
Rapid Deployment of Bare-Metal and In-Container
HPC clusters using OpenHPC playbooks

Joshua Higgins, Taha Al-Jody and Violeta Holmes
HPC Research Group

University of Huddersfield
Huddersfield, UK

{joshua.higgins,taha.al-jody,v.holmes}@hud.ac.uk

Abstract—In this paper, we present a toolbox of reusable
Ansible roles and playbooks in order to configure a cluster
software environment described by the freely available OpenHPC
recipes. They can be composed in order to deploy a robust
and reliable cluster environment, instilled with the best practise
offered by the OpenHPC packaging, and the repeatability and in-
tegrity guarantees of the configuration managed approach. With
container virtualization setting a new trend in scientific software
management, we focus this effort on supporting the deployment
of such environments on both bare-metal and container-based
targets.

Index Terms—hpc, middleware, ansible, containers

I. INTRODUCTION

Nowadays, HPC is expected to encompass a wide range
of applications, in addition to the standard batch scheduling
execution paradigm. It is essential that the software environ-
ment of the resource is flexible and easily re-configurable, but
in a way which is controlled and reproducible. Configuration
management is a proven technology used by administrators of
machines at many scales, from on-premise hardware to cloud
resources, in order to manage the setup and maintenance of
the software environment.

Traditionally, the configuration of HPC systems has either
grown organically, based around the needs of a specific
user community, or configured using vendor-provided tools.
Configuration management approaches are becoming popular,
but are often opinionated, and it is a daunting task in order to
encapsulate the cluster building process from scratch. There
is a large amount of literature that considers the experience
of institutions adopting DevOps-like approaches for cluster
management, but few that provide practical solutions that are
easily accessible to the wider community with a low technical
burden.

In this paper, we introduce The Cluster Works - a toolbox
of Ansible roles and playbooks that can be used to deploy
cluster software stacks. The OpenHPC recipes are used as
a foundation to provide dependable and validated packages
for the software stack. The goal of the project is to create
easy to use workflows for provisioning and deploying HPC
cluster software environments, using a single well-defined
methodology that supports applying the configuration to both
”bare-metal” (whether physical or virtual) and container-based
targets. We detail the reference installation on a Beowulf-style

cluster at the University of Huddersfield, provide a guided
example on how to use the playbooks to deploy your own
cluster, and finally, invite the community to participate in our
open source project on GitHub.

II. BACKGROUND

A. Configuration Management

Configuration Management is an engineering process in
order to define a system in terms of the functional, physical
and operational attributes that exist throughout its lifetime. In
the context of software, this allows the definition and scale out
of systems quickly and reliably, providing methods to quantify
the effectiveness of the configuration changes - for example, a
bad change can be rolled back to a well known configuration
in order to restore the affected service [1].

A large number of open source and commercial configu-
ration management tools are available that can potentially be
useful in the HPC context. In [2], a method for evaluating a
configuration management system is proposed, including an
assessment of tools available at the time. They identified that
there is no association between the maturity of a tool and the
feature set that is provides, encouraging adoption of a tool that
meets the requirements regardless of longevity. This approach
can be a challenge in the HPC context, as software environ-
ments are traditionally glacial in the rate of change. However,
it also identifies limitations in the existing tools which may be
significant in our community: very few tools support high level
abstractions, such as ”create 3 worker nodes”, provide limited
integration with version control systems, and do not allow
access controls in order to delegate domains of administration
to different users.

In the era of cloud computing and DevOps, four tools
stand out as having both large user communities and a wide
installation base: Puppet [3], Chef [4], SaltStack [5] and
Ansible [6]. These tools have previously been considered
as a solution for building HPC systems [7]–[10]. However,
the existing approaches are often not easily reproducible by
others, as they are an exemplar of each implementation, rather
than a generalized framework of reusable building blocks. In
addition, many solutions consider automating the deployment
of HPC infrastructure in clouds [11]–[13] but are often not
directly transferable to on-premise or other types of systems



that do not provide the required APIs for discovering resources
and configuration.

B. OpenHPC

OpenHPC [14], [15] provides a full stack of HPC software
components for a reference cluster architecture. It includes
packages for provisioning and resource management middle-
ware, compilers, parallel libraries, popular scientific software
and performance benchmarking tools. The project aim is
to encourage community participation and exchange of best
practice HPC ingredients and knowledge, supported by key
academic and commercial organizations in the industry.

Using OpenHPC, a system administrator can deploy vali-
dated combinations of compilers, MPI libraries and supporting
software with familiar user interfaces, such as environment
modules. In addition, the project also publishes recipes for
building the reference cluster platform from scratch, which
documents the caveats and recommended procedures that may
not be obvious to a seasoned system administrator without
significant experience in HPC and scientific computing.

C. xCAT

Extreme Cluster Administration Toolkit (xCAT) is an open
source deployment and provisioning middleware, which has
been demonstrated to scale up to 100,000 nodes [16]. It auto-
mates the installation of cluster nodes, providing services for
machine discovery, network identification and remote installa-
tion, to enable efficient and direct management of the cluster
at scale. xCAT can be used to deploy machines in stateful
- installed to a local hard disk - or stateless mode, where
provisioning occurs over PXE. Several Linux distributions,
Windows and Hypervisor Operating Systems are supported for
deployment, allowing the administrator to create and maintain
images for machines with range range of roles within the HPC
estate.

xCAT is operated through a suite of CLI tools and a
central database which holds the definitions of each node,
configuration profiles, network settings and OS images. For
example, lsdef -t node lists each node registered in the
xCAT database. Each tool supports operations over many
objects at once, and can be easily scripted by the administrator
following the Unix philosophy.

D. Container virtualization

Container virtualization has quickly become an indispens-
able tool in HPC for turning software environments into
a portable package that can be executed on a system re-
gardless of the underlying software stack. Using tools such
as Singularity [17], Charliecloud [18] and Docker [19], the
community is busy publishing containers that encapsulate the
run time environment of many scientific codes. One of the
disadvantages is the lack of discipline in building the container
environment, choosing the base OS for a container image, and
to what extent you include core system dependencies. For
example, some containers must be executed on an already
existing HPC cluster, whilst some can run on any machine

that simply provide a container run time. Despite this potential
inconsistency, containers provide scope for deploying highly
flexible HPC systems, and significantly reduce the barrier of
entry for the average user to virtualization technology.

III. WHY ANSIBLE FOR HPC?

In this section we outline the motivation for adopting
Ansible as the preferred configuration management tool for
an HPC system.

Firstly, Ansible respects the already established security
principles within the cluster, as it uses SSH to perform
configuration tasks on remote systems. It does not require
to establish a second Public Key Infrastructure just for the
purpose of configuration management. Therefore, it is possible
to delegate administration tasks simply by authorizing the
user’s key on the appropriate machine and using sudo to
provide fine grained control over elevated privileges, and thus,
which configuration actions can be managed by a particular
user.

Secondly, it does not require an agent to be installed on
every node. This means that it does not generate a constant
stream of messages over the network as machines check that
the configuration is compliant, and the technical burden in
order to install Ansible within a cluster is very low. In HPC,
these are especially critical factors, as we do not want to
compromise the execution performance, nor require significant
effort to install agents on a potentially vast estate of machines.

Furthermore, the configuration is defined in YAML files
stored on the file system. They are plain text and easily stored
in version control, rather than requiring a dedicated server
component and databases. Therefore, administration tasks can
be performed from any machine with a copy of the files and
which can reach the target nodes - rather than designating a
central provider, which can be inconvenient in geographically
distributed systems such as a grid.

The configuration is abstracted into roles, which are com-
posed of tasks. Roles are grouped together into playbooks. The
targets of a playbook are defined at run time by supplying an
inventory of hosts. Tasks can be parameterized to maintain
a high level of abstraction within the configuration, adding
host-specific information to the inventory which is substituted
at run time. The administrator is free to define the granularity
of each role or playbook - for example, a worker node role
could contain every task to configure a worker node. However,
separate roles could also be defined, such as NFS client, LDAP
client, PBS client and composed together within a worker node
playbook. In future, the same roles could be reused, such as
for a login/UI node playbook.

The declarative approach of the configuration allows the
administrator to define the desired state in terms of package X
should be present and installed, and Ansible will invoke the
distribution package manager with the appropriate command
line. This avoids having many if..else statements to
support different platforms that would be required with a
script-based approach.



Finally, Ansible is unique in that it can configure container
images as the target instead of physical hosts, without any
additional supporting infrastructure, and push the resulting
image to the Docker Hub. This provides a mechanism which
can automatically package an application and HPC software
stack already defined in a playbook into a container image
without additional complexity.

IV. ANSIBLE PLAYBOOKS FOR OPENHPC RECIPIES

The Ansible playbooks have been created by following
the OpenHPC version 1.3.5 [20] recipes and breaking down
each task into logical roles. The roles are grouped together
in high level tasks that cover master / head node installation,
node installation and updating nodes post-installation. A global
config file allows parameters to be set which determine the
components that are installed in the environment.

The implementation of each role follows a consistent
pattern, where distribution specific tasks are separated into
different files and conditionally imported into the main file.
This enables the playbook to be easily ported in future to
support other flavours of Linux.

Each playbook begins with validation tasks that ensure
the environment is prepared appropriately before installation.
This highlights problems such as the hostname not set in
/etc/hosts, a firewall blocking required ports, or that the IP
address defined for the head node is actually assigned to a
valid interface on the system. In addition, it performs sanity
checking of the requested components, warning the user if
no compiler has been selected, or if a default environment
module has not been defined. When deploying an environment
on a many different systems, this provides some visibility
of the reproducibility challenges that might arise, and avoids
frustration from a configuration that fails part way through.

A. Available roles

The initial version of the playbooks support a subset of the
available OpenHPC recipes, providing Ansible roles to deploy
a stateful or stateless cluster using the xCAT provisioning
middleware, and PBS Professional as the resource manage-
ment middleware. The playbook incorporates support for con-
figuring xCAT as part of the cluster installation. Therefore,
it is will automatically configure the required definitions in
the xCAT database to allow the nodes to be installed, based
on the options chosen in the configuration file. The tasks
have initially been implemented to support RedHat / CentOS
derived distributions only, as shown in Table I.

B. Example deployment

In this section, we outline the steps necessary to deploy a
standalone cluster using the playbooks on a bare-metal system
running CentOS 7.x.

1) With a working Python installation, install Ansible using
pip install ansible

2) Clone the clusterworks/inception repository
from GitHub

Install master Install nodes Update nodes

validation validation validation
repos xcat mkdef repos
ohpc base pbs create ntp
xcat base sync files
nfs nfs
pbs ssh
ssh ohpc base
dev tools pbs

TABLE I
AVAILABLE ROLES

3) Copy the config template and adjust to suit your en-
vironment, configuring the SMS/head node network
identification and path to the CentOS image

4) Edit the inventory to include details of the head and
worker nodes

5) Run the install_master playbook
6) Run the install_nodes playbook
7) Boot and install the worker nodes via the network
8) Run the update_nodes playbook
After each step is complete, the cluster will be ready and

the pbsnodes command can be used to inspect the cluster
status from the head node. A user could now be created and
begin to submit jobs for execution.

As this procedure uses the OpenHPC recipe without any
customization, the standalone cluster will share home direc-
tories from the head node using NFS. The local password
database is copied to every node when the update_nodes
playbook is executed. A limitation of this methodology is that
updates will only be applied to nodes which are powered
on and accessible. However, the idempotent nature of the
playbooks means they can be executed as often as required in
order to maintain the desired state of the cluster. Therefore, this
problem can be alleviated by executing the update_nodes
playbook periodically or in response to node boot events from
xCAT.

V. CONSIDERATIONS FOR PRODUCTION USAGE

At the University of Huddersfield, we deployed a 32 node
Beowulf cluster in under 30 minutes using the Ansible play-
book in the default configuration. If an inventory of the nodes,
MAC addresses and IP addresses is already available, the
cluster deployment is automated from start to finish. For a
temporary cluster used for the purpose of a single experiment,
or for demonstration or training purposes, the default recipe
is likely sufficient, and a good exercise in order to gain
experience with how to compose a HPC software stack without
putting a production system at risk. However, it will be
necessary to incorporate customizations to the environment
so that it can be used in production or at scale.

For example, in a production environment, the shared stor-
age may not be hosted directly on the head node. In addition,
a directory server such as LDAP may be used to provide
single sign on capabilities for the cluster. Configuration of
these aspects is out of the scope of the OpenHPC recipe, and
thus has not been implemented within the playbook.



v e r s i o n : ”2”
s e t t i n g s :

c o n d u c t o r :
ba se : c e n t o s : 7

p r o j e c t n a m e : ohpcdemo
s e r v i c e s :

demo :
from : c e n t o s : 7
r o l e s :
− r e p o s
− ohpc base compute
− d e v t o o l s

e n t r y p o i n t : / b i n / bash
r e g i s t r i e s : {}

Fig. 1. Container Playbook Example

We expect that the base OpenHPC Ansible roles will be
combined with a set of custom roles made by the administrator,
to provide contextually specific configuration such network file
systems, directory servers or sysctl tuning parameters. Custom
roles can be included within the install_master and
update_nodes playbooks to facilitate this customization.
The file structure provides separation between base roles and
custom roles, which will allow upgrades and changes to be
tested independently, and it is essential to store the config-
uration within a version control repository. Furthermore, this
provides a mechanism for administrators to test and contribute
custom roles to the base set for use by the community.

VI. DEPLOYING IN-CONTAINER HPC STACK WITH
ANSIBLE CONTAINER

The playbook provides roles that configure the OpenHPC
repositories and installs a set of development tools, libraries
and software to support HPC applications. The same roles
can be reused within Ansible Container [21] in order to
generate a Docker image, rather than installing on a physical
cluster. Therefore, it is possible to quickly and easily package
a known working configuration within a container, without
fragmenting the configuration into two separate components
to handle bare metal and container installation respectively.
This offers a portable and flexible way to create, test and share
software stacks without placing an additional burden on the
administrator.

An example playbook for Ansible Container is shown in
Figure 1. This will build a container which includes the
OpenHPC repositories, base packages, and the development
tools selected in the playbook configuration - compilers,
libraries and default environment. The same roles used to
install run time applications on the physical cluster can be used
to install in the container. When the container is deployed on
another system, the user can be confident that the application
will execute as intended.

This opens up several possibilities; firstly, whilst the con-
tainer format itself is standardized and well portable between
systems, the process of building the container image - and
what should be included within an image - is not. The play-
books define recipes for building containers using the same

established methods used to deploy and manage software on
physical systems, addressing this gap. Secondly, the container
offers a robust mechanism in order to achieve Continuous
Integration (CI) and Continuous Deployment (CD) of the HPC
software stack itself. The container environment, as it can be
configured in exactly the same way as the physical system,
can be used to test and validate that the cluster setup described
by the playbook is functional and properly integrated - rather
than testing individual components in isolation. Finally, the
container can be exploited to easily create virtual instances
of existing compute nodes. This can be applied in order
to extend the physical cluster into a dynamically scalable
resource, such as a cloud, to facilitate bursting. Therefore, the
combination of Ansible Container and the OpenHPC playbook
is a natural progression, reducing the barrier of entry to take
advantage of DevOps techniques and capabilities within the
HPC environment.

VII. SUMMARY

In this paper, a suite of Ansible roles and playbooks is
presented that can be used in order to build and deploy a
cluster environments using a well defined, easy to use and
extensible workflow based on components maintained by the
OpenHPC Community. The rationale for selecting Ansible
as the configuration management tool for a HPC system is
outlined, showing that it offers a low barrier to adoption
by respecting already established principles such as SSH
authentication and plain text configuration files.

An example deployment, including the process to reproduce
the cluster installation on another system, is documented. This
allows a turn-key batch scheduling cluster to be deployed in an
automated manner, instilled with the best practice packaging
of the OpenHPC repositories.

Finally, we described how the same roles and playbooks can
be reused to generate container images for HPC applications,
with controlled and consistent behaviour. It allows them to be
packaged along with the supporting middleware and libraries
required for execution, enabling enhanced reproducibility,
portability, automated testing and flexible deployment from
bare metal to the cloud.

The playbooks are released under an open source license
and available on GitHub [22].

VIII. FUTURE WORK

The available roles are currently being developed to include
the additional recipes offered by the OpenHPC community,
to include the full range of provisioning and resource man-
agement middlewares, extra packages and Linux distribution
support. CI and CD pipelines will be established for the
playbooks in order to rapidly deploy, test and work towards
hardening the solution for production.

Based on the properties of xCAT, which is proven to scale
up to 10,000+ cores, and the fact that Ansible uses an SSH
agentless configuration approach, we expect that the OpenHPC
playbooks will have good scalability from small, to medium



and extreme scale systems. It is planned to evaluate the
performance on a large, production HPC cluster.

Finally, 3 use cases for Ansible Container using the
OpenHPC playbooks were presented, which are currently in
use by the authors. This will be further developed to ensure
that the functionality is on par with the bare metal deployment
method, offering the capability to deploy the same turn-key
cluster stack within a virtualized environment.

REFERENCES

[1] C. C. Group. (2017, jun) The importance of configuration management.
[Online]. Available: https://c2sconsultinggroup.com/the-importance-of-
configuration-management/

[2] T. Delaet, W. Joosen, and B. Vanbrabant, “A survey of system config-
uration tools,” in Proceedings of the 23rd Large Installations Systems
Administration (LISA) conference. Usenix association, 2010, pp. 1–14.

[3] Puppet: deliver better software faster. [Online]. Available:
https://puppet.com/

[4] Chef: Configuration management. [Online]. Available:
https://www.chef.io/configuration-management/

[5] Saltstack: intelligent, event-driven it automation software. [Online].
Available: https://www.saltstack.com/

[6] Ansible: Simple it automation. [Online]. Available:
https://www.ansible.com/

[7] V. Hendrix, D. Benjamin, and Y. Yao, “Scientific cluster deployment
and recovery–using puppet to simplify cluster management,” in Journal
of Physics: Conference Series, vol. 396, no. 4. IOP Publishing, 2012,
p. 042027.

[8] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos, “Management
of an academic hpc cluster: The ul experience,” in Proc. of the 2014
Intl. Conf. on High Performance Computing Simulation (HPCS 2014).
IEEE, 2014.

[9] J. Slawinski and V. Sunderam, “Autonomic multi-target deployment of
science and engineering hpc applications,” in Cloud and Autonomic
Computing (ICCAC), 2014 International Conference on. IEEE, 2014,
pp. 180–186.

[10] D. Franois, “Behind the scenes of a foss-
powered hpc cluster at uclouvain,” available at
https://archive.fosdem.org/2018/schedule/event/hpc uclouvain/.

[11] C. Campbell, N. Mecca, I. Obeid, and J. Picone, “The neuronix hpc
cluster: Cluster management using free and open source software tools,”
in Signal Processing in Medicine and Biology Symposium (SPMB), 2017
IEEE. IEEE, 2017, pp. 1–3.

[12] G. D. S. Aguiar, A. E. M. Brito, F. Fonseca, L. E. T. Silva, and L. L.
Vieira, “Cloudslurm: a multi-provider approach for hpc in the cloud,”
2018.

[13] W. C. Proctor, M. Packard, A. Jamthe, R. Cardone, and J. Stubbs,
“Virtualizing the stampede2 supercomputer with applications to hpc in
the cloud,” arXiv preprint arXiv:1807.04616, 2018.

[14] (2018, sep) Openhpc. [Online]. Available: https://openhpc.community/
[15] K. W. Schulz, C. R. Baird, D. Brayford, Y. Georgiou, G. M. Kurtzer,

D. Simmel, T. Sterling, N. Sundararajan, and E. Van Hensbergen,
“Cluster computing with openhpc,” 2016.

[16] (2018, sep) xcat. [Online]. Available: https://xcat.org/
[17] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific

containers for mobility of compute,” PloS one, vol. 12, no. 5, p.
e0177459, 2017.

[18] R. Priedhorsky and T. Randles, “Charliecloud: Unprivileged containers
for user-defined software stacks in hpc,” in Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2017, p. 36.

[19] D. M. Jacobsen and R. S. Canon, “Contain this, unleashing docker for
hpc,” Proceedings of the Cray User Group, 2015.

[20] (2018, sep) openhpc/ohpc 1.3.5ga - github. [Online]. Available:
https://github.com/openhpc/ohpc/tree/v1.3.5.GA

[21] (2018, feb) Ansible container documentation. [Online]. Available:
https://docs.ansible.com/ansible-container/

[22] (2018, aug) clusterworks/inception github repository. [Online].
Available: https://github.com/clusterworks/inception

APPENDIX

A. Abstract

In this paper, we present a toolbox of reusable Ansible
roles and playbooks in order to configure a cluster soft-
ware environment described by the freely available OpenHPC
recipes. They can be composed in order to deploy a robust and
reliable cluster environment, instilled with the best practise
offered by the OpenHPC packaging, and the repeatability and
integrity guarantees of the configuration managed approach.
With container virtualization setting a new trend in scientific
software management, we focus this effort on supporting the
deployment of such environments on both bare-metal and
container-based targets.

B. Description
1) Check-list (artifact meta information):
• Program: Ansible, xCAT, PBS Professional, CentOS 7
• Run-time environment: Python, Shell
• Hardware: 3 Physical or Virtual Machines
• Publicly available?: Yes
2) How software can be obtained: Open source software

via GitHub (https://github.com/clusterworks/inception), also
tarball included in artifact.

3) Hardware dependencies: Physical or Virtual Machines.
4) Software dependencies: CentOS 7, Python, Ansible

C. Installation

See Section IV B of the paper.

D. Evaluation and expected result

Cluster is deployed using the playbook based on the pro-
vided inventory and configuration, which can be used to
compile MPI codes and submit jobs for execution.

E. Experiment customization

The repository contains a default configuration that deploys
xCAT and PBS. The user can supply additional Ansible roles
that can apply customizations to the deployed environments on
the head and worker nodes. Depending on the environment,
it may be necessary to customize the proxy, repository and
package settings before installation of the playbook. These
customizations are documented in the configuration file.

F. Notes

The video artifact provides a guided walkthrough in order
to reproduce the installation, evaluation and expected result.


