size of GOP, both input images can 
either be intra-decoded key-frames or consists of the one intra-
decoded key-frame and one previously estimated WZ frame, 
herein called Տ į. In the next step, the phases are extracted with 

decomposed steerable pyramids. After the phase difference 
calculation, it is adjusted by the shift correction process. Now, 
for interpolating the next frame, the new phase is estimated 
with interpolation parameters, previous frame phase and the 
new calculated phase difference. Now, for the new Տ į 
interpolation, a new amplitude is calculated by blending the 
interpolation parameter and extracted amplitudes of input 
frames. This new amplitude is combined with the new 
calculated phase to reconstruct the interpolated Տ į. The focus 
of this work is only on the fast Տ į generation for high-
resolution videos; therefore, the full performance of codec will 
be presented in future work. 

 
Fig. 2. Flowchart of Phase Interpolation (Phase-I) Algorithm Process for 

Side Information Generation. 

IV. RESULT EVALUATION AND DISCUSSION 
The test clips WashDc in .cif (288x352) and .sif (480x640) 

formats, Mobile_Claneder in NTSC (486x720) and Old_Town 
Cross HD (720x1280) are taken for experiments [39]. The 
purpose of taking the different clips with different resolutions 
was to evaluate the performance of traditional and proposed 
Phase-I Տ į generation approaches for different resolutions. 
The Տ į quality and computational performance of its 
generation algorithm, are evaluated with quality metric PSNR 
and computational complexity metric execution time, 
respectively. To fairly evaluate the computational or coding 
complexity, the data cache size, memory access bandwidth, 
instruction cache size, storage complexity, execution time, 
parallelism and pipelining, all these dimensions should be 
measured [40]. However, practically it is difficult to measure 
all these dimensions [41]. Therefore, the coding time on a 
computing platform is usually considered for measuring the 
computational complexity as it is relatively easy to measure. It 
not only shows the computational complexity but also 
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partially indicates the effects of other dimensions such as 
memory access, etc. in the coding process [41]. Consequently, 
this is a widely used metric for complexity measure. 
Therefore, for convenience, this is also used in this paper for 
coding complexity measures. 

The number of calculations performed during a specific 
task defines the computational complexity. The total time of 
processor usage is directly affected by the number of 
calculations performed for a task; therefore, the computational 
complexity is always assessed and presented in processing 
time [42]. The performance of Տ į generation algorithms is 
measured and compared with each other for the same video 
but with different high resolutions. 

The performance is measured for two different GOP’s of 
sizes 2 and 4. When GOP=2, the frames sequence will be 
the I1W1I2W2I3W3I4 , where I1I2I3I4  are intra-encoded and 
decoded key-frames, and  𝑊1𝑊2𝑊3  the Wyner-Ziv frames 
whose estimated replicas are called Տ į. When GOP=4, the 
frames sequence will be the I1W1W2W3I2, where I1I2 are the 
key-frames, while W1, W2, W3  are the Wyner-Ziv frames. In 
GOP=4, first, the Տ į2 is estimated with I1 and I2, then Տ į1 is 
estimated with I1and Տ į2 and, Տ į3 estimated with Տ į2 and I2. 

A. Computational Complexity Measure 
The simulations are carried out on the Core(TM) i7-

7820HQ, CPU 2.90GHz with 64-bit OS, and RAM 32 GB. 
The computation complexity of Տ į algorithms; conventional 
interpolation called motion-compensated temporal 
interpolation (MCTI) and Phase-I for test sequences of 
288x352 and 480x640 formats are presented in Fig. 3 and 4, 
respectively. The computation is measured for a single GOP 
of size 2 and 4 in different time slots of a test sequence. Time 
for single GOP of 2 and 4, is measured after every 30 frames. 

 
Fig. 3. Side Information Algorithm Computation Complexity for Test 

Sequence of 288x352 (cif) Format for GOP 2 and 4. 

 
Fig. 4. Side Information Algorithm Computation Complexity for Test 

Sequence of 480x640 (sif) Format for GOP 2 and 4. 

For the 288x352 format test sequence, the average Տ į 
estimation time taken by Phase-I is 8.38 sec, and MCTI is 
18.54 sec for GOP 2. The Phase-I took an average of 22.91 
sec, and MCTI an average of 56.19 sec for single GOP of size 
4. Simulation results show that Phase-I is an average of 221% 
and 245% faster from the MCTI  for GOP 2 and GOP 4, 
respectively. For the 480x640 format test sequence, the 
average Տ į estimation time taken by Phase-I is 21.74 sec, and 
MCTI is 56.54 sec for GOP 2. The Phase-I took an average of 
63.155 sec, and MCTI an average of 169.23 sec for single 
GOP of size 4. Simulation results show that Phase-I is an 
average of 260% and 268% faster from the MCTI  for GOP 2 
and GOP 4, respectively. 

Computationally, the Phase-I is much faster than MCTI for 
all resolution videos and delivers optimum performance for 
different GOP sizes. This reduces the overall decoding 
complexity and hence leads to the faster decoding for high 
resolution of videos. 

B. PSNR Performance and Discussion 
The PSNR is conceived as one of the image quality 

measuring metric. It reflects the quality of estimation frame 
relative to the actual frame. Fig. 5 presents the PSNR 
performance as a function of frame numbers in a given 
sequence of frames. The comparison is made among the 
MCTI method and Phase-I for the GOP size of 2 (only PSNR 
of estimated Տ į) and PSNR of relevant intra-decoded frames 
for both .cif and .sif formats. 

The simulation results implemented for .cif format points 
out the average PSNR of 35.5dB and 31.2 dB for MCTI and 
Phase-I, respectively. The implementation results of .sif 
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format showed the average the PSNR 35 dB and 31 dB for 
MCTI and Phase-I, respectively. The proposed approach 
performance is approximately 4-4.3 dB poorer than that of 
MCTI for both formats. Although, the Phase-I lag behind the 
MCTI by 4.2 dB but deliver consistent performance 
throughout the sequence. The proposed method’s efficiency 
falls by 11.26% of MCTI. However, the 30dB PSNR is 
considered as the minimum acceptable quality for a human 
vision [43]. 

Fig. 6 presents the PSNR performance graph for the MCTI 
and Phase-I for a GOP size of 4 (only PSNR of three 
estimated Տ į of each GOP) and PSNR of relevant intra-
decoded frames for both .cif and .sif formats. The simulation 
results implemented for .cif format pointed out the average 
PSNR of 33.24 dB and 27.95 dB for MCTI and Phase-I, 
respectively. The implementation results of .sif format 
presented the average PSNR 32.34 dB and 30.8 dB for MCTI 
and Phase-I, respectively. The MCTI achieved average 4.29 
dB better PSNR from Phase-I but inconsistent performance for 
each GOP. While MCTI performance degraded for .sif format, 
whereas Phase-I performance improved for .sif format. 
Therefore, the Phase-I has great potential to deliver better for 
high-resolution videos with a large GOP size. 

The computational complexity and quality performance 
evaluation of both Տ į algorithms are presented in Table I. The 
computational complexity and quality evaluation are in the 
form of average time and average peak-to-signal ratio (PSNR) 
of Տ į of the GOP respectively. 

Simulation tests were also carried out on several other 
videos of different formats and motions, and few of them are 
also listed in Table I. Simulation conditions are frequently 
changed to analyse the visual quality and computational 
complexity of the proposed approach. The Phase-I based Տ į 
visual quality is dependent on the quality of intra-decoded 
frames. With high visual quality intra-decoded frames, the 
Phase-I algorithm generates better Տ į and vice versa. On the 
other hand, with one high quality and another low-quality 
intra-decoded frame, the Տ į quality degraded according to the 
low one. 

In the current scenario of GOP 4, the reference frames are 
changed according to the mentioned methodology, and visual 
quality of every estimated Տ į frame varies accordingly. 
However, an attempt is made to generate more than one Տ į 
frames by keeping the same reference frames, a bit low but 
almost consistent visual quality Տ į’s are generated in minimal 
time. In that approach, the computation time was 2-2.5 times 
less than the currently implemented strategy at the cost of a 
small degradation in the visual quality of all Տ į’s. This will 
open the door for implementation of low-delay or real-time Տ į 
generation with large GOP size. However, the study is 
required to analyse its effect on transmission rate in the 
channel decoding step because further correction in Տ į should 
be needed to achieve consistent high visual quality in video. 

The visual performance slightly depends on some 
parameters of Phase-I algorithm like decomposition level of 
steerable pyramids, phase extraction step, phase shift 
correction step and amplitude calculation step when only one 

Տ į is computed. However, the computation time rarely 
changed with the change of these parameters. 

 
Fig. 5. PSNR Performance Measure of Phase-I and MCTI for .cif(288x352) 

and .sif(480x640) for GOP=2. 

 
Fig. 6. PSNR Performance Measure of Phase-I and MCTI for .cif(288x352) 

and .sif(480x640) for GOP=4. 
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TABLE I. COMPUTATIONAL COMPLEXITY (IN AVERAGE TIME) AND QUALITY (IN AVERAGE PSNR) FOR SINGLE GOP OF SIZE 2 AND 4 

Test Sequence 
Formats 

Computational Complexity (Average Time (sec)) Quality Analysis-Average PSNR (dB) 

GOP= 2 GOP=4 GOP=2 GOP=4 

MCTI Phase-I MCTI Phase-I MCTI Phase-I MCTI Phase-I 

WashDc.cif (288x352) 18.54 8.38 56.19 22.91 34.64 31.50 33.24 31.01 

WashDc.cif (480x640) 56.54 21.74 169.23 63.16 33.46 31.17 32.34 30.65 

Mobile_Claneder.NTSC (486x720) 64.79 25.11 187.45 71.54 35.15 30.98 34.78 30.10 

Old_Town Cross (720x1280) 147.31 52.17 386.30 139.13 34.90 31.20 34.43 30.34 

V. FUTURE DIRECTION 
In current Phase-I algorithm, the visual quality changes 

with reference frames (frames that are used for Տ į estimation) 
quality. Especially the performance of algorithm degrades 
when one of the reference frames is of low quality. Therefore, 
the focus can be put to design this algorithm in a way that it 
changes performance with respect to high-quality reference 
frames to get the Տ į with consistent visual quality in either 
condition. Getting a consistent high-quality Տ į will also assist 
in reducing the number of bits (bit rate) which are required for 
Տ į correction in the channel decoding step. It reduces the 
transmission rate efficiently for both low and high-resolution 
video. 

In large GOP size, the visual quality almost remains the 
same for all estimated Տ į when the same reference frames are 
used to estimate all the intermediate Տ į frames. This method 
of generating the intermediate Տ į frames makes the Phase-I 
computationally very effective, but it lack-behind in visual 
performance. Visual quality remains a bit low from other 
adopted approach. Therefore, the algorithm should be 
designed in a way that it estimates more than one high-quality 
intermediate frames at once in a very short time. If this less 
computational complexity method estimates the consistently 
high-quality Տ į, then it will be effective to achieve the low-
delay or real-time DVC decoding for both low and high-
resolution videos. Moreover, it also reduces the transmission 
rate efficiently for both low and high-resolution videos with 
large GOP size. 

The visual performance slightly depends on some 
parameters of Phase-I algorithm like decomposition level of 
steerable pyramids, phase extraction step, phase shift 
correction step and amplitude calculation step when only one 
Տ į is computed. But these parameters somehow put their effect 
when two reference frames are far away from each other and 
the computation time rarely affected by changing these 
parameters. Designing an adaptive Phase-I will be a 
productive step for auto-selection of these parameters, to 
generate a consistent high-quality Տ į in small computational 
time and transmission rate for video applications can be 
controlled with it. Along with the high-quality Տ į estimation in 
small time, the proposed residual frame calculation at the 
encoder further reduces the transmission rate and improves the 
codec coding efficiency. 

VI. CONCLUSION 
The DVC decoder faces the computational complexity 

while estimating the replica of the WZ frame known as side 

information (Տ į) due to the involvement of the prediction 
process. The traditional Տ į generation algorithms raise a high 
computation complexity in decoding process because of the 
complex and composite prediction process and even took a 
long time for low-resolution video. However, the emergence 
of high-resolution video sensor demands high-speed DVC 
decoder with faster Տ į generation algorithms. This research 
work proposed the DVC model with the Phase interpolation 
(Phase-I) algorithm for Տ į estimation. It computes the pixel-
wise phase modification without any explicit correspondence 
estimation and pixel's motion by phase shifting of the 
individual pixels. In addition to this, the phase shift correction 
feature combines the phase information across the levels of a 
multi-scale pyramid in very little time. Therefore, in the DVC 
decoder, its deployment exclusively decreases Տ į generation 
complexity and overall decoding time and complexity, even 
for the high-resolution videos. It works efficiently and even 
better for high-resolution videos with large GOP. It exhibits 
low computation complexity for both low and high-resolution 
videos. Moreover, it delivers significant efficiency in the 
computation for different GOP sizes at the cost of some 
degradation in the quality of estimated Տ į. However, for high-
resolution video with a GOP size of 4, the results were 
acknowledgeable because the performance of the traditional 
algorithm drops out rapidly, and where on the other hand, 
Phase-I remains stable. 
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