Časopis pro pěstování matematiky

Marco Modugno
Jet involution and prolongations of connections

Časopis pro pěstování matematiky, Vol. 114 (1989), No. 4, 356--365
Persistent URL: http://dml.cz/dmlcz/118390

Terms of use:

© Institute of Mathematics AS CR, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

JET INVOLUTION AND PROLONGATIONS OF CONNECTIONS

Marco Modugno, Firenze
(Received April 7, 1987)

Summary. This paper is concerned with the involution of the second anholonomic jet prolongation $J_{1} J_{1} E$ of a fibred manifold $p: E \rightarrow B$ and with some further useful jet techniques. As an application, jet prolongations of connections are obtained. These technical results turn out to be useful in several frameworks of differential geometry and mathematical physics.

Keywords: Jet involution, prolongation of connections, anholonomic jet prolongations.

It is well known [13] that the second tangent bundle TTM of a manifold M is endowed with two projections $\pi_{T M}: T T M \rightarrow T M$ and $T \pi_{M}: T T M \rightarrow T M$ and the canonical involution $s: T T M \rightarrow$ TTM which interchanges the two projections. On the other hand, if we consider the product bundle $p=p r_{1}: E=\mathbf{R} \times M \rightarrow B=\mathbf{R}$, then we have [10] the canonical isomorphisms $J_{1} E \cong \mathbf{R} \times T M$ and $J_{1} J_{1} E \cong \mathbf{R} \times$ $\times T T M$. So, we might expect that it is possible to generalize the involution s to $J_{1} J_{1} E$ for any fibred manifold $p: E \rightarrow B$. Unfortunately, such a canonical involution s does not exist in general. However, we can prove that the choice of a symmetric linear connection k of the base space B yields the result. Actually, the feature which turns out to be essential in the particular case of $p=p r_{1}: E=\mathbf{R} \times M \rightarrow B=\mathbf{R}$ is neither the product nor the dimension one of the base space, but just the canonical connection of \mathbf{R}. On the way we analyse several important affine and vector bundles by means of functorial jet techniques.

The above results yield an interesting application for the Ehresmann connections (briefly called connections), which constitute the most appropriate unifying framework of all standard connections $[1,2,5,6,7,8,10,11,12]$. Given a connection, i.e. a section $\gamma: E \rightarrow J_{1} E$, it would be interesting to prolong it to a connection $\Gamma: J_{1} E \rightarrow J_{1} J_{1} E$. An immediate idea could be to apply the functor J_{1} to obtain $J_{1} \gamma: J_{1} E \rightarrow J_{1} J_{1} E$. Unfortunately, $J_{1} \gamma$ is not a section, because it interchanges the two projections of $J_{1} J_{1} E$. However, the involution s_{k} is just what we need for setting the problem. In fact, $\Gamma_{k}=s_{k} \circ J_{1} \gamma: J_{1} E \rightarrow J_{1} J_{1} E$ turns out to be the jet prolongation of γ (which depends on the choice of k). Additionally, the curvature of Γ_{k} depends in a nice way on the curvatures of γ and k. Moreover, if we consider [12] a system (C, ξ) of connections of E and the system (K, ψ) of linear connections of $T^{*} B$, then we obtain the canonical prolonged system of connections of $J_{1} E$. Following a similar line, we find the prolongation of a connection γ on E to a connection γ_{k}
on the vector bundle $J_{1}^{*} E=T B \otimes_{E} V^{*} E$. This result turns out to be useful for lagrangian theories [14].

For the basic notions and notation concerning jet spaces and connections we refer to $[9,10,12]$. - Thanks are due to I. Kolář for his critical reading of the manuscript.

1. INVOLUTION OF THE SECOND ANHOLONOMIC JET SPACE

Our consideration is in the category C^{∞}. Through the paper we are concerned with a fibred manifold $p: E \rightarrow B$. We denote by $\left(x^{\lambda}, y^{i}\right)$ the generic fibred manifold chart of E. Roman indices i, j, h, k, \ldots and Greek indices $\lambda, \mu, \varrho, \sigma, \ldots$ run on the coordinates of the fibres and of the base space, respectively. Let $\pi_{E}: V E \rightarrow E$ be the vertical prolongation of $p: E \rightarrow B$. We denote by $\left(x^{\lambda}, y^{i}, \dot{y}^{i}\right)$ the induced fibred manifold chart. Let $p_{1}: J_{1} E \rightarrow B$ be the first jet prolongation of $p: E \rightarrow B$ and let $p_{(01)}: J_{1} E \rightarrow E$ be the natural fibred epimorphism over B. We denote by $\left(x^{\lambda}, y^{i}, y_{\lambda}^{i}\right)$ the induced fibred manifold chart of $J_{1} E$. Then the coordinate expressions of p_{1} and $p_{(01)}$ are $x^{\lambda} \circ p_{1}=x^{\lambda}$ and $\left(x^{\lambda}, y^{i}\right) \circ p_{(01)}=\left(x^{\lambda}, y^{i}\right)$. The transition functions of $J_{1} E$ are $\bar{y}_{\lambda}^{i}=A_{\lambda}^{\varrho}\left(\bar{A}_{j}^{i} y_{e}^{j}+\bar{A}_{\varrho}^{i}\right)$ where $\bar{A}_{j}^{i}=\partial_{j} \bar{y}^{i}, \bar{A}_{\varrho}^{i}=\partial_{\varrho} \bar{y}^{i}, A_{\lambda}^{\varrho}=\partial_{\lambda} x^{\varrho}$. Hence, $p_{(01)}: J_{1} E \rightarrow E$ turns out to be an affine bundle whose vector bundle is $T^{*} B \otimes_{E}$ $\otimes_{E} V E \rightarrow E$.

We recall that, if $p: E \rightarrow B$ and $p^{\prime}: E \rightarrow B^{\prime}$ are fibred manifolds and $f: E \rightarrow E^{\prime}$ is a fibred morphism over B, then $J_{1} f: J_{1} E \rightarrow J_{1} E^{\prime}$ is a fibred morphism over f. If $\left(x^{\lambda}, y^{i}\right) \circ f=\left(x^{\lambda}, f^{i}\right)$ is the coordinate expression of f, then the coordinate expression of $J_{1} f$ is $\left(x^{\lambda}, y^{i}, y_{\lambda}^{i}\right) \circ J_{1} f=\left(x^{\lambda}, f^{i}, \partial_{\lambda} f^{i}+\partial_{j} f^{i} y_{\lambda}^{j}\right)$. By iteration, we obtain the first jet prolongation $p_{11}: J_{1} J_{1} E \rightarrow B$ of $p_{1}: J_{1} E \rightarrow B$ and the natural fibred epimorphism $p_{1(01)}: J_{1} J_{1} E \rightarrow J_{1} E$. Moreover, $p_{1(01)}: J_{1} J_{1} E \rightarrow J_{1} E$ is an affine bundle whose vector bundle is $T^{*} B \otimes_{J_{1} E} V J_{1} E$. On the other hand, we have another fibred morphism $J_{1} p_{(01)}: J_{1} J_{1} E \rightarrow J_{1} E$ over B.

We denote by ($x^{\lambda}, y^{i}, y_{\lambda}^{i}, y_{\lambda 0}^{i}, y_{\lambda \mu}^{i}$) the induced fibred manifold chart of $J_{1} J_{1} E$. Then the coordinate expressions of $p_{11}, p_{1(01)}$ and $J_{1} p_{(01)}$ are $x^{\lambda} \circ p_{11}=x^{\lambda}$, $\left(x^{\lambda}, y^{i}, y_{\lambda}^{i}\right) \circ p_{1(01)}=\left(x^{\lambda}, y^{i}, y_{\lambda}^{i}\right)$ and $\left(x^{\lambda}, y^{i}, y_{\lambda}^{i}\right) \circ J_{1} p_{(01)}=\left(x^{\lambda}, y^{i}, y_{\lambda 0}^{i}\right)$.

The fibred morphism $J_{1} p_{(01)}: J_{1} J_{1} E \rightarrow J_{1} E$ over $p_{(01)}: J_{1} E \rightarrow E$ is affine. Hence

$$
\left(p_{1(01)}, J_{1} p_{(01)}\right): J_{1} J_{1} E \rightarrow J_{1} E \times_{E} J_{1} E
$$

turns out to be an affine bundle and its vector bundle is the sub-bundle $\left(J_{1} E \times_{E} J_{1} E\right) \times_{E}\left(\left(T^{*} B \otimes_{B} T^{*} B\right) \otimes_{E} V E\right)=J_{1} E \times_{E}\left(T^{*} B \otimes_{J_{1} E} V_{E} J_{1} E\right) \subset$ $\subset J_{1} E \times_{E}\left(T^{*} B \otimes_{J_{1} E} V J_{1} E\right)$. Clearly, $J_{1} p_{(01)}$ provides another affine structure on $J_{1} J_{1} E$ over $J_{1} E$.

Lemma 1. Let $q: F \rightarrow B$ be a fibred manifold, $\pi: F \rightarrow E$ a fibred morphism over B such that $\pi: F \rightarrow E$ is an affine bundle whose vector bundle is $\bar{\pi}: \bar{F} \rightarrow E$. Then $J_{1} \pi: J_{1} F \rightarrow J_{1} E$ is an affine bundle whose vector bundle is $J_{1} \bar{\pi}: J_{1} \bar{F} \rightarrow J_{1} E$.

Proof follows from a computation in local coordinates.
In particular, we can consider the fibred manifold $q=p_{1}: F=J_{1} E \rightarrow B$ and the fibred morphism $\pi=p_{(01)}: J_{1} E \rightarrow E$.

Corollary 1. $J_{1} p_{(01)}: J_{1} J_{1} E \rightarrow J_{1} E$ is an affine bundle whose vector bundle is $J_{1}\left(T^{*} B \otimes V E\right)$.

Summing up, we have obtained the following three affine bundles with their vector bundles:
i) $p_{1(01)}: J_{1} J_{1} E \rightarrow J_{1} E$ with $T^{*} B \otimes_{E} V J_{1} E$,
ii) $J_{1} p_{(01)}: J_{1} J_{1} E \rightarrow J_{1} E$ with $J_{1}\left(T^{*} B \otimes_{E} V E\right)$,
iii) $\left(p_{k(01)}, J_{1} p_{(01)}\right): J_{1} J_{1} E \rightarrow J_{1} E \times_{E} J_{1} E$ with $\left(J_{1} E \times_{E} J_{1} E\right) \times_{E}\left(\left(T^{*} B \otimes_{B} T^{*} B\right) \otimes_{E} V E\right)$.
The situation is clearly illustrated by the transition functions of $J_{1} J_{1} E$

$$
\begin{gathered}
\bar{y}_{\mu}^{i}=A_{\mu}^{\varrho}\left(\bar{A}_{j}^{i} y_{\varrho}^{j}+\bar{A}_{\partial}^{i}\right), \\
\bar{y}_{\lambda 0}^{i}=A_{\lambda}^{\varrho}\left(\bar{A}_{j}^{i} y_{\rho 0}^{j}+\bar{A}_{\varrho}^{i}\right), \\
\bar{y}_{\lambda \mu}^{i}=A_{\lambda}^{e} A_{\mu}^{\sigma}\left(\bar{A}_{j}^{i} y_{\varrho \sigma}^{j}+\bar{A}_{h k}^{i} y_{\varrho 0}^{k} y_{\sigma}^{k}+\bar{A}_{j \varrho}^{i} y_{\sigma}^{j}+\bar{A}_{j \sigma}^{i} y_{\varrho 0}^{j}+\bar{A}_{\varrho \sigma}^{i}\right)+A_{\lambda \mu}^{v}\left(\bar{A}_{j}^{i} y_{v}^{j}+\bar{A}_{v}^{i}\right) .
\end{gathered}
$$

We need some further consequences of Lemma 1.

Corollary 2. Let $q: F \rightarrow B$ be a fibred manifold, $\pi: F \rightarrow E$ a fibred morphism over B and $\pi: F \rightarrow E$ a vector bundle. Then $J_{1} \pi: J_{1} F \rightarrow J_{1} E$ is a vector bundle.

Let $W \rightarrow B$ be a vector bundle. Let $F \rightarrow B$ be a fibred manifold, $\pi: F \rightarrow E$ a fibred morphism over B and $\pi: F \rightarrow E$ a vector bundle. Then the universal property of the tensor product induces the natural linear fibred morphism over $J_{1} E$

$$
\tau: J_{1} W \otimes_{J_{1} E} J_{1} F \rightarrow J_{1}\left(W \otimes_{E} F\right)
$$

Its coordinate expression is

$$
\left(x^{\lambda}, y^{i}, t^{i j}, y_{\lambda}^{i}, t_{\lambda}^{i j}\right) \circ \tau=\left(x^{\lambda}, y^{i}, w^{i} z^{j}, y_{\lambda}^{i}, w_{\lambda}^{i} z^{j}+w^{i} z_{\lambda}^{j}\right) .
$$

In particular, we can consider the vector bundle $W=T^{*} B$, the fibred manifold $F=V E$ and the vector bundle $\pi=\pi_{E}: V E \rightarrow E$.

Corollary 3. We have a natural linear fibred morphism over $J_{1} E, \tau: J_{1} T^{*} B \otimes_{J_{1} E}$ $\otimes_{J_{1} E} J_{1} V E \rightarrow J_{1}\left(T^{*} B \otimes_{E} V E\right)$. Its coordinate expression is

$$
\left(x^{\lambda}, y^{i}, \dot{y}_{\mu}^{i}, y_{\lambda}^{i}, \dot{y}_{\lambda \mu}^{i}\right) \circ \tau=\left(x^{\lambda}, y^{i}, \dot{x}_{\mu} y^{i}, y_{\lambda}^{i}, \dot{x}_{\lambda \mu} \dot{y}^{i}+\dot{x}_{\mu} \dot{y}_{\lambda}^{i}\right) .
$$

We recall [9] that there is a natural fibred isomorphism over $J_{1} E \times_{E} V E$,

$$
i: V J E \rightarrow J_{1} V E
$$

which is linear over $J_{1} E$. Its coordinate expression is

$$
\left(x^{\lambda}, y^{i}, \dot{y}^{i}, y_{\lambda}^{i}, \dot{y}_{\lambda}^{i}\right) \circ i=\left(x^{\lambda}, y^{i}, \dot{y}^{i}, y_{\lambda}^{i}, \dot{y}_{\lambda}^{i}\right) .
$$

We recall [10] that a linear connection of B is a section

$$
k: T^{*} B \rightarrow J_{1} T^{*} B
$$

which is a linear fibred morphism over B. Moreover, k is symmetric if its torsion vanishes, i.e. if

$$
0=\operatorname{dok}: T^{*} B \rightarrow \Lambda^{2} T^{*} B
$$

where $d: J_{1} T^{*} B \rightarrow \Lambda^{2} T^{*} B$ is the natural fibred morphism over B.
Let k be a linear connection of B. Then we have the fibred morphism over $\left(T^{*} B \otimes_{E} V E\right) \times_{E} J_{1} E$

$$
\mathbf{k}: T^{*} B \otimes_{J_{1} E} V J_{1} E \rightarrow J_{1}\left(T^{*} B \otimes_{E} V E\right)
$$

which is linear over $J_{1} E$, given by the composition

$$
T^{*} B \otimes_{J_{1} E} V J_{1} E \xrightarrow{k \otimes i} J_{1} T^{*} B \otimes_{J_{1} E} J_{1} V E \xrightarrow{\tau} J_{1}\left(T^{*} B \otimes_{E} V E\right) .
$$

Its coordinate expression is

$$
\left(x^{\lambda}, y^{i}, y_{\lambda}^{i}, \dot{y}_{\mu}^{i}, \dot{y}_{\lambda \mu}^{i}\right) \circ \mathbf{k}=\left(x^{\lambda}, y^{i}, y_{\lambda}^{i}, \dot{y}_{\mu}^{i}, \dot{y}_{\lambda \mu}^{i}+k_{\lambda \mu}^{\nu} \dot{y}_{v}^{i}\right) .
$$

So, finally, we can state the main theorem.
Theorem 1. Let k be a symmetric linear connection of B. Then there is a unique natural affine fibred morphism over $J_{1} E$

$$
s_{k}: J_{1} J_{1} E \rightarrow J_{1} J_{1} E
$$

of the two affine bundles $p_{1(01)}: J_{1} J_{1} E \rightarrow J_{1} E$ and $J_{1} p_{(01)}: J_{1} J_{1} E \rightarrow J_{1} E$ such that
i) $s_{k} \circ s_{k}=$ id,
ii) $D s_{k}=\mathbf{k}$.

The coordinate expression of s_{k} is

$$
\left(x^{\lambda}, y^{i}, y_{\mu}^{i}, y_{\lambda 0}^{i}, y_{\lambda \mu}^{i}\right) \circ s_{k}=\left(x^{\lambda}, y^{i}, y_{\mu 0}^{i}, y_{\lambda}^{i}, y_{\mu \lambda}^{i}+k_{\mu \lambda}^{v}\left(y_{v}^{i}-y_{v 0}^{i}\right)\right) .
$$

Proof. Existence: The above coordinate expression does not depend on the choice of the chart $\left(x^{\lambda}, y^{i}\right)$ of E, hence it yields a global and natural fibred morphism. In fact, the following relations hold

$$
\begin{aligned}
& \bar{y}_{\mu}^{i} \circ s_{k}=\bar{y}_{\mu 0}^{i}=A_{\mu}^{\varrho}\left(\bar{A}_{j}^{i} y_{\varrho 0}^{j}+\bar{A}_{\varrho}^{i}\right)=A_{\mu}^{\varrho}\left(\bar{A}_{j}^{i} y_{\varrho}^{j} \circ s_{k}+\bar{A}_{\varrho}^{i}\right), \\
& \bar{y}_{y 0 \circ}^{i} \circ s_{k}=\bar{y}_{\mu}^{i}=A_{\mu}^{\sigma}\left(\bar{A}_{j}^{i} y_{\sigma}^{j}+\bar{A}_{\sigma}^{i}\right)=A_{\mu}^{\varrho}\left(\bar{A}_{j}^{i} y_{\varrho 0}^{j} \circ s_{k}+\bar{A}_{\varrho}^{i}\right), \\
& \bar{y}_{\lambda \mu}^{i} \circ s_{k}=\bar{y}_{\mu \lambda}^{i}+\bar{k}_{\lambda \mu}^{v}\left(\bar{y}_{v}^{i}-\bar{y}_{v 0}^{i}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& =A_{\lambda}^{\varrho} A_{\mu}^{\sigma}\left(\bar{A}_{j}^{i}\left(y_{\sigma \varrho}^{j}+k_{\sigma \varrho}^{v}\left(y_{v}^{j}-y_{v 0}^{j}\right)\right)+\bar{A}_{h k}^{i} y_{\varrho 0}^{h} y_{\sigma}^{k}+\bar{A}_{j \sigma}^{i} y_{\varrho 0}^{j}+\right. \\
& \left.+\bar{A}_{j e}^{i} y_{\sigma}^{j}+\bar{A}_{\varrho \sigma}^{i}\right)+A_{\lambda \mu}^{v}\left(\bar{A}_{j}^{i} y_{v 0}^{j}+\bar{A}_{v}^{i}\right)= \\
& =A_{\lambda}^{\varrho} A_{\mu}^{\sigma}\left(\bar{A}_{j}^{i} y_{\varrho \sigma}^{j}+\bar{A}_{h k}^{i} y_{{ }_{\rho 0}}^{h} y_{\sigma}^{k}+\bar{A}_{j \sigma}^{i} y_{\varrho 0}^{j}+\bar{A}_{j e}^{i} y_{\sigma}^{j}+\bar{A}_{\varrho \sigma}^{i}\right)+ \\
& \left.+A_{\lambda \mu}^{v}\left(\bar{A}_{j}^{i} y_{v}^{i}+\bar{A}_{v}^{i}\right)\right) \circ s_{k} .
\end{aligned}
$$

Moreover, this fibred morphism satisfies the conditions i) and ii).
Uniqueness. If s_{k} exists, then its coordinate expression is ($x^{\lambda}, y^{i}, y_{\mu}^{i}, y_{\lambda 0}^{i}, y_{\lambda_{\mu}}^{i}$)。 $\circ s_{k}=\left(x^{\lambda}, y^{i}, y_{\mu 0}^{i}, y_{\lambda}^{i}, y_{\mu \lambda}^{i}+k_{\lambda \mu}^{\nu}\left(y_{v}^{j}-y_{v 0}^{j}\right)+t_{\lambda \mu}^{i}\right)$, where t is a section $t: E \rightarrow$ $\rightarrow \Lambda^{2} T^{*} B \otimes_{E} V E$. Then the naturality yields $t=0$, QED.

Clearly, $s_{k}: J_{1} J_{1} E \rightarrow J_{1} J_{1} E$ turns out to be also an affine fibred morphism over $J_{1} E \times{ }_{E} J_{1} E$. Hence it makes the following diagram commutative

$$
\left(p_{1(01)}, J_{1} p_{(01)}\right)
$$

and its fibre derivative is

$$
\begin{aligned}
D s_{k} & :\left(T^{*} B \otimes_{B} T^{*} B\right) \otimes_{E} V E \rightarrow\left(T^{*} B \otimes_{B} T^{*} B\right) \otimes_{E} V E, \\
& : u \otimes v \otimes w \mapsto v \otimes u \otimes w .
\end{aligned}
$$

Remark 1. In the particular case when $p=p r_{1}: E=\mathbf{R} \times M \rightarrow B=\mathbf{R}$ and k is the canonical connection of \mathbf{R}, we obtain [10] the canonical involution

$$
s=s_{k}: J_{1} J_{1} E=\mathbf{R} \times T T M \rightarrow J_{1} J_{1} E=\mathbf{R} \times T T M
$$

We recall [10] that the sesquiholonomic second jet prolongation of $p: E \rightarrow B$ is

$$
\hat{J}_{2} E=\operatorname{Ker}\left(p_{1(01)}-J_{1} p_{(01)}\right): J_{1} J_{1} E \rightarrow T^{*} B \otimes_{E} V E .
$$

$\hat{J}_{2} E$ turns out to be an affine sub-bundle of $J_{1} J_{1} E$ over $J_{1} E$ (with respect to the both projections), whose vector bundle is

$$
J_{1} E \times_{E}\left(\left(T^{*} B \otimes_{B} T^{*} B\right) \otimes_{E} V E\right)
$$

In other words, $\hat{J}_{2} E$ is the pull-back bundle induced by the commutative diagram

Moreover, we recall that the holonomic second jet prolongation $J_{2} E$ of $p: E \rightarrow B$
is an affine sub-bundle of $\hat{J}_{2} E$, whose vector bundle is

$$
J_{1} E \times_{E}\left(S_{2} T^{*} B \otimes_{E} V E\right) \subset J_{1} E \times_{E}\left(\left(T^{*} B \otimes_{B} T^{*} B\right) \otimes_{E} V E\right) .
$$

Then we have [10] the canonical affine splitting over $J_{1} E$

$$
\hat{J}_{2} E=J_{2} E \oplus_{J_{1} E}\left(\Lambda^{2} T^{*} B \otimes_{E} V E\right)
$$

This splitting has an important role in the study of the curvature of connections $[10,12]$. The coordinates induced on $\hat{J}_{2} E$ and $J_{2} E$ are $\left(x^{\lambda}, y^{i}, y_{\lambda}^{i}, y_{\lambda \mu}^{i}\right)$ and $\left(x^{\lambda}, y^{i}\right.$, $\left.y_{\mu}^{i}, y_{\lambda \mu}^{i}\right), \lambda \leqq \mu$. They turn out to be adapted to the above structures.

We remark that the restriction of s_{k} to $\hat{J}_{2} E \subset J_{1} J_{1} E$ does not depend on the choice of k and turns out to be the canonical involution

$$
\begin{aligned}
& s: \hat{J}_{2} E=J_{2} E \oplus\left(\Lambda^{2} T^{*} B \otimes_{E} V E\right) \rightarrow \hat{J}_{2} E=J_{2} E \oplus\left(\Lambda^{2} T^{*} B \otimes_{E} V E\right) \\
& \quad:(\sigma, \alpha) \mapsto(\sigma,-\alpha) .
\end{aligned}
$$

2. THE FIRST JET PROLONGATION OF A CONNECTION

We recall $[10,11,12]$ that a connection on $p: E \rightarrow B$ is a section $\gamma: E \rightarrow J_{1} E$. Its coordinate expression is $y_{\lambda}^{i} \circ \gamma=\gamma_{\lambda}^{i}$. In particular, γ is a fibred morphism over B. A connection induces the affine fibred translation over E

$$
\nabla_{\gamma}: J_{1} E \rightarrow T^{*} B \otimes_{B} V E: \quad y_{1} \mapsto y_{1}-\gamma(y)
$$

which characterizes γ itself. The coordinate expression of ∇_{γ} is

$$
\left(x^{\lambda}, y^{i}, y_{\lambda}^{i}\right) \circ \nabla_{\gamma}=\left(x^{\lambda}, y^{i}, \nabla_{\lambda}^{i}\right)=\left(x^{\lambda}, y^{i}, y_{\lambda}^{i}-\gamma_{\lambda}^{i}\right) .
$$

Theorem 2. Let k be a linear connection of B and $\gamma: E \rightarrow J_{1} E$ a connection of E. Then $\Gamma_{k}=s_{k} \circ J_{1} \gamma: J_{1} E \rightarrow J_{1} J_{1} E$ is a section of the bundle $p_{1(0))}: J_{1} J_{1} E \rightarrow J_{1} E$, hence a connection of $p_{1}: J_{1} E \rightarrow B$. Moreover, Γ_{k} is projectable over γ and its coordinate expression is

$$
\left(x^{\lambda}, y_{\mu}^{i}, y_{\lambda 0}^{i}, y_{\lambda \mu}^{i}\right) \circ \Gamma_{k}=\left(x^{\lambda}, y_{\mu}^{i}, \gamma_{\lambda}^{i}, \partial_{\lambda} \gamma_{\mu}^{i}+\partial_{j} \gamma_{\lambda}^{i} y_{\mu}^{j}-k_{\partial \mu}^{\nu} \nabla_{v}^{i}\right) .
$$

Proof follows from the coordinate expression of $J_{1} \gamma$

$$
\left(x^{\lambda}, y^{i}, y_{\mu}^{i}, y_{\lambda 0}^{i}, y_{\lambda \mu}^{i}\right) \circ J_{1} \gamma=\left(x^{\lambda}, y^{i}, \gamma_{\mu}^{i}, y_{\lambda}^{i}, \partial_{\mu} \gamma_{\lambda}^{i}+\partial_{j} \gamma_{\mu}^{i} y_{\lambda}^{j}\right) .
$$

We recall $[10,11,12]$ that the curvature of the connection $\gamma: E \rightarrow J_{1} E$ is a fibred morphism over E

$$
\varrho=\frac{1}{2}[\gamma, \gamma]: E \rightarrow \Lambda^{2} T^{*} B \otimes_{E} V E,
$$

where [,] is the Frölicher-Nijenhuis bracket [3]. Its coordinate expression is

$$
\varrho=\left(\partial_{\lambda} \gamma_{\mu}^{i}+\gamma_{\lambda}^{j} \partial_{j} \gamma_{\mu}^{i}\right) d^{\lambda} \wedge d^{\mu} \otimes \partial^{i} .
$$

The curvature R_{k} of Γ_{k} is

$$
R_{k}=\frac{1}{2}\left[\Gamma_{k}, \Gamma_{k}\right]: J_{1} E \rightarrow \Lambda^{2} T^{*} B \otimes_{J_{1} E} V J_{1} E .
$$

Using direct evaluations, we find that R_{k} is projectable on the curvature $\varrho=$ $=\frac{1}{2}[\gamma, \gamma]: E \rightarrow \Lambda^{2} T^{*} B \otimes V E$ of γ, i.e., the folliwing diagram commutes

Furthermore, $R_{k}: J_{1} E \rightarrow \Lambda^{2} T^{*} B \otimes_{E} V J_{1} E$ is an affine fibred morphism over $\varrho: E \rightarrow$ $\rightarrow \Lambda^{2} T^{*} B \otimes_{E} V E$, whose fibre derivative

$$
D R_{k}: T^{*} B \otimes_{E} V E \rightarrow\left(T^{*} B \otimes_{E} V E\right) \times_{E}\left(\left(\Lambda^{2} T^{*} B \otimes_{B} T^{*} B\right) \otimes_{E} V E\right)
$$

is yielded by the curvature $r: B \rightarrow \Lambda^{2} T^{*} B \otimes_{B} T^{*} B \otimes_{B} T B$ of k by means of natural contractions. The coordinate expression of R_{k} is

$$
R_{k}=\varrho_{\lambda \mu}^{i} d^{\lambda} \wedge d^{\mu} \otimes \partial_{i}+\left(J_{v} \varrho_{\lambda \mu}^{i}+\varrho_{\lambda \alpha}^{i} k_{\mu \lambda}^{\alpha}-\varrho_{\mu \alpha}^{i} k_{\lambda \nu}^{\alpha}+r_{\lambda \mu \nu}^{\lambda} \nabla_{\alpha}^{i}\right) d^{\lambda} \wedge d^{\mu} \otimes \partial_{i}^{v}
$$

An even more interesting application is obtained if we are concerned with connections γ belonging to a system of connections. We recall [12] that a system of connections is constituted by a fibred manifold $q: C \rightarrow B$ and a fibred morphism $\xi: C \times{ }_{B} E \rightarrow J_{1} E$ over E. Hence, if $c: B \rightarrow C$ is a section then we obtain the connection $\gamma=\xi_{\circ} \tilde{c}: E \rightarrow J_{1} E$, where $\tilde{c}: E \rightarrow C \times{ }_{B} E$ is the natural extension of c. These connections γ are the distinguished connections of the system. The coordinate expression of $\gamma=\xi_{\circ} \tilde{c}$ is $\gamma_{\lambda}^{i}=\xi_{\lambda}^{i} \circ \tilde{c}$ with $\xi_{\lambda}^{i}: C \times{ }_{B} E \rightarrow \mathbf{R}$. We denote by $\left(x^{\lambda}, v^{a}\right)$ the generic fibred manifold chart of C. For example, the system of linear connections of a vector bundle $p: E \rightarrow B$ is constituted by the fibred manifold $q: L \rightarrow B$, where $L \subset E^{*} \otimes_{B} J_{1} E$ is the affine sub-bundle which projects onto the identity section of $E^{*} \otimes_{B} E$, and the evaluation fibred morphism $\lambda: C \times{ }_{B} E \rightarrow J_{1} E$ over E. In particular, we have the system (K, ψ) of symmetric linear connections of the vector bundle $T^{*} B \rightarrow B$, i.e. of the linear connections of B. We denote by $\left(x^{\lambda}, u_{\lambda \mu}^{\nu}\right)$ the natural fibred manifold chart of K. Clearly, the jet involution can be expressed more intrinsically as follows.

Proposition 1. We have a natural fibred morphism over B

$$
s: K \times{ }_{B} J_{1} J_{1} E \rightarrow J_{1} J_{1} E,
$$

which yields s_{k} for each section $k: B \rightarrow K$.
Proposition 2. Let (C, ξ) be a system of connections of $p: E \rightarrow B$. Then we have the system of connections $\left(K \times{ }_{B} J_{1} C, \Xi\right)$ on $p_{1}: J_{1} E \rightarrow B$, where Ξ is the fibred
morphism over $J_{1} E$ given by the composition

$$
K \times_{B}\left(J_{1} C \times{ }_{B} E\right) \xrightarrow{\text { id } \times J_{1} \xi} K \times{ }_{B} J_{1} J_{1} E \xrightarrow{s} J_{1} J_{1} E .
$$

The system $\left(K \times{ }_{B} J_{1} C, \Xi\right)$ prolongs (C, ξ) and its coordinate expression is

$$
\begin{gathered}
\Xi_{\mu}^{i}=\xi_{\mu}^{i} \\
\Xi_{\lambda, \mu}^{i}=\partial_{\mu} \xi_{\lambda}^{i}+\partial^{i} \xi_{\lambda, ~}^{i} v_{\mu}^{a}+\partial_{j} \xi_{\lambda}^{i} y_{\mu}^{j}+u_{\mu \lambda}^{v}\left(y_{v}^{i}-\xi_{v}^{i}\right)
\end{gathered}
$$

Remark 2. If $\gamma=\xi \circ \tilde{c}$ is a connection of the system, then its prolongation Γ is obtained by computing only the the derivatives $\partial_{\mu} c^{a}$ (with respect to the coordinates of the base space B), as the derivatives $\partial_{j} \gamma^{i}$ (with respect to the fibres of E) are atutomatically carried by Ξ in a way which does not depend on the particular γ but only on the system.

In particular, if $p: E \rightarrow B$ is a vector bundle, an affine bundle, a principal bundle, ..., then the previous results can be easily applied to linear, affine, principal, ... connections, respectively.

3. ANOTHER PROLONGATION OF A CONNECTION

We recall that $T^{*} B \otimes_{E} V E \rightarrow E$ is the vector bundle of $p_{(01)}: J_{1} E \rightarrow E$. Its dual is $J_{1}^{*} E=T B \otimes_{E} V^{*} E \rightarrow E$, which turns out to have an important role in lagrangian theories [44]. We are going to show that a connection $\gamma: E \rightarrow J_{1} E$ on $p: E \rightarrow B$ and a linear connection $k: T B \rightarrow J_{1} T B$ on the base space B induce a connection on $J_{1}^{*} E \rightarrow B$. To this end we are not concerned with the involution s_{k} but we use other jet techniques developed in the first section.

First, we analyse the vertical prolongation of the connection γ.

Proposition 3. Let $\gamma: E \rightarrow J_{1} E$ be a connection. Then $\Gamma=i \circ V \gamma: V E \rightarrow J_{1} V E$ is a section, hence a connection of VE. Moreover, Γ is a linear fibred morphism over γ and its coordinate expression is

$$
\left(x^{\lambda}, y^{i}, \dot{y}^{i}, y_{\lambda}^{i}, \dot{y}_{\lambda}^{i}\right) \circ \Gamma=\left(x^{\lambda}, y^{i}, y_{\lambda}^{i}, \gamma_{\lambda}^{i}, \partial_{j} \gamma_{\lambda}^{i} \dot{y}^{j}\right) .
$$

Proof. $V \gamma: V E \rightarrow V J_{1} E$ is a section. Its coordinate expression is

$$
\left(x^{\lambda}, y^{i}, y_{\lambda}^{i}, \dot{y}^{i}, \dot{y}_{\lambda}^{i}\right) \circ V \gamma=\left(x^{\lambda}, y^{i}, \gamma_{\lambda}^{i}, \dot{y}^{i}, \partial_{j} \gamma_{\lambda}^{i} \dot{y}^{j}\right) .
$$

We observe that $J_{1} \pi_{E}: J_{1} V E \rightarrow J_{1} E$ is a vector bundle. The linearity of Γ is shown by its coordinate expression, QED.

Let $\Gamma^{*}: V^{*} E \rightarrow J_{1} V^{*} E$ be the dual connection of Γ in the sense of [6] whose coordinate expression is

$$
\left(x^{\lambda}, y^{i}, \dot{y}_{i}, y_{\lambda}^{i}, \dot{y}_{\lambda i}\right) \circ \Gamma^{*}=\left(x^{\lambda}, y^{i}, \dot{y}_{i}, \gamma_{\lambda}^{i},-\partial_{i} \gamma_{\lambda}^{j} \dot{y}_{j}\right)
$$

Theorem 3. Let $\gamma: E \rightarrow J_{1} E$ be a connection and $k: T B \rightarrow J_{1} T B$ a linear connection on the space B. Then the fibred morphism

$$
\tau \circ\left(k \otimes \Gamma^{*}\right): T B \otimes_{E} V^{*} E \rightarrow J_{1}\left(T B \otimes_{E} V^{*} E\right)
$$

which is given by the composition (see Section 1)

$$
T B \otimes_{E} V^{*} E \xrightarrow{k \otimes \Gamma^{*}} J_{1} T B \otimes_{J_{1} E} J_{1} V^{*} E \xrightarrow{\tau} J_{1}\left(T B \otimes_{E} V^{*} E\right)
$$

is a connection on $T B \otimes_{E} V^{*} E \rightarrow B$, which prolongs $\gamma: E \rightarrow J_{1} E$. Its coordinate expression is

$$
\left(x^{\lambda}, y^{i}, \dot{y}_{i}^{\alpha}, y_{\lambda}^{i}, \dot{y}_{\lambda i}^{\alpha}\right) \circ \tau \circ\left(k \otimes \Gamma^{*}\right)=\left(x^{\lambda}, y^{i}, \dot{y}_{\lambda}^{\alpha}, \gamma_{\lambda}^{i}, k_{\lambda \mu}^{\alpha} \dot{y}_{i}^{\mu}-\partial_{i} \gamma_{\lambda}^{j} \dot{y}_{j}^{\alpha}\right) .
$$

Proof follows from the fact that the coordinate expression of τ is

$$
\left(x^{\lambda}, y^{i}, \dot{y}_{i}^{\alpha}, y_{\lambda}^{i}, \dot{y}_{\lambda i}^{\alpha}\right) \circ \tau=\left(x^{\lambda}, y^{i}, \dot{y}_{i}^{\alpha}, y_{\lambda}^{i}, \dot{x}_{\lambda}^{\alpha} y_{i}+\dot{x}^{\alpha} \dot{y}_{\lambda i}\right) .
$$

The curvature of the prolongation and the case of systems of connections can be studied in a way analogous to Section 2.

Acknowledgement. Thanks are due to prof. I. Kolář for his interesting comments.

References

[1] C. Ehresmann: Les connexions infinitésimales dans un espace fibré différentiable. Coll. Topologie (Bruxelles, 1950), Liège 1951, 29-55.
[2] M. Ferraris, M. Francaviglia: The theory of formal connections and fibred connections in fibred manifolds, In: Differential geometry, L. A. Cordero editor, Pittman, 1985, 297-317.
[3] A. Frölicher, A. Nijenhuis: Theory of vector valued differential forms. Part I. Derivations in the graded ring of differential forms. Indag. Math. 18 (1956), 338-385.
[4] J. Grifone: Structure presque tangente et connexions, I. Ann. Inst. Fourier, 22, 1 (1972), 287-334.
[5] I. Kolär: Higher order torsion of spaces with Cartan connections. Cahiers de Topologie et Géometrie Differentielle, 12, 2 (1981), 29-34.
[6] I. Kolár: Connections in 2-fibred manifolds. Arch. Math. (Brno), XVII, 1981, 23-30.
[7] P. Libermann: Sur les prolongements des fibrés principaux et grupoides différentiables. Sem. Anal. Glob, Montréal, 1969, 7-108.
[8] P. Libermann: Parallélismes J. Diff. Geom., 8 (1973), 511-539.
[9] L. Mangiarotti, M. Modugno: New operators on jet spaces. Ann. Fac. Scie. Toulouse, 5 (1983), 171-198.
[10] L. Mangiarotti, M. Modugno: Fibered spaces, jet spaces and connections for field theories. Proceedings of International Meeting "Geometry and Physics", Florence, 1982, Pitagora Editrice, Bologna, 1983, 135-165.
[11] L. Mangiarotti, M. Modugno: Graded Lie algebras and connections on a fibred space. J. Math. Pur. et Appl. 63 (1984), 111-120.
[12] M. Modugno: An introduction to systems of connections. Seminario Istituto di Matematica Applicata "G. Sansone", 1986, 1-63.
[13] K. Yano, S. Ishihara: Tangent and cotangent bundles. M. Dekker, New York, 1973.
[14] C. Günther: The polysymplectic Hamiltonian formalism in field theory and calculus of variations, preprint, 1986, 1-57.

INVOLUCE JETU゚ A PRODLOUŽENÍ KONEXÍ

-

Marco Modugno

Článek se zabývá involucí druhého anholonomického prodloužení jetủ $J_{1} J_{1} E$ fibrovanć variety $p: E \rightarrow B$ a některými dalšími užitečnými jetovými technikami. Jejich aplikací se dostanou jetová prodloužení konexí. Výsledky technického rázu jsou užitečné v diferenciální geometrii a matematické fyzice.

Резюме

ИНВОЛЮЦИИ ДЖЕТОВ И ПРОДОЛЖЕНИЯ СВЯЗНОСТЕЙ

Marco Modugno

В статье рассматриваются инволюции второго неголономического продолжения джетов $J_{1} J_{1} E$ расслоенного многообразия $p: E \rightarrow B$ и некоторые другие полезные джетовые техники. В качестве приложения получены продолжения связностей. Результаты технического характера полезны в дифференциальной геометрии и математической физике.

Author's address: Istituto di Matematica Applicata "G. Sansone", Via S. Marta 3, 50139 Firenze, Italia.

