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THE UNIFORM COMPANION FOR LARGE DIFFERENTIAL
FIELDS OF CHARACTERISTIC 0

MARCUS TRESSL

Abstract. We show that there is a theory UC of differential fields (in several
commuting derivatives) of characteristic 0, which serves as a model companion
for every theory of large and differential fields extending a model complete
theory of pure fields. As an application, we introduce differentially closed
ordered fields, differentially closed p-adic fields and differentially closed pseudo-
finite fields.

1. Introduction

We introduce a first order theory of differential fields of characteristic 0, in K
commuting derivatives, called UC (for Uniform Companion), with the following
properties:

(I) Whenever L and M are models of UC and A is a common differential
subring of L and M such that L and M have the same universal theory
over A as pure fields, then they have the same universal theory over A as
differential fields. Here, two structures M and L of the same signature with
a common substructure A have the same universal theory over A if every
universal sentence with parameters from A holds in M if and only if it holds
in L.

(II) Every differential field F which is ‘large’ can be extended to a model of UC,
and this extension is elementary in the language of rings. Here, a (pure)
field F is called large if every smooth curve defined over F that has an
F -rational point also has infinitely many F -rational points (for example,
every PAC-field, every PRC-field, every PpC-field and every field admitting
a nontrivial henselian valuation is large).

This is our Main Theorem 6.2 below. The theory UC is a simultaneous axiomati-
zation of differentially closed fields (introduced in [Bö], [McG]) and of differentially
closed ordered fields (introduced by M. Singer (cf. [Si]) in the case of one deriv-
ative). If we add UC to the theory of p-adically closed fields in the language of
p-valued fields, we get the model completion of p-adically closed, differential fields;
this theory also has quantifier elimination. If we add UC to the theory of pseudo
finite fields in the language of rings enlarged by some constants, we get the model
completion of pseudo finite, differential fields (of characteristic 0). This is explained
in section 8.
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More generally, properties (I) and (II) of UC above, imply that for every model
complete theory T of large fields in the language of rings, the theory T ∪ UC of
differential fields is model complete. Moreover, if this is the case, T∪UC is complete
if T is complete and T ∗ ∪UC has quantifier elimination if a definable extension T ∗

of T has quantifier elimination (cf. Theorem 7.2; Theorem 7.1 contains the full
model theoretic consequence of properties (I) and (II)).

The theory of UC is inductive (i.e. axiomatized by ∀∃-sentences), and it is called
“the” uniform companion for large differential fields, since UC∪“large fields” is the
unique, inductive theory of large differential fields satisfying properties (I) and (II)
above (cf. Proposition 6.3).

The axioms of UC say that certain systems of differential equations in K deriva-
tives and N differential indeterminates (K, N ∈ N) are solvable. These systems are
called algebraically prepared systems (cf. 3.1 and the end of section 3).

Briefly, an algebraically prepared system is characterized by the following two
properties:

a. The solvability of the system in a differential field extension of the given field
can be reduced to an algebraic geometric problem when we view the system as a
system of ordinary polynomials.

b. The system has a regular solution in the given field when we view the system
as a system of ordinary polynomials.

Then, if the differential field is large (i.e. it is large as a pure field), condition
b implies that the solutions of the given systems (viewed as a system of ordinary
polynomials) in F are Zariski dense in the variety defined by the system (cf. 5.3).
With this information, condition a guarantees a differential solution of the system
in a differential field extension of F which is an elementary extension of the pure
field F .

2. Differential algebraic preliminaries

In this section we recall notions from basic differential algebra; mainly we ex-
plain what a characteristic set is in the differential setup. Our main source here is
Kolchin’s book [Ko] on differential algebra and algebraic groups.

Let R be a differential ring in K pairwise commuting derivatives ∂1, ..., ∂K . Let
Y := (Y1, ..., YN ) be a tuple of N indeterminates over R and let

D := {∂i1
1 ...∂iK

K | i1, ..., iK ∈ N0}

be the free abelian monoid generated by {∂1, ..., ∂K}, which we denote multiplica-
tively. For each Θ ∈ D and n ∈ {1, ..., N} let ΘYn be an indeterminate, where
ΘYn = Yn if Θ = ∂0

1 ...∂0
K by definition. Moreover let

DY := {ΘYn | Θ ∈ D, 1 ≤ n ≤ N}.

The differential polynomial ring over R in K derivatives and N indeterminates is
the polynomial ring R{Y } := R[y | y ∈ DY ] together with the uniquely determined
derivations ∂i such that ∂i(r ·ΘYn) = (∂ir)·ΘYn + r ·(∂iΘ)Yn (1 ≤ i ≤ K 1 ≤ n ≤
N, r ∈ R). So R{Y } is a differential ring extension of R and R{Y } is the free
object generated by N elements over R in the category of differential rings with K
commuting derivatives. The set of all powers of variables from DY is denoted by

DY ∗ := {yp | y ∈ DY, p ∈ N}.
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(2.1) Definition. The rank on DY ∗ is the map rk : DY ∗ −→ N0 × {1, ..., N} ×
NK

0 × N defined by

rk(∂i1
1 ...∂iK

K Yn)p := (i1 + ... + iK , n, iK , ..., i1, p).

The set O := N0×{1, ..., N}×NK
0 ×N equipped with the lexicographic order (hence

the first component is the dominating one) is well ordered. Note that the order
type of the image of rk in O is the order type of N.

(2.2) Definition. We say a variable y ∈ DY appears in f ∈ R{Y } if y appears in
f considered as an ordinary polynomial (hence Y1 does not appear in ∂1Y1). The
leader uf of f ∈ R{Y } \ R is the variable y ∈ DY of highest rank which appears

in f . Moreover u∗
f := u

deguf
f

f ∈ DY ∗ denotes the highest power of uf in f . We
extend the rank to polynomials f ∈ R{Y } by

rk(f) := rk(u∗
f ) ∈ O.

(2.3) Definition. If g, f ∈ R{Y }, g �∈ R, are polynomials, then f is called weakly
reduced with respect to g if no proper derivative of ug appears in f . f is called
reduced with respect to g if f is weakly reduced with respect to g and if degug

f <
degug

g.

The polynomial f is called (weakly) reduced with respect to a nonempty set
G ⊆ R{Y } \ R if f is (weakly) reduced with respect to every g ∈ G.

A nonempty subset G ⊆ R{Y } \ R is called autoreduced if every f ∈ G is
reduced with respect to all g ∈ G, g �= f . If G consists of a single element, then G
is called autoreduced as well.

It easy to see that uf �= ug — hence rk f �= rk g — if f, g are different polynomials
from an autoreduced set. Moreover, by [Ko], Chap. O, Section 17, Lemma 15(a),
we have

(2.4) Proposition. Every autoreduced set is finite. �

Let ∞ be an element bigger than every element in O and let (O ∪ {∞})N be
equipped with the lexicographic order. We define the rank of an autoreduced set G
to be an element of (O ∪ {∞})N as follows. Let G = {g1, ..., gl} with rk g1 < ... <
rk gl. Then

rkG := (rk g1, ..., rk gl,∞,∞, ...).

(2.5) Proposition. There is no infinite sequence G1, G2, ... of autoreduced sets with
the property rk G1 > rkG2 > ....

Proof. [Ko], Chap. I, Section 10, Proposition 3. �

(2.6) Definition. If M ⊆ R{Y } is a set not contained in R, then by Proposition
2.5 the set {rkG | G ⊆ M is autoreduced} has a minimum. Every autoreduced
subset G of M with this rank is called a characteristic set of M .

(2.7) Proposition. If G is a characteristic set of M ⊆ R{Y } and f ∈ M \R, then
f is not reduced with respect to G.

Proof. If f ∈ M \ R is reduced with respect to G, then the set {g ∈ G | rk g <
rk f} ∪ {f} is an autoreduced subset of M of rank strictly lower than the rank of
G, which is impossible. �
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From now on we assume that R is a differential domain in K derivatives
containing Z.

(2.8) Definition. Let f ∈ R{Y } \ R, f = fdu
d
f + ... + f1uf + f0 with polynomials

fd, ..., f0 ∈ R[y ∈ D | y �= uf ] and fd �= 0. The initial I(f) of f is defined as

I(f) := fd.

The separant S(f) of f is defined as

S(f) :=
∂

∂uf
f = d·fdud−1

f + ... + f1.

Moreover, for every subset G = {g1, ..., gl} of R{Y } \ R we define

H(G) :=
l∏

i=1

I(gi)·S(gi) and HG := {
l∏

i=1

I(gi)niS(gi)mi | ni, mi ∈ N0}.

Since R is a domain and Z ⊆ R, the set HG does not contain 0. Moreover, S(g)
and I(g) are reduced with respect to G (g ∈ G), if G is an autoreduced set.

(2.9) Theorem. Let G ⊆ R{Y } be an autoreduced set and let f ∈ R{Y }. Let [G]
denote the differential ideal generated by G in R{Y } and let (G) denote the ideal
generated by G in R{Y }. Then there is some f̃ ∈ R{Y } which is reduced with
respect to G and some H ∈ HG such that H·f ≡ f̃ mod [G]. If f is weakly reduced
with respect to G, then we can take H such that H ·f ≡ f̃ mod (G).

Proof. [Ko], Chap. I, Section 9, Proposition 1. �

(2.10) Corollary. If G is a characteristic set of a differential prime ideal p of
R{Y } with p ∩ R = 0, then

p = {f ∈ R{Y } | H(G)n ·f ∈ [G] for some n ∈ N0}.
Moreover if f ∈ p is weakly reduced with respect to G, then H(G)n ·f ∈ (G) for
some n ∈ N0.

Proof. From Theorem 2.9 and Proposition 2.7, since HG ∩ p = ∅. �

Finally we collect some facts, which will be used later on.

(2.11) Proposition. Let F ⊆ L be an extension of fields of characteristic 0 and
let F be equipped with K commuting derivatives. Then there are K commuting
derivatives on L extending those on F .

Proof. [Ko], p. 90. �

(2.12) Proposition. Let F be a differential field of characteristic 0 and let Y be a
set of differential indeterminates. Let a ⊆ F{Y } be a differential ideal. Then:

(i) Every prime ideal p of F{Y }, minimal with the property a ⊆ p, is a differ-
ential ideal.

(ii) Let a be radical and differential. Then a is finitely generated as a differential
radical ideal. Moreover, if F ⊆ L is an extension of differential fields, then
the ideal generated by a in L{Y } is differential and radical.

Proof. For (i) see [Ko], Chap. 1, Sect. 2. Item (ii) can be found in [Ko], Chap. 4,
Sect. 4. �
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(2.13) Proposition. Let F ⊆ L be fields of characteristic 0 and let Y be a set
of indeterminates. Let G ⊆ F [Y ] be a set and let H ⊆ F [Y ] be a multiplicatively
closed set. Let a be the ideal (G)F [Y ] : H of F [Y ]. Then the ideal (G)L[Y ] : H of
L[Y ] is generated by a and (G)L[Y ] : H ∩F [Y ] = a. Here, for an ideal a of a ring A
and a subset H of A, we write a : H for the ideal {a ∈ A | h·a ∈ a for some h ∈ H}
of A.

Proof. We omit the easy proof. �

(2.14) Theorem (The Rosenfeld Lemma). Let F be a differential field of char-
acteristic 0 in K derivatives and let A be the differential polynomial ring of F
in Y := (Y1, ..., YN ). Let G ⊆ A be an autoreduced set. Then the following are
equivalent:

1. G is a characteristic set of [G] : H(G)∞ and [G] : H(G)∞ is prime.
2. (a) G is coherent and

(b) the ideal (G)A : H(G)∞ of A is prime and does not contain nonzero
elements of A, reduced with respect to G.

3. Let B denote the R-algebra F [y ∈ DY | y appears in g for some g ∈ G].
(a) G is coherent and
(b) the ideal (G)B : H(G)∞ of B is prime and does not contain nonzero

elements of B, reduced with respect to G.

Proof. 1⇔2 is [Ko], IV, 9, Lemma 2, and 2⇔3 can be easily derived. �

Note. This significant characterization of a characteristic set can be generalized to
the case of differential domains R containing Z in K commuting derivatives and
certain differential radical ideals a of R{Y1, ..., YN} with a ∩ R = {0}. We will not
make use of this and refer the reader to [Hu].

(2.15) Proposition. Let F ⊆ L be differential fields of characteristic 0. If G ⊆
F{Y } is a characteristic set of F{Y }, then G is a characteristic set of L{Y }, too.

Proof. Again, this is easy and left to the reader. �

3. Algebraically prepared systems

(3.1) Definition. Let F be a differential field of characteristic 0 in K commuting
derivatives. For every set I ⊆ F{Y } of differential polynomials in the differential
indeterminates Y = (Y1, ..., YN ) we write

A(I) := F [ΘYj | Θ ∈ D, j ∈ {1, ..., N} and ΘYj appears in some f ∈ I].

An algebraically prepared system of F in K derivatives is a sequence
(f1, ..., fn) of differential polynomials f1, ..., fn ∈ F{Y1, ..., YN} \ F such that the
following two conditions hold:

(AP1) {f1, ..., fn} is a characteristic set of a differential prime ideal, thus
{f1, ..., fn} is an autoreduced and coherent set of n polynomials and the
ideal (f1, ..., fn) : H(f1, ..., fn)∞ of A(f1, ..., fn) does not contain nonzero
elements, reduced with respect to f1, ..., fn.

(AP2) The ideal (f1, ..., fn) : H(f1, ..., fn)∞ of A(f1, ..., fn) is prime and there is a
regular F -rational point of this ideal, where H(f1, ..., fn) does not vanish.
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We suppress the term “in K derivatives” frequently, since K will always be
fixed. We say that F solves an algebraically prepared system (f1, ..., fn) if there is
a differential solution a ∈ FN of f1 = 0, ..., fn = 0.

We say that an algebraically prepared system (f1, ..., fn) of F is defined over a
subring R of F if each fi is a polynomial over R.

(3.2) Lemma. Let A be a domain, let a be an ideal of A, let h ∈ A and let z be an
indeterminate over A. Then

a : h∞ := {a ∈ A | hn ·a ∈ a for some n ∈ N} = (a, z ·h − 1)A[z] ∩ A.

Moreover h �∈
√

a ⇐⇒ A �= a : h∞, and in this case h is a nonzero divisor of
A/(a : h∞). Also, the induced map (A/(a : h∞))h/(a:h∞) −→ A[z]/(a, z·h−1) which
sends 1

h/(a:h∞) to z/(a, z ·h − 1) is an isomorphism. In particular, a : h∞ is prime
if and only if (a, z ·h − 1)A[z] is prime, provided that h �∈

√
a.

Proof. We omit the easy proof. �

Notation. If M, N are L-structures in an arbitrary language and A is a common
subset of M, N , then we write

M ≡〉∃,AN

if every existential L-formula with parameters in A, that holds in M , also holds
in N . We write M ≡∃,A N if M ≡〉∃,ANand N ≡〉∃,AM . Hence M ≡∃,A N if
and only if M and N have the same universal theory over A as explained in the
Introduction.

(3.3) Theorem. Let A be a common differential subring of differential fields L1, L2

of characteristic 0 in K commuting derivatives. Let Fi be the algebraic closure of
the quotient field F0 of A in Li. Then:

(i) L1 ≡∃,A L2 as pure fields in the language of rings and
(ii) L2 solves all algebraically-prepared systems of L2, defined over F2.

Then L1 ≡〉∃,F0L2 as differential fields in the language of differential rings in K
derivatives.

Proof. By a standard argument, condition (i) implies L1 ≡∃,F0 L2 as pure fields
and that F1 and F2 are isomorphic as fields over F0. This isomorphism respects
the derivatives, too (observe that Fi is a differential subfield of Li). Hence we may
assume that F := F1 = F2 is the algebraic closure of F0 = A in Li.

Let ϕ(x̄) be a quantifier-free formula in the language of differential rings, with
parameters from F0, where x̄ is an N -tuple of variables. Suppose there is some
ā ∈ LN

1 such that L1 |= ϕ(ā). We have to find some b̄ ∈ LN
2 such that L2 |= ϕ(b̄).

Clearly we may assume that ϕ(x̄) is of the form p1(x̄) = 0∧ ...∧pr(x̄) = 0∧q(x̄) �= 0
with differential polynomials p1, ..., pr, q ∈ F0{Y }, where Y := (Y1, ..., YN ). By
replacing q(x̄) �= 0 with xn+1·q(x̄)− 1 = 0 if necessary we may assume that ϕ(x̄) is
of the form p1(x̄) = 0 ∧ ... ∧ pr(x̄) = 0.

Let p1 := {f ∈ F{Y } | f(ā) = 0} and let p0 := {f ∈ F0{Y } | f(ā) = 0}. Then
p1 and p0 are differential prime ideals of F{Y } and F0{Y }, respectively. Moreover
p1 lies over p0 and p1, ..., pr ∈ p0. Let f1, ..., fn be a characteristic set of p1. As F
is algebraic over F0, there is some α ∈ F such that the polynomials f1, ..., fn and
g have coefficients in F0(α). Since F{Y } is a differentially noetherian ring and F
is algebraic over F0, there are only finitely many differential prime ideals of F{Y }
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lying over p0; say there are exactly s of them. Since F is algebraic over F0 we may
choose α so that in addition, there are s differential prime ideals of F0(α){Y } lying
over p0.

Let ū = (u1, ..., ur) be an enumeration of all variables ΘYj occurring in some of
the f1, ..., fn. We write fi(ū) for fi(Y ) when fi is viewed as an ordinary polynomial
in ū. For i ∈ {1, ..., r} let ci := Θaj if ui = ΘYj and let c̄ := (c1, ..., cr).

By definition of p1, c̄ is a generic solution of the ideal (f1, ..., fn) : H(f1, ..., fn)∞

of A(f1, ..., fn) ⊆ F{Y } (note that (f1, ..., fn) : H(f1, ..., fn)∞ = p1∩A (f1, ..., fn)).
Hence c̄ is a regular point of the ideal (f1, ..., fn) : H(f1, ..., fn)∞ and H(f1, ..., fn)(c̄)
�= 0. By 3.2, (c̄, 1/H(f1, ..., fn)(c̄)) is a regular point of the prime ideal (f1, ..., fn, u0·
H(f1, ..., fn) − 1) of A(f1, ..., fn)[u0], where u0 is a new indeterminate. Hence the
jacobian of (f1, ..., fn, u0 ·H(f1, ..., fn)− 1) has rank r + 1− d, where d is the Krull
dimension of (f1, ..., fn) : H(f1, ..., fn)∞ (which is the same as the Krull dimen-
sion of (f1, ..., fn, u0 ·H(f1, ..., fn) − 1)). Take f0 := u0 ·H(f1, ..., fn) − 1 and let
i1 < ... < ir+1−d ∈ {0, ..., r}, j1 < ... < jr+1−d ∈ {0, ..., n} such that the determi-
nant of ( ∂

∂uik
fjm

)k,m∈{1,...,r+1−d} does not vanish at c̄.
Let Z be a new differential indeterminate of rank smaller than Y1, ..., Yn, and let

µ(Z) ∈ F [Z] be the minimal polynomial of α over F0. For ε̄ ∈ Nr
0 and i ∈ {1, ..., n}

let fi,ε ∈ F0[Z] be the uniquely determined polynomials of degree < [F0(α) : F0]
such that fi(ū) = f∗

i (ū, α), where

f∗
i (ū, Z) :=

∑

ε∈Nr
0

fi,ε(Z)ūε.

Again we write f∗
i (Y, Z) if we consider f∗

i (ū, Z) as a differential polynomial in
Z, Y1, ..., YN .

Then for all zeroes γ of µ we have

H(f∗
1 (Y, Z), ..., f∗

n(Y, Z))(Y, γ) = H(f∗
1 (Y, γ), ..., f∗

n(Y, γ)),

thus with f∗
0 := u0 ·H(f∗

1 (Y, Z), ..., f∗
n(Y, Z)) − 1 we get

(
∂

∂uj
f∗

i )(ū, γ) =
∂

∂uj
(f∗

i (ū, γ)) (0 ≤ i ≤ n, 0 ≤ j ≤ r).

Since L1 ≡〉∃,F0L2 as rings, there is a solution of the ordinary polynomial system

f∗
1 (ū, Z) = 0, ..., f∗

n(ū, Z) = 0, u0 ·H(f∗
1 , ..., f∗

n)(ū, Z) − 1 = 0, µ(Z) = 0,

det(
∂

∂uik

f∗
jm

)k,m∈{1,...,r+1−d} �= 0 in L2.

In other words, there is a zero β of µ(Z) in L2 such that the ideal

(f∗
1 (ū, β), ..., f∗

n(ū, β), u0 ·H(f∗
1 , ..., f∗

n)(ū, β) − 1)

of F0(β)[u0, ū] has a solution d̄ in Lr+1
2 with the property

(∗) det(
∂

∂uik

f∗
jm

(ū, β))k,m∈{1,...,r+1−d} �= 0 at d̄.

Let σ : F0(α) −→ F0(β) be the F0-isomorphism sending α to β. We also write σ
for the canonical extension of σ to the differential polynomial rings F0(α){Y } −→
F0(β){Y }. Then σ(f1) = f∗

1 (Y, β), ...., σ(fn) = f∗
n(Y, β). Since σ is a differen-

tial F0{Y }-isomorphism F0(α){Y } −→ F0(β){Y } and {f1, ..., fn} is a characteris-
tic set of p1 ∩ F0(α){Y }, the sequence (σ(f1), ...., σ(fn)) is a characteristic set of
σ(p1 ∩ F0(α){Y }).
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Claim. (σ(f1), ...., σ(fn)) is an algebraically prepared system of L2.

As σ(f1), ...., σ(fn) is a characteristic set of σ(p1 ∩ F0(α){Y }), σ(f1), ...., σ(fn)
is autoreduced and coherent. These conditions are not violated if we enlarge the
coefficients (cf. 2.15). Hence (σ(f1), ...., σ(fn)) is a characteristic set of F{Y } and
L2{Y }. We now show that the ideal (σ(f1), ..., σ(fn)) : H(σ(f1), ..., σ(fn))∞ of
L2[ū] is prime. By 2.13 this ideal is generated by the ideal

a0 := (σ(f1), ..., σ(fn)) : H(σ(f1), ..., σ(fn))∞

of F [ū]. As F is algebraically closed in L2 it is enough to show that a0 is prime.
By 2.14, it is enough to show that the differential ideal a := [σ(f1), ..., σ(fn)] :
H(σ(f1), ..., σ(fn))∞ of F{Y } is prime. By 2.13 this ideal is generated by the dif-
ferential ideal [σ(f1), ..., σ(fn)] : H(σ(f1), ..., σ(fn))∞ of F0(β){Y }, which is equal
to σ(p1 ∩ F0(α){Y }). Now a is radical and the claim follows if we know that there
is a unique differential prime ideal of F{Y } lying over σ(p1 ∩F0(α){Y }) (cf. 2.12).
The isomorphism σ maps the set of differential prime ideals of F0(α){Y } lying over
p0 bijectively onto the set of differential prime ideals of F0(β){Y } lying over p0.
Hence by our choice of α, there are s differential prime ideals of F0(β){Y } lying over
p0. By choice of s there are s differential prime ideals of F{Y } lying over p0. Hence
there can only be one differential prime ideal of F{Y } lying over σ(p1∩F0(α){Y }).
This shows that the ideal (σ(f1), ..., σ(fn)) : H(σ(f1), ..., σ(fn))∞ of L2[ū] is prime.

By 3.2, the ideal (f∗
1 (ū, β), ..., f∗

n(ū, β), u0 ·H(f∗
1 , ..., f∗

n)(ū, β) − 1) of L2[u0, ū]
is prime and condition (∗) above says that d̄ is a regular solution of this ideal.
Again, this means that d̄ is a regular solution of the prime ideal (σ(f1), ..., σ(fn)) :
H(σ(f1), ..., σ(fn))∞ of L2[ū], where H(σ(f1), ..., σ(fn)) does not vanish. This fin-
ishes the proof of the claim.

By the claim and our assumption (ii) (observe that the algebraically prepared
system (σ(f1), ..., σ(fn)) of L2 is defined over F ) we get a differential solution
b̄ ∈ LN

2 of σ(f1) = 0, ..., σ(fn) = 0. As p1, ..., pr ∈ p0 and

σ(p1 ∩ F0(α){Y }) = [σ(f1), ..., σ(fn)] : H(σ(f1), ..., σ(fn))∞

lies over p0, b̄ is also a differential solution of p1 = ... = pr = 0, which means
L2 |= ϕ(b̄). �

This is a good point to describe how our theory UCK will be axiomatized. The
theory UCK , yet to be defined, will say the following about a model F :

“every algebraically prepared system in K derivatives,
defined over F has a differential solution in F”.

By 3.3, such a theory will have property (I) stated in the Introduction. So what
remains to do is to axiomatize the sentence “every algebraically prepared system
defined over F has a differential solution in F” and to prove property (II) stated
in the Introduction.

4. Definition of UC

Again we fix K ∈ N, the number of derivatives. We shall show:

(4.1) Proposition. Let n, N ∈ N, let Y = (Y1, ..., YN ) and let f1(t̄, Y ), ..., fn(t̄, Y )
∈ Z{Y }[t̄] be general polynomials in the indeterminates {ΘYj | Θ ∈ D, 1 ≤ j ≤ N},
in the indeterminate coefficients t̄ = (t1, ..., tr). Then there is a formula ϕ(v̄),
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v̄ = (v1, ..., vr), such that for all differential fields F of characteristic 0 in K com-
muting derivatives and all c̄ ∈ F r we have

F |= ϕ(c̄) ⇐⇒ (f1(c̄, Y ), ..., fn(c̄, Y )) is an algebraically prepared system of F.

The proof of 4.1 divides into two parts: we will show that condition (AP1) and
condition (AP2) of 3.1 are definable conditions on the coefficients of a sequence of
differential polynomials. First we recall some facts from the paper [vdD-Sch].

(4.2) Theorem. Let n, d ∈ N, X = (X1, ..., Xn). Then there are bounds B =
B(n, d), C = C(n, d) and E = E(n, d) in N such that for each field F , each ideal I
of K[X] generated by polynomials of degree ≤ d and all f1, ..., fl ∈ F [X] of degree
≤ d the following are true:

(i) If I is generated by f1, ..., fl and each of the fi is of degree ≤ d, then for
every polynomial g ∈ I of degree ≤ d, there are polynomials c1, ..., cl ∈ F [X]
of degree ≤ E(n, d) such that g = c1 ·f1 + ... + cl ·fl.

(ii) I is prime ⇐⇒ 1 �∈ I, and for all f, g ∈ F [X] of degree ≤ B, if f ·g ∈ I,
then f ∈ I or g ∈ I.

(iii) For all m ∈ {1, ..., n} the ideal I ∩ F [X1, ..., Xm] is generated by at most
C(n, d) polynomials of degree ≤ C(n, d).

Proof. (i) is a special case of [vdD-Sch], Thm. (1.11), (ii) is a part of [vdD-Sch],
Thm. (2.10), and (iii) is a basic statement in the theory of Gröbner Bases (e.g.,
[E], Prop. 15.29). �
(4.3) Lemma. Let n, N ∈ N, let Y = (Y1, ..., YN ) and let f1(t̄, Y ), ..., fn(t̄, Y ) ∈
Z[t̄]{Y } be general polynomials in the indeterminates {ΘYj | Θ ∈ D, 1 ≤ j ≤ N},
with indeterminate coefficients t̄ = (t1, ..., tr). Then there is a formula ϕ2(v̄), v̄ =
(v1, ..., vr), such that for all differential fields F of characteristic 0 in K commuting
derivatives and all c̄ ∈ F r we have F |= ϕ2(c̄) if and only if the ideal (f1, ..., fn) :
H(f1, ..., fn)∞ of A(f1, ..., fn) is prime and there is a regular F -rational point of
this ideal, where H(f1, ..., fn) does not vanish.

Recall that A(f1, ..., fn) is the ordinary polynomial ring over F in those variables
ΘYj which appear in some of the fi.

Proof. By 3.2, the condition in question is equivalent to the condition “The ideal
a := (f1, ..., fn, u0·H(f1, ..., fn)−1) of A(f1, ..., fn)[u0] is prime and there is a regular
F -rational point of this ideal”. Here u0 is a new variable. The primality of this
ideal is definable by 4.2(ii). The existence of a regular F -rational point of this ideal
can be expressed in a first-order formula with the Jacobian criterion; for this, also
observe that the Krull dimension of the prime ideal a is a definable expression in
terms of the coefficients. �

In order to formulate (AP1) of 3.2 in a first order way we use

(4.4) Theorem. Let F be a field, let X1, ...., Xn be indeterminates over F and let
s, d ∈ N. Then there is a natural number B(n, d, s) such that whenever f1, ..., fs ∈
F [X1, ..., Xn] are polynomials of total degree ≤ d, then the ideal (f1, ..., fs) has a
characteristic set {g1, ..., gr} for some r ≤ n such that the total degree of each gj is
at most B(n, d, s).

Proof. This is [GaMi], Theorem 3.4, applied to the ordinary polynomial ring over
F in the variables occurring in one of the fi. Note that in this paper, a char-
acteristic set of this ideal is defined exactly in the same way as we do in 2.6; cf.
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[GaMi], Definition 2.6. Note also that in this paper, a bound B(n, d, s) is explicitly
calculated. �

Now we can prove 4.1. By 2.14, a sequence (f1, ..., fn) ∈ F{Y } with the property
that (f1, ..., fn) : H(f1, ..., fn)∞ is a prime ideal of A(f1, ..., fn), is a characteristic
set of a differential prime ideal of F{Y } if and only if it is a characteristic set of
the ideal (f1, ..., fn) : H(f1, ..., fn)∞ of A(f1, ..., fn) and if it is an autoreduced and
coherent set of differential polynomials. The reducedness and the coherence are
certainly definable in terms of the coefficients of the f1, ..., fn. The first condition,
that (f1, ..., fn) is a characteristic set of (f1, ..., fn) : H(f1, ..., fn)∞ ⊆ A(f1, ..., fn),
is definable in terms of the coefficients of f1, ..., fn by 3.2, 4.2 and 4.4. By 3.2
and 4.2(iii), there is a natural number E(d, r) only depending on the degree d of
the f1, ..., fn and the number r of ordinary variables in A(f1, ..., fn) such that the
ideal (f1, ..., fn) : H(f1, ..., fn)∞ of A(f1, ..., fn) is generated by at most E(d, r)
polynomials of degree ≤ E(d, r). By applying 4.4 to this ideal and the bound
E(d, r) we get a bound B(d, r) only depending on d and r such that the ideal
(f1, ..., fn) : H(f1, ..., fn)∞ has a characteristic set g1, ..., gl for some l ≤ E(d, r)
where all gi are of degree ≤ B(d, r). By 4.2(i) it follows that we can express the
statement “(f1, ..., fn) is a characteristic set of (f1, ..., fn) : H(f1, ..., fn)∞” in a first
order way, in terms of the coefficients: we say that no system of at most E(d, r)
polynomials from (f1, ..., fn) : H(f1, ..., fn)∞ has a rank strictly less than the rank
of (f1, ..., fn).

Together with 4.3 this gives a formula ϕ1(v̄), where v̄ = (v1, ..., vr) and r is the
length of the coefficient vector of (f1, ..., fn), such that for all differential fields F
of characteristic 0 in K commuting derivatives and all c̄ ∈ F r, we have F |= ϕ2(c̄)
if and only if (f1, ..., fn) is a characteristic set of a differential prime ideal of F{Y }.

Together with 4.3 this completes the proof of 4.1: take ϕ(v̄) = ϕ1(v̄) ∧ ϕ2(v̄). �

(4.5) Corollary and Definition. Let K∈N and let L be the language {+,−, ·, 0, 1}
of rings. The class of all differential fields of characteristic 0 in K commuting
derivatives, which solve all their algebraically prepared systems, is axiomatizable in
the language L(∂1, ..., ∂K). The theory of this class is denoted by UC (for Uniform
Companion). If we want to point out the number K of derivatives involved, we
write UCK .

Proof. By 4.1. �

Hence UC is defined and by 3.3 we know that property (I), stated in the Intro-
duction, holds. Before proving assertion (II) from the Introduction, we first recall
some facts about large fields.

5. Large fields

(5.1) Definition. A field F is called large if every smooth integral curve defined
over F that has an F -rational point has infinitely many F -rational points (cf. [Po]).
Let T be a theory of fields in a language extending the language of rings. We say
that T is large if all models of T are large fields.

(5.2) Lemma. The class of all large fields is axiomatizable in the language of rings.

Proof. Let f1, ..., fn(Ū , X̄) ∈ Z[Ū , X̄]. There is a formula ϕ(ū) in the language of
rings, such that for every field F and all Ū -tuples c̄ from F , F |= ϕ(c̄) if and only
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if the system f1(c̄, X̄) = 0, ..., fn(c̄, X̄) = 0 defines an integral, smooth curve over
F , which has an F -rational point.

Therefore the set of all formulas

∀ū ϕ(ū) → ∃x̄1, ..., x̄n

∧

i �=j

x̄i �= x̄j ∧
∧

i

f1(ū, x̄i) = 0, ..., fn(ū, x̄i) = 0,

where n ∈ N, is equivalent to the statement that every smooth integral curve defined
over F by a system f1(c̄, X̄) = 0, ..., fn(c̄, X̄) = 0, c̄ ⊆ F , which has an F -rational
point, has infinitely many F -rational points.

This also shows the lemma. �

(5.3) Proposition. Let F be a field of characteristic 0. The following are equiva-
lent:

(i) F is large.
(ii) F is existentially closed in the formal Laurent series field F ((t)) in one

variable.
(iii) For all n ∈ N, F is existentially closed in the formal Laurent series field

F ((t1, ..., tn)).
(iv) For every n ∈ N and every prime ideal p ⊆ F [X], X = (X1, ..., Xn), if

V (p) :=(the zeroes of p in the algebraic closure of F ) has a regular, F -
rational point, then F is existentially closed in F [X]/p (i.e. the F -rational
points of V (p) are Zariski dense in V (p)).

Proof. (i)⇒(ii). It is enough to show that F is existentially closed in F [[t]]. Let
A be the ring of all elements of F [[t]] which are algebraic over F [t]. By Artin
approximation, A is existentially closed in F [[t]], and it is enough to show that
F is existentially closed in every finitely-generated F -algebra A0 ⊆ A. Since A0

is integrally closed, the integral closure B of A0 is in A. Moreover, B is finitely
generated over F and of dimension 1. Thus B is a regular ring. Let C be the curve
defined by B over F . Then C is smooth and since B ⊆ F [[t]], C has an F -rational
point. Since F is large, C has infinitely many F -rational points which means that
F is existentially closed in B as desired. This proves (i)⇒(ii).

Now we prove for a given d ∈ N: if F is existentially closed in F [[t1, ..., td]] and
p ⊆ F [X], X = (X1, ..., Xn), n ∈ N, is a prime ideal of dimension d such that V (p)
has a regular, F -rational point, then F is existentially closed in F [X]/p. This will
show (ii)⇒(i) and (iii)⇒(iv).

In order to see the Claim, let A := F [X]/p and let ā be an F -rational regular
point of V (p). This means that the maximal ideal m of A corresponding to ā has
residue field F . Let B be the m-adic completion of Am. Since ā is a regular point
of V (p), Am is regular, local with residue field F , and dimAm = d. Then Am ⊆ B
and B is regular, complete, and local with residue field F . So B is F -isomorphic
to F [[T1, ..., Td]].

This shows that A can be embedded over F into F [[T1, ..., Td]]. By assumption,
F is existentially closed in F [[T1, ..., Td]]; in particular F is existentially closed in
A.

Hence we know (i)⇔(ii) and (iii)⇒(iv). Since (i) is a weakening of (iv) it remains
to show (ii)⇒(iii). We show by induction on n that F is existentially closed in
F [[t1, ...., tn]], where n = 1 holds by assumption. Assume we know that F is
existentially closed in F [[t1, ...., tn]]. Let L � F such that there is an F -embedding
F [[T1, ...., Td]] −→ L. Since F is large, L is large, too (by 5.2 and since we already
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know that (i)⇔(ii)). Hence L is existentially closed in L[[Td+1]], so F is existentially
closed in F [[T1, ...., Td+1]] ⊆ L[[Td+1]]). �
Examples of large fields. All PAC, PRC and all PpC-fields are large. Moreover,
if F is a field admitting a nontrivial henselian valuation, then F is large (in section
8 we discuss this in more detail).

6. Proof of the main theorem

We have to show that every differential field F which is large as a pure field has
an extension which is a model of UC and which is an elementary extension when
considered as a pure field. This reduces to the problem of finding a differential
solution of a given algebraically prepared system (f1, ..., fn) of F in a differential
field L ⊇ F such that F is existentially closed in L as a pure field. The following
theorem translates this plan into a problem about finitely generated F -algebras.

(6.1) Theorem. Let F be a differential field of characteristic 0 in K commuting
derivatives and let p ⊆ F{Y }, Y := (Y1, ..., YN ) be a differential prime ideal. Let
ϕ : F{Y } −→ F{Y }/p =: S be the residue map and let G be a characteristic set of
p. Let H(G) be the product of all initials and separants of polynomials in G. Let
h := ϕ(H(G)),

V := {y ∈ DY | y is not a proper derivative of any leader of an element g ∈ G},
VB := {y ∈ V | y appeares in some g ∈ G},

B := ϕ(F [VB]) and P := ϕ(F [V \ VB]).

Then h ∈ B, h �= 0 and
(a) B is a finitely generated R-algebra and P is F -isomorphic to a polynomial

ring over F in at most countably many variables (the case P = F is not
excluded).

(b) Sh = (B ·P )h is a differentially finitely generated F -algebra.
(c) The homomorphism B ⊗F P −→ B ·P induced from multiplication is an

isomorphism of F -algebras.
(d) The restriction of ϕ to F [V \ VB] is injective.

Proof. By [Tr]; the theorem is stated there without the definition of the data B, P
and h in the case where F is a differential domain. The definition of the data can
be found at the beginning of section 3 in [Tr]. Also, item (d) is claim 1 of section
3 in [Tr]. �
(6.2) Main Theorem. Let K ∈ N. Then:

(I) Whenever L and M are models of UCK and A is a common differential
subring of L and M such that L and M have the same universal theory
over A as pure fields, then they have the same universal theory over A as
differential fields.

(II) Every differential field F which is large as a pure field can be extended to a
model of UCK , and this extension is elementary in the language of rings.

Proof. (I) holds by 3.3. We prove (II).

Claim. If F is a differential field, which is large as a pure field, and (f1, ..., fn)
is an algebraically prepared system of differential polynomials from F{Y },
Y = (Y1, ..., YN ), then there is a differential field extension L of F , which has
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a differential solution of f1 = 0, ..., fn = 0, H(f1, ..., fn) �= 0 such that L is an
elementary extension of F as a pure field.

In order to see the claim, we first use 6.1. Let p := [f1, ..., fn] : H(f1, ..., fn)∞.
Since (f1, ...., fn) is a characteristic set of a differential prime ideal, this prime ideal
is p. By 6.1, the differential F -algebra A := F{Y }/p localized at h is F -isomorphic
to Bh ⊗F P , where B = A(f1, ..., fn)/(p∩A(f1, ...., fn)) and P is a polynomial ring
over F in at most countably many variables. Now p ∩ A(f1, ...., fn) is the ideal
(f1, ..., fn) : H(f1, ..., fn)∞ of A(f1, ...., fn). Since (f1, ..., fn) is an algebraically
prepared system, the ideal (f1, ..., fn) : H(f1, ..., fn)∞ has a regular, F -rational
point. Since F is large, this means that the pure field F is existentially closed in
B by 5.3. Thus the pure field F is existentially closed in Bh, too. Consequently
there is a field L0 containing Bh, which is an elementary extension of the pure field
F . Let L � L0 be a field of infinite transcendence degree over L0. Then, there
is an F -embedding of P into L so that the indeterminates of P are mapped onto
algebraically independent elements of L w.r.t L0. Since Ah = Bh ⊗F P , Ah can be
embedded into L over F . Finally we can extend the derivatives of Ah to commuting
derivatives of L, and we get a differential field as desired.

From the claim, we get assertion (II) by transfinite induction. This is possible
because any algebraically prepared system of F is again an algebraically prepared
system of L, for every differential field L ⊇ F with the property that F is alge-
braically closed in L, in particular if F ≺ L as pure fields. Moreover, if L is such a
differential field, then L is again large by 5.2. Hence we can iterate the claim until
all algebraically prepared systems of the differential fields constructed so far are
solvable in the union of all these differential fields. So this union will be a model
of UCK and an elementary extension of F when viewed as a pure field. �

Remark. If F is a large field and f1, ..., fn, h ∈ F [X], X = (X1, ..., Xk) such that
(f1, ..., fn) : h∞ is a prime ideal which has a regular F -rational point, then it also
has a regular F -rational point where h does not vanish. The reason is that the
generic point of (f1, ..., fn) : h∞ has this property and F is existentially closed in
F/(f1, ..., fn) : h∞.

Therefore, for our purposes, in condition (AP2) of 3.1 one can drop the term
“where H(f1, ..., fn) does not vanish”.

(6.3) Proposition. The theory of large fields, the theory UCK and the theory
UCK∪ “large fields” are inductive. If U is another theory of large differential fields
in K commuting derivatives, such that properties (I) and (II) of 6.2 hold for U ,
then U contains UCK . If in addition U is inductive, then U = UCK∪“large fields”.

Proof. An increasing chain of large fields is again a large field. This follows easily
from the definition. Also, from the definition of UCK , an increasing chain of models
of UCK is again a model of UCK . By classical model theory, this is equivalent to
the inductivity of the corresponding theories.

Let U be another theory of large differential fields, such that properties (I) and
(II) of 6.2 hold for U . In order to show UCK ⊆ U we take a model M of U and we
have to show that M is a model of UCK . Since M is a large field, property (II) of
6.2 says that there is a differential field M ⊆ N |= UCK such that M � L ≺ N � L.
Again N is a large field and property (II) of 6.2 applied to U gives a differential
field N ⊆ M ′ |= U with N � L ≺ M ′ � L. It follows that M � L ≺ M ′ � L and
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since property (I) of 6.2 is satisfied for U , we get that M is existentially closed in
M ′. Consequently M is existentially closed in N , too. Since N |= UCK and UCK

is inductive, it follows that M |= UCK .
This shows that UCK ⊆ U . If in addition U is inductive, then the same argument

as above with interchanged roles of U and UCK∪“large fields” implies equality of
both theories. �

7. Adding UC to model complete theories of large fields

Recall from [Ho] that in an arbitrary language L, an L-theory T is a model
companion of another L-theory T0, if T and T0 have the same universal theory and
if T is model complete. If this is the case and T0 has the amalgamation property
in addition, then T is called a model completion of T0. Moreover both notions can
be characterized as follows.

For an L-structure M let L(M) denote the language obtained from L by adding
a new constant m for each element in M . Moreover let diag(M) be the diagram of
M , thus the set of all quantifier-free L(M)-sentences that are true in M , when we
interpret the m as m.

Let T0, T be L-theories with the same universal theory. Hence every model of
T0 can be embedded into a model of T and vice versa. Then

T is a model companion of T0 if and only if for every model M of T , the theory
T ∪ diag(M) is a complete L(M)-theory.

T is a model completion of T0 if and only if for every model M of T0 and every
model M of T , the theory T ∪ diag(M) is a complete L(M)-theory.

T has quantifier elimination if and only if for every substructure A of a model
M of T the theory T ∪ diag(A) is a complete L(A)-theory.

Hence T has quantifier elimination ⇒ T is a model completion of T0 ⇒ T is a
model companion of T0.

Recall also that a given L-theory T0 has at most one model companion if T0 is
axiomatized by ∀2-sentences.

If T is a model complete theory, then it is well known that T is axiomatized by
∀2-sentences. Hence T is the unique model companion of T and T is the model
completion of T .

The theory UCK serves as a uniform model companion, a uniform model com-
pletion and a uniform model completion with quantifier elimination of theories of
differential fields which are companionable in the various senses as theories of pure
fields, in the following sense:

(7.1) Theorem. Let K ∈ N. Let L := {+,−, ·, 0, 1} be the language of rings and
let C be a set of new constants. Let ∂1, ..., ∂K be new unary function symbols. Let
T be a model complete theory in the language L(C) such that every model of T is
a large field.

Let T ∗ be a theory in a language L∗ ⊇ L(C) such that T ∗ contains T and T ∗

is an extension by definitions of T . This means that T ∗ is built from T by saying
that each new symbol of L∗ is equivalent to a certain L(C)-formula. Nothing else
is added in T ∗.

Let A be an L∗(∂̄)-structure, ∂̄ := (∂1, ..., ∂K) such that A, viewed as an L(∂̄)-
structure, is a differential ring in K commuting derivatives.

If T ∗ ∪ diag(A � L∗) is complete, then T ∗ ∪ UCK ∪ diag(A) is complete.
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Proof.

Claim 1. T ∗ ∪ UCK ∪ diag(A) is consistent.

Since T ∗ ∪ diag(A � L∗) is consistent, A � L∗ is a substructure of a model of T ∗.
Since the derivatives of A can be extended to commuting derivatives of that model,
we get that T ∗ ∪ diag(A)∪ “differential fields” is consistent. By 6.2(II) and since
T ∗ is an extension by definition of T , T ∗ ∪ UCK ∪ diag(A) is also consistent.

Before proving that T ∗∪UCK∪diag(A) is complete we first prove that T ∗∪UCK

is model complete and that T ∗∪UCK has quantifier elimination if T ∗ has quantifier
elimination. So let us forget A for the moment.

Claim 2. T ∗ ∪ UCK is model complete.

First note that T ∪UCK is consistent, since for every model M of T , M can be
equipped with K commuting derivatives. Thus by Claim 1, T ∪UCK is consistent.
T ∪UCK is model complete by 6.2(I) and the Robinson test for model completeness.
Since T ∗ is an extension by definitions of T , T ∗∪UCK is also model complete (and
consistent). This shows Claim 2.

Claim 3. If T ∗ has quantifier elimination, then T ∗∪UCK has quantifier elimination.

In order to see this let M, N |= T ∗ ∪ UCK and let A ⊆ M, N be a common L∗-
substructure, which is also a common differential subring of M, N . Let ϕ(x̄, ū) be a
quantifier-free L∗(∂̄)-formula, ā ∈ Aū, such that M |= ϕ(b̄, ā) for some b̄ ∈ M x̄. As
T ∗ has quantifier elimination we know that M ≡A N as L∗-structures. In particular
M ≡∃,A N as pure fields. Since M, N |= UCK , 6.2(I) implies M ≡∃,A N in the
language L(C)(∂̄) (observe that M and N interpret the constants from C as the
same elements from A).

Since T ∪UCK is a model complete L(C)(∂̄)-theory and T ∗ ∪UCK is an exten-
sion by definition of T ∪ UCK , there is a quantifier-free formula χ(x̄, ū, ȳ) in the
language L(C)(∂̄), such that T ∗ ∪ UCK � ∀x̄, ū (ϕ(x̄, ū) ↔ ∃ȳχ(x̄, ū, ȳ)). Since
M |= ϕ(b̄, ā) and M |= T ∗ ∪UCK , there is some b̄′ ∈ M ȳ such that M |= χ(b̄, ā, b̄′).
As M ≡∃,A N as differential fields, there are c̄, c̄′ ⊆ N such that N |= χ(c̄, ā, c̄′),
hence N |= ∃ȳχ(c̄, ā, ȳ). As N |= T ∗ ∪ UCK , N |= ϕ(c̄, ā) as desired. This shows
Claim 3.

Now we prove the theorem. Since T ∗ ∪ diag(A � L∗) is consistent, T ∗ ∪ UCK ∪
diag(A) is consistent by Claim 1.

Let M, N be two models of T ∗∪UCK and let A be a common L∗(∂̄)-substructure.
We have to show that M ≡A N . Let L+ be the language containing L∗ to-
gether with a new k-ary relation Rϕ for every existential L∗-formula ϕ in exactly
k free variables. Let T+ be the L+-theory containing T ∗ and all the sentences
∀u1, ..., uk Rϕ(ū) ↔ ϕ(ū), where ϕ = ϕ(ū) runs through all existential L∗-formulas
in exactly k free variables ū = (u1, ..., uk), k ∈ N0.

Since T ∗ is an extension by definition of T , T+ is also an extension by definition of
T and of T ∗. Since T is model complete, T+ is model complete, too. It follows that
T+ has quantifier elimination. By Claim 3, T+ ∪ UCK has quantifier elimination.

Let M̃, Ñ be the expansions of M, N to models of T+ ∪ UCK , respectively,
according to the axioms of T+. Since A is a common L∗(∂̄)-substructure of M
and N , the differential ring A is a common differential subring of M and N . Since
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T ∗ ∪ diag(A � L∗) is complete we know that M � L∗ ≡A N � L∗. It follows from
the definition of T+ that A together with the substructure induced by M̃ on A is
the same as A together with the substructure induced by Ñ on A. Hence M̃ and
Ñ induce the same structure on A, and the quantifier elimination of T+ ∪ UCK

implies M̃ ≡A Ñ . But then M ≡A N , too. �

The next theorem gathers consequences of 7.1.

(7.2) Theorem. Let K ∈ N. Let L := {+,−, ·, 0, 1} be the language of rings and
let C be a set of new constants. Let ∂1, ..., ∂K be new unary function symbols. Let
T be a model complete theory in the language L(C) such that every model of T is
a large field.

Let T ∗ be a theory in a language L∗ ⊇ L(C) such that T ∗ contains T and T ∗ is
an extension by definitions of T .

Assume that T ∗ is a model companion of an L∗-theory T ∗
0 extending the theory

of fields. Then:
(i) T ∗∪UCK is a model companion of the L∗(∂̄)-theory T ∗

0 ∪“differential fields
in K commuting derivatives”.

(ii) If T ∗ is a model completion of T ∗
0 , then T ∗ ∪ UCK is a model completion

of the L∗(∂̄)-theory T ∗
0 ∪“differential fields in K commuting derivatives”.

(iii) If T ∗ has quantifier elimination, then T ∗∪UCK has quantifier elimination.
(iv) If T is complete and M is a differential field and a model of T , then T ∗ ∪

UCK ∪ diag(C) is complete, where C is the L(C)(∂̄)-substructure generated
by ∅ in M (so C is the differential subring of M generated by cM , c ∈ C).

Proof. We first show that T ∗
0 ∪“differential fields” has the same universal theory as

T ∗ ∪ UCK .
First let M be a model of T ∗ ∪UCK . By assumption, there is an L∗-embedding

M � L∗ −→ N0 of M � L∗ into a model N0 of T ∗
0 . If we extend the derivatives of

M to N0 we get a model N of T ∗
0 ∪ “differential fields”, and the given embedding is

an L∗(∂̄)-embedding, too.
Conversely let M |= T ∗

0 ∪ “differential fields”. By assumption there is an L∗-
embedding M � L∗ −→ N0 of M � L∗ into a model N0 of T ∗. Extend the derivatives
of M to N0 and call the resulting L∗(∂̄)-structure N1. By 6.2(II), there is a model
L of T ∪ UCK , such that L is a differential field extension of N1 � L(C)(∂̄). Now
extend the new symbols of L∗ according to the rules in T ∗ to L and call the resulting
L∗(∂̄)-structure N . Then M −→ N is an embedding of L∗(∂1, ..., ∂K)-structures
and N |= T ∗∪UCK . This shows that T ∗

0 ∪“differential fields” has the same universal
theory as T ∗ ∪ UCK .

Now items (i)-(iii) of the theorem follows from 7.1 and the characterization of
the various companions at the beginning of this section. Item (iv) also follows from
7.1, since T ∗ is complete if T is complete. �

I do not know if every model complete field (of characteristic 0) in the language
of rings is large. Here, a model complete field is a field F such that the theory of
F in the language of rings is model complete.

The following remark on the axiomatizability of theories with quantifier elimi-
nation shows that for each particular T ∗ as in 7.2(iii) and each given number K
of derivatives, one can expect an easier axiom system for T ∗ ∪ UCK than the one
given in 4.5.
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(7.3) Remark. Let T be a theory in an arbitrary language L and suppose T has
quantifier elimination. Then T has an axiom system consisting of L-sentences of
the form

∀x̄∃y ϕ(x̄, y),

where y is a single variable and ϕ(x̄, y) is a quantifier-free L-formula.

Proof. Let Σ := {∀x̄∃y ϕ(x̄, y) ∈ T | ϕ(x̄, y) quantifier free}. Let M |= Σ. We have
to show that M |= T . Since M |= T∀, there is a model N of T , such that M is a
substructure of N , and it is enough to prove that M ≺ N . To see this we use the
Tarski-Vaught test. This means we have to take an arbitrary L-formula ψ(x̄, y),
where y is a single variable together with some ā ∈ M x̄ such that N |= ∃y ψ(ā, y),
and we have to find some b ∈ M such that N |= ψ(ā, b). Since T has quantifier
elimination we may assume that ψ(x̄, y) is quantifier free. Moreover there is a
quantifier-free L-formula χ(x̄) such that T � ∀x̄ [χ(x̄) ↔ ∃y ψ(x̄, y)]. Hence

T � ∀x̄∃y [χ(x̄) → ψ(x̄, y)].

This sentence is in Σ, thus M |= ∀x̄∃y [χ(x̄) → ψ(x̄, y)]. As N |= χ(ā) and
χ is quantifier free we have M |= χ(ā). Hence there is some b ∈ M such that
M |= ψ(ā, b), consequently N |= ψ(ā, b). �

8. Examples

(8.1) Proposition. Suppose F is a field and F has one of the following properties:

(1) F is pseudo algebraically closed (PAC) or F is algebraically closed (ACF)
or

(2) F is pseudo real closed (PRC) or F is real closed (RCF) or
(3) F is pseudo p-adically closed of fixed rank d (PpCd) or F is p-adically closed

of fixed rank d (pCd) or
(4) F admits a nontrivial henselian valuation.

Then F is a large field.

Proof. (1)–(3) can be found in [Po]. Proposition 3.1 of [Po] provides a more general
source of large fields, which contain those in (1)–(3): Every field which satisfies a
universal local-global principle (cf. [Po], section 3A) is large.

(4) follows from [PZ], thm. 7.4: Since a henselian-valued field satisfies an implicit
function theorem, every smooth integral curve defined over F which has an F -
rational point, has infinitely many F -rational points. �

Now let L be the language {+,−, ·, 0, 1} of rings again. Recall that the theory of
algebraically closed fields of characteristic 0 (ACF0), the theory of real closed fields
(RCF) and the theory of p-adically closed fields of fixed rank d (pCd) are model
complete. In [Wh1] and [Wh2] a broad class of model complete L-theories of PAC,
PRC and PpC fields can be found.

(8.2) Corollary and Definition.

(i) ACF0 ∪ UCK is the theory of differentially closed fields as introduced by
[Bö] and [McG] in the partial case K ≥ 1 and by L. Blum in the ordinary
case K = 1.
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(ii) RCF∪UCK is the complete and model complete theory of real closed ordered
differential fields in the language L(∂1, ..., ∂K). This theory was introduced
in the ordinary case K = 1 by M. Singer in [Si]. Moreover RCF∪UCK has
quantifier elimination in the language L(≤)(∂1, ..., ∂K).

(iii) pCd ∪ UCK is the complete and model complete theory of p-adically closed
differential fields of fixed rank d in the language L(∂1, ..., ∂K); pCd ∪ UCK

has quantifier elimination in the language L(Pn | n ∈ N)(∂1, ..., ∂K), where
Pn is a unary predicate for the n-th powers of the field.

Proof. By 7.2 and the corresponding results for the underlying theories of fields by
Chevalley, Tarski and Macintyre. �

Note also, that in [PP] (for K = 1) and in [Pi] (for K ≥ 1) reformulations of
ACF0 ∪ UCK in terms of properties of ordinary varieties can be found.

Another application of Theorems 7.1 and 7.2 within a special class of PAC-fields
concerns pseudo finite fields of characteristic 0. Recall that a pseudo finite field is a
PAC-field which has exactly one extension of degree n for every n ∈ N. The theory
of a given pseudo finite field F is not model complete in general. But it is model
complete after naming some elements of the field by new constants:

(8.3) Proposition. For each n ∈ N, n > 1, let cn1, ..., cnn be new constants and let
C := {cni | i ≤ n ∈ N, n > 1}. Let T be the theory of pseudo finite fields together
with the L(C)-sentences which express that the polynomial Tn + cn1T

n−1 + ...+ cnn

is irreducible, n > 1. Then T is a model complete L(C)-theory.

Proof. [CDM], Proposition (2.7), which contains a more detailed elimination result.
�

The theories of all models of the L(C)-theory T from 8.3 of characteristic 0 is
denoted by PsfC(0).

(8.4) Corollary. The L(C)(∂1, ..., ∂K)-theory T =PsfC(0) ∪ UCK is the model
completion of the theory PsfC(0)∪“differential fields in K commuting derivatives”.
Moreover, if (F, C) |= T and F is algebraic over Q, then Th(F, C) ∪ UCK is com-
plete.

Proof. L(C)(∂1, ..., ∂K)-theory PsfC(0)∪UCK is the model completion of the theory
PsfC(0)∪“differential fields in K commuting derivatives”, by 8.1(1), 8.3 and 7.2(ii).
For the moreover part we use 7.2(iv); observe that in every model of Th(F, C)∪UCK

the derivatives on C are trivial. �
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