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ON APPROXIMATION
OF A THREE-DIMENSIONAL CONVEX BODY

BY CYLINDERS

V. V. MAKEEV

Abstract. New results on approximation of a convex body K ⊂ R
3 by affine images

of circular cylinders, parallelepipeds, hexagonal and octagonal regular (and some
other) prisms are obtained.

Two of the theorems obtained are as follows (V (K) denotes the volume of a body
K ⊂ R

3).

Theorem 1. Let K be an arbitrary convex body in R
3. There exists a regular

octagonal prism an affine image of which is circumscribed about K and has volume
at most 3

√
2V (K), and there exists a circular cylinder an affine image of which is

circumscribed about K and has volume at most 3π
2

V (K). For a tetrahedron K both
estimates are the best possible.

Theorem 2. Let K be a centrally symmetric convex body in R
3. There exists a

regular octagonal prism, an affine image of which lies in K and has volume at least
4
9
(2
√

2 − 2)V (K).

In what follows, by a convex body K ⊂ R
n (a figure K ⊂ R

2) we mean a compact
convex set with nonempty interior; by S(K) and V (K) we mean the area of K ⊂ R

2

and the volume of K ⊂ R
n, respectively. By Gk(Rn) (respectively, G+

k (Rn)), we mean
the Grassmann manifold of k-planes (respectively, of oriented k-planes) in R

n passing
through 0 ∈ R

n. Let γn
k : Ek(Rn) → Gk(Rn) (respectively, (γn

k )+ : E+
k (Rn) → G+

k (Rn))
be the tautological bundle over the Grassmann manifold, in which the fiber over a plane
is the same plane regarded as a k-dimensional subspace of R

n. As usual, let Vk(Rn) be
the Stiefel manifold of orthonormal k-frames in R

n.
We say that a polyhedron M is inscribed in a convex body K ⊂ R

n if the vertices of
M belong to the boundary of K. A polyhedron M is circumscribed about K if K ⊂ M
and K intersects all faces of M .

§1. A lemma on approximation of a convex body by a cylinder

In the sequel, we need the following simple (and, apparently, well-known) statement.

Lemma 1. For every convex body K ⊂ R
n and a line l in R

n, there exists a convex
cylinder C of volume V (C) ≤ nV (K) that contains K, has ruling parallel to l, and is
such that the line connecting two points where K meets the bases of C is parallel to l.

Proof. Consider the union C ′ of lines that are parallel to l and intersect K. By construc-
tion, C ′ is an infinite convex cylinder. Let AB be the longest chord AB of K parallel
to l.
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Figure 1.

Obviously, there exist two parallel support hyperplanes P1 and P2 for the body K
at A and B. We show that P1 and P2 cut from C ′ a required cylinder C containing K
(Figure 1).

Consider the cone K1 with vertex B and base coinciding with the base of C that
passes through the vertex A. Clearly, V (K1) = V (C)

n .
We prove that V (K) ≥ V (K1). It is obvious that the length of the intersection of

K with an arbitrary line l′ parallel to l does not exceed the length of the intersection
of l′ with the cone K1 (Figure 1). Consequently, by the Cavalieri principle, we have
V (K) ≥ V (K1), which completes the proof of the lemma. �

§2. Approximation of a three-dimensional convex body

by affine-regular hexagonal prisms

Theorem 1. 1. About an arbitrary convex body K ⊂ R
3, an affine image of a regular

hexagonal prism with a prescribed direction of a lateral edge can be circumscribed. The
segment connecting the points at which the bases of the cylinder are tangent to K is
parallel to a lateral edge of the prism. The volume of this prism does not exceed 6V (K).

2. About an arbitrary convex body K ⊂ R
3, an affine image of a regular hexagonal

prism tangent to K at the centers of the bases can be circumscribed.

Proof. 1. We note that the orthogonal projection of K ⊂ R
3 onto a plane P orthogonal

to a given line l ⊂ R
3 is inscribed into an affine-regular hexagon S.

Let C be an infinite cylinder bounded by the six planes that pass through the sides
of S and are parallel to l. Let AB be the longest chord of K parallel to l. Then there
are parallel support planes to K passing through A and B and such that, taken together
with the cylinder C, they bound the required prism.

The estimate for the volume of this prism is obtained by application of the lemma and
the fact that the area of an affine-regular hexagon S circumscribed about a plane convex
figure does not exceed the doubled area of the latter.

2. It suffices to prove the second statement of the theorem for smooth strictly convex
bodies. In the other cases, the theorem is obtained by passing to a limit.

In each plane P through O ∈ R
3, we mark its intersection point with the line containing

a unique (by the strict convexity of K) longest chord of K perpendicular to P . We have
constructed a section of the tautological bundle γ3

2 : E2(Rn) → G2(R3). Let C1 be its
support.
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In each plane P in question, we mark also the centers of the affine-regular hexagons
circumscribed about the orthogonal projection of the body K onto the plane P . Let C2

be the set of centers of all such hexagons in E2(R3). For a typical smooth body K, the
set C2 is a compact two-dimensional manifold that intersects a typical plane P ⊂ E2(R3)
at an odd number of points, because (see [1]) an odd number of affine-regular hexagons
can be circumscribed about a smooth convex figure in general position in the plane.

Thus, for a typical smooth strictly convex body K, the cycles C1 and C2 represent
generators of H2(E2(R3); Z2) and have intersection index 1 modulo 2. Therefore, C1 ∩
C2 �= ∅, which proves the theorem. �

Remarks. 1. The volume estimate in item 1 of the theorem is the best possible for a
tetrahedron K and an arbitrary direction of a lateral edge of the circumscribed hexagonal
prism parallel to a line passing through the vertex of K and a point of the face opposite
to this vertex.

2. It seems plausible that a regular hexagonal prism can be circumscribed about an
arbitrary convex body K ⊂ R

3; however, the author was not able to prove this.
In [3], it was proved that a regular pentagon can be circumscribed about the orthogonal

projection of a convex body K ⊂ R
3 onto a plane; therefore, a regular pentagonal prism

can be circumscribed about a convex body K ⊂ R
3.

3. It can easily be seen that the volume of a tetrahedron lying in a regular hexagonal
prism C does not exceed 2

9V (C) and equality is attained if the skew edges of the tetra-
hedron are great diagonals of the bases. Is it true that each convex body K ⊂ R

3 lies
in an affine-regular hexagonal prism of volume at most 9

2V (K)? The results of the next
section imply that this is true if the constant 9

2 is replaced by 45
√

2+72
28 < 4.845.

§3. Approximation of a three-dimensional body

by affine-regular octagonal prisms

Theorem 2. For an arbitrary convex body K in R
3, there exists a regular octagonal

prism, an affine image of which is circumscribed about K and has volume at most
3
√

2V (K). For a tetrahedron K, the above estimate is the best possible.

Proof. In [1], it was proved that the projection of K onto a plane along a line l is inscribed
into an affine-regular octagon.

By the lemma proved above, the body K lies in a cylinder C with ruling parallel to l
and V (C) ≤ 3V (K). Then an affine-regular octagonal prism C1 with base lying in the
same plane and with the same direction of ruling is circumscribed about C. The base T
of the cylinder C is inscribed into an affine-regular octagon T1, which is the base of the
prism C1.

We prove that S(T ) ≤ S(T1)/
√

2. By simple variational considerations, the ratio
S(T )/S(T1) is minimal if T is a polygon with vertices at the vertices of T1, and, therefore,
if T is a parallelogram inscribed in T1, and S(T )/S(T1) = 1/

√
2.

To complete the proof, it suffices to observe that a tetrahedron of maximal volume
inscribed in a regular octagonal prism has perpendicular diameters of the bases as pairs
of its skew edges, and its volume is equal to 1

3
√

2
of the volume of the prism. �

Corollary 1. Each convex body K ⊂ R
3 lies in a parallelepiped of volume not exceeding

3(1 +
√

2
2 V (K).

Indeed, a prism that exists by the above theorem can be inscribed in the parallelepiped
that has a volume indicated (Figure 2) and is bounded by the planes passing through
the bases of the prism and the planes passing through every other lateral face.
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Figure 2.

Figure 3.

1. We note that the problem of approximation of a convex body K ⊂ R
3 by a parallele-

piped from inside was solved in [2], where it was proved that every convex body K ⊂ R
3

contains a parallelepiped of volume not less than 2
9V (K) and that this estimate cannot

be improved if K is a tetrahedron.
2. About any convex body K ⊂ R

3, an affine-regular hexagonal prism of volume at
most 45

√
2+72
28 V (K) < 4.845V (K) can be circumscribed.

To prove this statement, we consider an affine-regular octagonal prism C of volume
not exceeding 3

√
2V (K) and containing K, and circumscribe about it an affine-regular

hexagonal prism C1 with the same bases and the same direction of the lateral edges. The
bases of this prism are affine-regular hexagons circumscribed about the octagonal bases
of C as shown in Figure 3. Simple calculations show that V (C1) = 15+12

√
2

28 V (C), which
implies the required estimate.

3. About a convex body K⊂R
3, a hexagonal prism with centrally symmetric base

and volume at most 6+9
√

2
4 V (K) < 4.6822V (K) can be circumscribed.

Such a prism is obtained by deleting two symmetric lateral faces from the affine-regular
octagonal prism constructed in the above theorem.

§4. Approximation of a three-dimensional convex body

by an affine image of a circular cylinder

In [5], it was proved that, for every convex body K in R
3 there exists a circular cylinder

an affine image of which is contained in K and has volume at least 4π
27

√
3
V (K), and that

this estimate cannot be improved if K is a tetrahedron.
This theorem solves the problem of approximation from inside of a convex body K ⊂

R
3 by an affine image of a circular cylinder. The following theorem solves the same

question for approximations of a convex body K ⊂ R
3 from outside.
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Figure 4.

Theorem 3. For every convex body K in R
3, there exists a circular cylinder an affine

image of which contains K and has volume at most 3π
2 V (K). For a tetrahedron K, this

estimate cannot be improved.

To prove the first statement, it suffices to circumscribe an elliptic cylinder about an
affine-regular octagonal prism existing by Theorem 2. The second statement follows from
the fact that, for a tetrahedron of maximal volume inscribed in a circular cylinder, two
perpendicular diameters of the base of the cylinder are skew edges of the tetrahedron
(Figure 4), and the volume of this tetrahedron is 2

3π of the volume of the cylinder.

Remark. Among all cylinders, the elliptic ones are the worst approximable by inscribed
tetrahedrons.

Proposition. For every convex cylinder C in R
3, there exists an inscribed tetrahedron

of volume at least 2
3πV (C); equality occurs only for elliptic cylinders.

Let C1 be the lower base of a convex cylinder C ⊂ R
3. By [6, p. 69], a quadrangle

ABCD of area at least 2
π S(C) is inscribed in C1, and the inequality can be strict only

if C1 is not an ellipse. Let A1B1C1D1 be the translate of ABCD inscribed in the upper
base of C. Then ACB1D1 is a tetrahedron of volume at least 2

3π V (C) inscribed in C.

§5. Approximation of a centrally symmetric three-dimensional convex

body by affine regular octagonal prisms

In what follows, we use the abbreviation c.s.c.b. K for “centrally symmetric convex
body K”.

Proposition. Every c.s.c.b. K ⊂ R
3 is contained in a circumscribed affine image of a

regular octagonal prism tangent to K at the centers of the bases and having a lateral edge
with a prescribed direction.

The proof is similar to that of Theorem 2 (see §3) and follows from the fact [7] that
about every centrally symmetric convex figure in a plane one can circumscribe an affine
image of a regular octagon, and the longest chord of a c.s.c.b K ⊂ R

3 can be drawn
through its center in an arbitrary direction.

Remarks. 1. Choosing the direction of a lateral edge of the prism coinciding with the
direction of a diameter of K, we can construct a direct prism of the type indicated in
the theorem.

2. As in the theorem, the volume of the circumscribed prism is less than or equal to
3
√

2V (K). Moreover, if K is an octahedron and a lateral edge has the same direction as
a diagonal of K, then the above estimate is the best possible.
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Theorem 3. Every c.s.c.b. K ⊂ R
3 contains an inscribed affine image of a regular octa-

gonal prism with the same center of symmetry and with volume at least 4(2
√

2−2)
9 V (K) >

0.3681V (K).

We need the following statement.

Lemma 2. If a convex figure K ⊂ R
2 is circumscribed about a regular octagon S, the

distance between opposite sides of which is 1, then S(K) ≤ 1.

Drawing the support lines to K at the vertices of the octagon S, we may assume that
K is an octagon circumscribed about S.

By standard variational considerations, we see that either the sides of a circumscribed
octagon K of maximal area are split by the vertices of S into two equal parts, or some
two sides of K contain sides of S.

Any octagon K with the sides’ midpoints at the vertices of S has vertices obtained
from a certain point of the plane by successive reflections with respect to the vertices of
S. (One of the vertices of K can lie on a side of S.) It can easily be proved that the areas
of all octagons K in question circumscribed about S are equal and do not exceed 1.

A simple but time-consuming consideration of the cases where two or three sides of S
belong to the sides of K shows that in these cases we also have S(K) ≤ 1.

Now we proceed to the proof of the theorem.
We show that, for each plane P ∈ G2(R3), we can find a pair of planes P1 and P2 that

depend continuously on P , are symmetric relative to the center of symmetry of K, and
satisfy the inequality S(P1 ∩ K) · d ≥ 4

9V (K), where d is the distance between P1 and
P2.

We prove this for a smooth strictly convex body K; in the other cases the proof is
obtained by passage to a limit.

We choose P ∈ G2(R3) and consider the Swartz rounding of K with respect to a line
perpendicular to P . We obtain a smooth strictly convex body of revolution K1 that is
reflection symmetric with respect to a plane P0 parallel to P . Taking the support planes
to K1 at all boundary points of K1 at a distance x > 0 from the plane P0, we obtain
bicones of revolution symmetric with respect to P0 (Figure 5). By simple monotonicity
and continuity arguments, there exists a single number x(P ) > 0 depending on P such
that h(P ) = 6x(P ), where h(P ) is the height of the bicone C constructed by x(P ). Let
P1 and P2 be planes parallel to P0 and passing at a distance of x(P ) from it. Then,
clearly, S(C ∩ P1) · 2x(p) = 4

9s(C ∩ P0) · h(p)
3 = 4

9V (C).
Thus, the required planes are parallel to P and pass at a distance of x(P ) from the

center of symmetry of K.
The required continuous field of pairs of planes is constructed. By the same argument

as in [5, Theorem 1], in this field we find a pair of symmetric planes (P1, P2) with inscribed
symmetric affine-regular octagons. By construction and by the estimate in Lemma 2,
the convex hull of these octagons is the required affine-regular octagonal prism.

Corollaries. 1. Every c.s.c.b. K ⊂ R
3 contains an affine image of a circular cylinder

with the same center of symmetry and with volume at least π
9 V (K).

Indeed, such a cylinder is inscribed in the prism that exists by the theorem.
2. Every c.s.c.b. K ⊂ R

3 contains a hexagonal prism of volume at least 2
√

2
9 V (K)

and with centrally symmetric base.
Such a prism can be exhibited by taking the convex hull of the twelve vertices obtained

by deleting four vertices of two symmetric lateral faces of the octagonal prism constructed
in Theorem 3.
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P0

Figure 5.

§6. Approximation by decagonal and dodecagonal prisms

Theorem 4. Every c.s.c.b. K ⊂ R
3 is contained in a circumscribed affine image of a

regular decagonal prism that has volume at most (3/ cos 36◦)V (K) < 3.7083V (K) and is
tangent to K at the centers of the bases.

The proof follows from the fact that the orthogonal projection of K to a plane is
inscribed in an affine image of a regular decagon. In [5], it was proved that if in each
plane P ∈ G2(R3) we have a centrally symmetric convex figure continuously depending
on P , then an affine image of a regular decagon is inscribed in one of these figures.
Applying this fact to the field of polar figures in the planes P ∈ G2(R3) (with respect
to some continuous field of circles lying in these figures), we obtain the dual statement
given above.

The volume estimate can be obtained by Lemma 1 if we take into account the fact
that a convex figure of minimal area inscribed in a regular decagon is a regular pentagon
the vertices of which are vertices of the decagon.

It is plausible that, about every c.s.c.b. K ⊂ R
3, one can circumscribe an affine image

of a regular dodecagonal prism that is tangent to K at the centers of the bases (the
volume of this prism is automatically less than or equal to 2

√
3V (K)). The author does

not know how to prove this fact; however, the following statement is valid.

Theorem 5. Every c.s.c.b. K ⊂ R
3 is contained in a circumscribed affine image of a

dodecagonal right prism C the base of which is a convex “semiregular” dodecagon with
equal sides and with two alternating sizes of angles. This affine image is tangent to K
at the centers of the bases. The volume of the prism does not exceed 4V (K).

From [8] it follows that, in each continuous field of c.s.c. figures in the planes belonging
to G2(R3), there is a figure with an inscribed affine image of a semiregular dodecagon.
The dual statement about a circumscribed affine image of a semiregular dodecagon is
proved similarly.

The volume estimate is obtained by application of Lemma 1 and by taking into account
the fact that a figure of minimal area inscribed in a semiregular dodecagon K12 is the
smallest of the two regular hexagons with vertices at vertices of the dodecagon, and its
area does not exceed 3

4S(K12).

Corollary. Any c.s.c.b. K ⊂ R
3 is contained in a circumscribed affine image of a regular

hexagonal prism that is tangent to K at the centers of the bases and has volume at most
4V (K).
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It is easy to check that these requirements are satisfied by the prism bounded by the
bases and every other lateral face of the dodecagonal prism constructed in Theorem 5.

Remark. If the above conjecture about the existence of a circumscribed affine-regular
dodecagonal prism is valid, then, deleting every other lateral face, we obtain an affine-
regular hexagonal prism of volume at most (2 +

√
3)V (K) circumscribed about K.

§7. Circumscribed direct hexagonal prisms

Theorem 6. Let K ⊂ R
3 be a c.s.c.b. Then:

1) there is a regular hexagonal prism circumscribed about K and tangent to K at points
of great diagonals of the bases;

2) there is a direct hexagonal prism tangent to K at the centers of the bases, circum-
scribed about K, and such that its base is a centrally symmetric hexagon with equal angles
and a pair of adjacent sides of equal length.

It suffices to prove the theorem for strictly convex bodies K, which will be assumed
in the sequel.

To prove the first part of the theorem, we consider the manifold M of triples (e1, e2, e3)
of unit vectors with origin at 0 ∈ R

3 that lie in the same plane and form angles of 2π
3 . It

is obvious that M ∼= V2(R3).
Now, we define a continuous map F : V2(R3) → R

6 by putting F (e1, e2, e3) =
(x1, x2, x3, x4, x5, x6), where x1, x2, and x3 are the lengths of the orthogonal projec-
tions of K to the vectors e1, e2, and e3, respectively. To define x4, x5, and x6, we
consider the unit vector e4 orthogonal to the vectors e1, e2, and e3 for which the triple
(e1, e2, e4) is right. Now, we define x4, x5, and x6 as the coordinates of the orthogonal
projections to e1, e2, and e3 of the point of K the projection of which to e4 is minimal
(since K is strictly convex, such a point is unique).

The cyclic group Z3 acts freely on the manifold M by cyclic permutations of the
vectors e1, e2, e3, and acts on R

6 by simultaneous cyclic permutations in the first and
second triples of coordinates of its points. By construction, the mapping F preserves this
action of Z3.

As was shown in [4], in this case we have x1 = x2 = x3 and x4 = x5 for some triple
of vectors (e1, e2, e3) ∈ M with F (e1, e2, e3) = (x1, x2, x3, x4, x5, x6). Then the prism
bounded by the eight support planes to K that are orthogonal to the vectors e1, e2, e3,
and e4, respectively, satisfies the conditions of statement 1 of the theorem.

The proof of the second part of the theorem is similar. The only difference is that, by
[4], we have x1 = x2 and x4 = x5 = x6 for some triple of vectors (e1, e2, e3) ∈ M with
F (e1, e2, e3) = (x1, x2, x3, x4, x5, x6).

Remark. Simple examples show that no estimates for the volume of the prism indicated
in the theorem can be obtained in terms of the volume of K.
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