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ABSTRACT Multi-/Many-core architectures are emerging as scalable, high-performance and energy-
efficient computing platforms suitable for a variety of application domains from edge to cloud computing.
Recently, the appearance of RISC-V open-source ISA creates new possibilities to develop customized
computing platforms with high savings in the non-recurring engineering costs. Moreover, the current trends
toward open-source hardware frameworks are aimed to reduce design time and cost for complex system-
on-chip architectures. Therefore, modularity and re-usability of hardware components are major challenges
for flexible hardware architectures. The motivation behind this work is to introduce a modular cluster-based
many-core architecture for FPGA accelerators that is re-usable and flexible tailored to implement different
many-core taxonomies with less design time and costs by using regular and replicated sets of computing,
memory, and interconnection blocks. The proposed many-core architecture is built using multiple processing
clusters coupled with a NoC for communication which allows a high degree of design scalability. The
processing cluster inside features a configurable multi-core architecture consisting of multiple RISC-V
processing elements (PE) tightly coupled with a bus-based interconnection for intra-cluster communication
using parameterized scratchpad shared memory. Each PE features a single RISC-V core with a tightly
coupled parameterized scratchpad local memory and generic AXI interface. Evaluation results demonstrate
that the proposed architecture features a scalable computing performance of 501 MOp/s for 4 clusters and
878 MOp/s for 8 clusters. Moreover, a scalable memory bandwidth up to 4.3 GB/s is achieved for 9 clusters
with a power consumption of 1.4 W per cluster utilizing 7.7% of on-chip memory resources. The many-
core architecture is implemented and evaluated on Xilinx Virtex Ultrascale+ with the feature of changing
the architecture configurations during run-time using dynamic and partial reconfiguration which provides
more flexibility and re-usability.

INDEX TERMS Many-Core Architecture, Parallel Computing, RISC-V, Network-on-Chip (NoC), Field
Programmable Gate Array (FPGA), Reconfigurable Computing.

I. INTRODUCTION

CURRENT and future applications in domains like deep
neural network or next-generation cellular standards

like 5G impose high demands on a novel approach for hard-
ware platforms that can cope with high computational com-
plexity and memory requirements with low energy consump-
tion [1, 2]. Therefore, multi-/many-core architectures have
emerged as adequate scalable hardware platforms to address
the ever-increasing computation demands while maintaining

a sort of energy-efficiency. Whereas, the ending of Dennard’s
scaling and the inability to achieve energy efficiency with
high computing density by a single complex processor drives
hardware architects to explore new approaches for novel
architectures in order to increase the performance thereby
maximize the energy-efficiency. Hence, current many-core
architectures designs are following the path of integrating
multiple processing nodes using the same silicon area re-
quired by a complex processing core. Whereas the process-
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ing nodes are either simple general-purpose processors or
application-specific hardware accelerators. In the last decade,
several multi-/many-core architectures have been developed
as application-specific or application-oriented hardware plat-
forms either with homogeneous [3] or heterogeneous [4,
5] processing cores. The goal here is to provide hardware
solutions with high performance/watt for specific application
domains (e.g. software-defined-radio). However, the integra-
tion of many processing cores requires an efficient com-
munication infrastructure (e.g. network-on-chip, advanced
bus-based architectures) and memory hierarchies that can
cope with the high scalability and performance requirements
besides the associated programmability challenges.

As a result, integrating more components and different
architectural units on a complete system-on-chip increases
design efforts (e.g. verification, validation, integration) and
therefore the rising of development time and costs. More-
over, the design specifications could vary due to different
application requirements which lead to the necessity of a
new design process for each new application requirement
[2]. Resultantly increasing the design effort and therefore
time to market with a continuous inflation in non-recurring
engineering costs. Recently, the agility and re-usability of a
new scalable/configurable computing platform have attracted
the attention of the computer architecture community [6]
driven by the proliferation of the open-source instruction set
architecture (ISA) by RISC-V and also the tendency towards
a new ecosystem for open-source hardware frameworks sim-
ilar to the software counterpart.

In this context, this paper introduces a modular cluster-
based many-core architecture for FPGAs. The focus of
this work is to propose a novel modular implementation
for many-core architectures based on RISC-V open-source-
hardware processors with cluster-granularity customization
for FPGA platforms. The proposed design has re-usable and
flexible architectural units that can be tailored to implement
different heterogeneous and homogeneous many-core tax-
onomies using regular building blocks for computation (e.g.
PEs, processing clusters), with several memory hierarchies
and generic communication interconnections. Thus, our goal
is also to analyze the effects of different architecture config-
urations regarding memory types, communication/network
interconnections and the number of processing cores on the
system performance.

The foremost contributions of this work are summarized
as follows:
• Designing a modular RISC-V based PE with tightly cou-

pled local data/instruction memory and AXI compatible
interfaces to communicate with several memory mapped
peripherals and custom HW accelerators.

• Implementing a configurable processing clusters that
hosts configurable numbers of PEs with configurable
size shared memory system connected through a shared
bus architecture.

• Developing a scalable RISC-V based many-core archi-
tecture using configurable number of processing clusters

connected through a generic NoC architecture applying
a message-based communication model.

• Allowing the flexibility of run-time configuration for
several many-core configurations through dynamic par-
tial reconfiguration techniques.

As a result, the architecture maintains a high degree of
scalability using a scalable NoC topology and the design
regularity manner offers the flexibility to scale up the number
of processing clusters with less design effort and cost. Fur-
thermore, a message-based communication model is adopted
to support data transfer over the NoC between processing
clusters. In addition, a bare metal programming method is
introduced on the level of processing clusters for parallel pro-
gramming over the RISC-V PEs using shared and local data
memories on the cluster level. Moreover, the proposed many-
core architecture is evaluated based on different architecture
configurations covering different types of memory hierar-
chies/sizes, communication interconnections, and number of
cores/clusters per system to explore several design choices
and their effects on the system performance. In this work, for
real hardware implementation and evaluation, the proposed
architecture is implemented and evaluated on a Xilinx Virtex
Ultrascale+ FPGA. Furthermore, the architecture can be flex-
ibly portable to other Xilinx FPGA series without the need
to re-design the architecture’s building block components
which make it feasible for FPGA migration. Finally, the
architecture supports run-time adaptation of many-core con-
figurations regarding memory-type and number of processing
cores per cluster using dynamic and partial reconfiguration
without the need to re-synthesize the whole architecture.
Accordingly and to the best of our knowledge, our proposed
architecture is the first RISC-V based many-core architecture
that supports run-time adaptation of several architectural
configurations.

The rest of the article is structured as follows: Section II
discusses background and related work. Section III gives a
detailed overview of the proposed modular design approach
for the proposed RISC-V based many-core architecture. The
evaluation and experimental results are presented in Section
IV. Finally, Section V summarizes this work and gives an
outlook for future work.

II. RELATED WORK AND BACKGROUND
Several high-performance and energy-efficient multi-/many-
core architectures have been developed in both academia
and industry. However, there are a limited number of studies
discussing system scalability and design regularity in the
form of replicated building blocks or tile-based architectures
for homogeneous and heterogeneous many-core implemen-
tations. Besides, common multi-/many-core architectures are
mass-produced in the form of ASIC which make them highly
customized platforms for specific applications with dedicated
processing cores. Therefore, design time and manufacturing
are significant obstacles with high non-recurring engineering
costs which are not affordable for small-size companies or
academic research. We provide here a review of related
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TABLE 1. Comparison of different state-of-the-art multi/many-core platforms with respect to architecture specifications.

RISC-V

based PE

Topology Memory System Support Custom

HW Accelerators

FPGA

based

ASIC

based

Run-time

configurationNoC Cluster/Tile Local SharedSH

HERO [7] X - X - X - X - -

OpenPiton+Ariane T [8] X X X X - - X - -

ESP T [9, 10] X X X X - X X - -

Savas et al. T [11, 12] X X X X - X X - -

RVNoC [13] X X - X - - X - -

Memphis [14] - X - X - X X - -

Vestias et al. [15, 16] - - - - X - X - -

GRVI Phalanx [17] X X X X X - X - -

BlackParrot T [18] X X X X - X - X -

CoreVA-MPSoC [19] - X X X X - - X -

P2012 [20] - X X X X X - X -

Epiphany [21] - X - X - - - X -

Kalray MPPA256 [22] - X X X - - - X -

This Work X X X X X X X - X
T Tile based architecture. SH Shared memory between multiple PEs/cores inside one cluster/tile.

work for homogeneous and heterogeneous multi-/many-core
architectures and frameworks for FPGA and ASIC platforms.

Kurth et. al [7] presented a heterogeneous many-core
research platform on FPGA (HERO). It explores the in-
tegration of RISC-V core into a shared memory cluster-
based programmable many-core accelerator (PMCA). The
PMCA is connected with an ARM Cortex A53 as a host
CPU through an AXI coherent interconnect which provides
coherent access to the shared external memory with the
host caches memory. Thus, the system allows shared virtual
memory which eases the system programmability. Moreover,
the PMCA is configurable in terms of the number of clus-
ters and cores supported during design time. Meanwhile,
shared hardware accelerators can be coupled with the RISC-
V cores within the cluster. However, the PMCA clusters are
connected through a custom shared bus architecture which
limits the overall scalability to 8 clusters. Therefore, to in-
crease the degree of scalability, OpenPiton [8] platform is
proposed as an open-source scalable architecture for many-
core system prototyping. OpenPiton is a tile-based architec-
ture that supports different NoC topologies for tiles inter-
connection. Each tile contains an Ariane 64-bit RISC-V core
with private cache memory connected to three NoC routers.
Further, multiple tiles are integrated into a chip and multiple
chips are connected together with a NoC for a scalable
architecture. Moreover, each tile is configurable at design
time to be extended with a tightly coupled floating point or a
stream processing unit. Moreover, OpenPiton supports cache
coherency protocol enabling shared memory across multiple
chips. In the same context, the embedded scalable platform
(ESP) proposed by Carloni et. al [9, 10] is aimed to address
the complexity of design regularity for heterogeneous many-

core architecture with a special focus on HW/SW interaction
between RISC-V cores and hardware accelerators. Therefore,
the ESP tile-based architecture contains coherent socket in-
terface and direct memory access (DMA) engine for commu-
nication and data sharing through a NoC. The accelerators
are hosted by the tile connected to a communication socket
as a loosly coupled model. Moreover, ESP socket interface
supports the integration of high level synthesis (HLS) based
accelerator.

Similarly, Savas et. al [11, 12] proposed a framework to de-
sign a domain-specific heterogeneous many-core architecture
from application data flow graphs. The framework is based
on a heterogeneous tile-based architecture consisting of a
simple RISC-V core, memory and accelerator tiles connected
through a NoC. Also, the framework allows the integration
of HLS based accelerators to the architecture. RVNoC [13]
framework is a design time configurable RISC-V NoC-based
MPSoC to integrate many RISC-V cores using a reconfig-
urable NoC architecture to allow large system scalability in
term of computing elements. However, it leaks the flexibility
manner of cluster/tile based architectures to host multiple
RISC-V PEs or hardware accelerators on a single processing
unit with a shared or local memory system which gives
a second level of design scalability inside the cluster/tile
node. Furthermore, Memphis [14] framework is proposed
for scalable heterogeneous many-core SoCs. It supports the
generation and integration of homogeneous PEs with hard-
ware accelerators as shared peripherals to all PEs. However,
it does not support the tightly coupled integration of HW
accelerators directly with PEs like the case of cluster/tile
based architectures. Moreover, the generated architectures
[13, 14] lacking fine configurations regarding memory type-
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s/sizes and processing cores as proposed by our modular
architecture. In contrast, Vestias et al. [15, 16] proposed
a configurable FPGA-based many-core overlay for applica-
tions acceleration. It works as a co-processor for high perfor-
mance embedded systems with configurable local memory
size, core counts, and supported arithmetic operations per
processing core. As well, the GRVI Phalanx overlay [17] is
proposed for extreme scalability for FPGA-based many-core
accelerators. It efficiently uses the FPGA resources to place
hundreds of RV32I base processing clusters with a scalable
NoC architecture.

In addition to FPGA based platforms for rapid prototyping
and evaluation, several many-core architectures that target
ASIC platforms for low power and energy consumption re-
quirements have been developed. In this context, BlackParrot
[18] is proposed as modular low power RISC-V based multi-
core architecture. The architecture is specified as a heteroge-
neous tile-based architecture similar to the ESP platform pro-
posed by [9, 10] which also maintain data coherency between
the RISC-V and accelerators tiles. Hence, BlackParrot uses
a cache-coherent NoC for communication between all tiles.
Moreover, it supports the extension with second level caches
between multiple tiles and external DRAM and user peripher-
als. Besides, Ax et al. [19] proposed the Core-VA as a NoC-
based many-core architecture with a hierarchical communi-
cation and cluster-based structure. The architecture features
global asynchronous and locally synchronous (GALS) NoC
architecture. Moreover, each cluster has a tightly-coupled
shared memory between the cores for low memory latency
and to reduce energy consumption. However, integration of
hardware accelerators is not supported. Similarly, P2012 [20]
many-core GALS architecture is built as a modular cluster-
based architecture with tightly coupled shared memory. It
features a configurable number of processing cores and mem-
ory size. Moreover, besides the NoC interface, the cluster has
a stream interface which allows communication to multiple
hardware accelerators. In the same context, Epiphany [21]
is a commercial energy-efficient many-core with a global
memory address space over NoC. Therefore, each core is
allowed to access other cores memory coherently. How-
ever, the architecture does not introduce a cluster level and
implements synchronous NoC architecture. Kalray MPPA-
256 [22] is another commercial many-core architecture that
supports a cluster-based architecture. Each cluster owns a
private address space with local caches memories. Moreover,
the architecture does not support a global address space on
the NoC level compared to [18-20].

Accordingly, our proposed architecture differentiates from
these above-mentioned work as shown in Table 1 by pro-
viding more design configurability and flexibility related to
memory types/sizes and number of cores per cluster in order
to achieve high design scalability and regularity features for
a modular platform that supports multiple computing and
memory choices to be tailored for different applications.
Hence, the proposed many-core is implemented as a cluster-
based architecture. The clusters are connected through a syn-

chronous NoC architecture ARTNoC [23] using stream net-
work interfaces. Each cluster tightly couple multiple RISC-
V PEs with shared instruction/data memories using a shared
AXI interconnect. The cluster features a private address space
which allows the communication between all PEs and shared
peripherals. Moreover, each PE features a scratchpad local
memory for low memory latency access. Besides, each PE
is extended with a stream interface for communication with
hardware accelerators. In addition, a message-based com-
munication model is developed to manage the data transfer
between the clusters over the NoC. Furthermore, the cluster is
configurable based on the number of cores and memory sizes
and could be reconfigured during run-time using dynamic
partial reconfiguration.

III. MODULAR MANY-CORE ARCHITECTURE
The proposed many-core architecture features a modular
and hierarchical interconnect design which targets domain-
specific and general-purpose applications for FPGA accel-
erators. Moreover, the proposed many-core architecture can
be considered as a model for rapid prototyping of differ-
ent many-core taxonomies with homogeneous or heteroge-
neous computing elements (by adding optional application-
specific hardware accelerator cores) and supports different
styles of interconnect topologies. The proposed architecture
is a cluster-based many-core architecture which consists of
a scalable number of processing clusters connected by a
network-on-chip interconnect as shown in Figure 1. Within
each cluster, several processing elements with shared data
and instruction memories are tightly coupled via a bus-
based interconnect. In this section, the proposed many-core
architecture and its programming method are described.

A. PROCESSING ELEMENT
The Processing Element (PE) is the main computing unit
inside the proposed many-core architecture. The proposed
design modularity of the PE allows the execution of general-
purpose applications across different domains e.g. (signal
or image processing) with different computing requirements
and memory footprints. The PE consists of a single open-
source RI5CY soft-core processor [24] and a local tightly
coupled memory (TCM) subsystem for data and instructions
as shown in Figure 1 (b). The RI5CY core is a 32-bit
4-stage pipeline in-order processor. The core implements
a simple RV32IMC ISA with main arithmetic-logic-unit
(ALU) and dedicated units for multiplication, division and
multiply-accumulate (MAC). Moreover, the RI5CY core can
be extended to support RV32IMFC with an optional single-
precision floating-point unit to increase the computing ca-
pabilities. Moreover, the majority of the instructions have a
latency of one clock cycles except for the load/store (LD/ST)
and the dedicated arithmetic instructions which have a mini-
mum latency of 2 clock cycles [25].

In addition, like typical Harvard architecture, the PE fea-
tures separated local instruction and data memories tightly
coupled with the RI5CY core. The local TCMs feature a
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low memory latency of one clock cycle for read/write oper-
ations for private computation within a single PE. Moreover,
using a local memory per each PE reduces the probability
of memory interference between multiple PEs compared
to the uniform memory access (UMA) in shared memory
hierarchies. To emphasise the design modularity, the memory
sizes of D/I-TCM are configurable during the design time
based on the target applications memory requirement. Also,
all the memory blocks have a fixed word width of 32-bit
compatible with the RV32 ISA. As shown in Figure 1 (b),
the ITCM in the local memory subsystem is implemented
as a dual-ported BRAM with a read-only interface to the
RI5CY core instruction port (I-Port) for instruction fetching
to supply one instruction to the decode stage every clock
cycle. In addition, a write-only interface to the data port

(D-Port) allows the transfer of specific instructions from the
shared instruction memory to the ITCM during the memory
initialization stage. In contrast, the DTCM is implemented
as a single port BRAM with read/write interfaces to the
RI5CY core D-Port. The DTCM is only accessed directly
via its coupled PE. Therefore, accessing the DTCM directly
by other PEs is prevented and the local data memory has
to be transferred to the shared data memory to allow data
sharing between several PEs in the same processing cluster.
In addition to the local TCMs, the RI5CY core I/D-Ports
interfaces are extended by implementing data and instruction
bridges (D, I-Bridges) to provide compatible interfaces to
the AXI-4 and AXI-Stream standard interfaces which al-
lows a direct connection to RI5CY core to communicate
with the AXI memory-mapped/stream components inside
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the processing cluster. Since the RI5CY core or the PE
is the master unit on the proposed system. The supported
AXI-4 interface is a master interface which permits a con-
nection to any AXI-4 slave peripherals inside the cluster.
Figure 2 gives an abstract schematic of the D, I-Bridges
internal implementation. The D-Bridge handles the RI5CY
read/write memory requests (req_D) and the write-enable
(we) signals from the D-Port interface by rerouting them
based on the memory-mapped address range to the corre-
sponding memory-mapped component as shown in Figure
2 (a). Hence, a finite state machine is implemented with 7
states covering the read/write states to the (AXI-4, AXIS,
ITCM_write and DTCM) memory-mapped interfaces. Ac-
cording to the state and the address-range input, the D-Port
interfaces (data_write/read_D, valid_D, grant_D) are re-
connected to the corresponding memory-mapped interfaces
and a connection is established between the core and the
corresponding memory-mapped peripheral. Moreover, inside
the FSM a custom AXI-4/AXIS protocol converter is imple-
mented to convert the D-Port interfaces to a compatible AXI-
4/AXIS-interfaces. Similar to the D-Bridge, the I-Bridge is
implemented as shown in Figure 2 (b) with a 2 states FSM
for only reading from the ITCM or the shared instruction
memory attached to the AXI-4 interconnect.

B. PROCESSING CLUSTER
The processing cluster tightly couples multiple PEs with
shared instruction and data memories using a shared bus
interconnect. Therefore, the PEs share a common address
space inside the processing cluster which allows the commu-
nication between them and accessing shared memories and
shared memory-mapped peripherals via the bus interconnect
as shown in Figure 1 (a). In this work for purposes of
modularity and compatibility, the AXI-4 interconnect stan-
dard with a 32-bit width is used as the shared bus inter-
connect. The AXI-4 interconnect uses separate channels for
address and data. In addition, separate read/write channels
can be established simultaneously which allows parallel data
transaction across the shared bus. Furthermore, the AXI-
4 interconnect applies a round-robin arbitration scheduling
scheme for multiple requests to the same shared peripheral.
This fact increases the data transfer bandwidth across the bus
and reduces the probability of bus congestion.

The processing cluster implements a UMA architecture,
where each PE can access shared data and instruction scratch-
pad memories connected to the bus as a slave memory-
mapped peripheral. Therefore, the shared data memory is
used for communication and synchronization between the
PEs inside a single cluster. While the shared instruction
memory is implemented as read-only memory which is used
as a boot memory during the memory initialization stage
[26]. Also, it is considered the main execution memory inside
the cluster to store the common instructions running on
all PEs. In the UMA architecture, each PE experiences the
same bandwidth and latency to the memory. However, the
overall memory bandwidth is divided between the number

of PEs, since all of the memory read/write request and data
transaction are conducted across the AXI interconnect. The
growing number of PEs connected to the bus leads to a de-
crease in the total memory bandwidth for a single cluster. In
order to enhance the memory bandwidth, the shared data and
instruction memories are implemented as dual-ported BRAM
blocks. Therefore, two memory read/write channels can be
established across the shared bus to handle two memory
requests simultaneously. However, the memory bandwidth
scalability is limited and starts to saturate after a certain num-
ber of PEs. The shared data and instruction memories are size
configurable at design time. Moreover, the cluster supports
the integration of loosely coupled hardware accelerator as a
memory-mapped peripheral to the PE connected to the shared
bus or tightly coupled to a specific PE via the AXI-stream
interfaces as shown in Figure 1 (a).

C. NETWORK-ON-CHIP
A Network-on-Chip (NoC) is used on large scale Multi-
Processor System-on-Chip (MPSoC) or many-core architec-
tures to connect dozens to hundreds of PEs or processing
clusters together, providing on-chip end-to-end communi-
cation paradigm and increasing the system scalability. In
this work, the ARTNoC [23] real-time NoC architecture is
used for inter-cluster communication in the proposed many-
core architecture. The NoC provides guaranteed quality of
service (QoS) in terms of bandwidth and end-to-end latency.
In addition, the router architecture is highly modular and
parametrizable. It supports different I/O ports configurations,
switching controls, buffering sizes and routing schemes. The
ARTNoC circuit-switched-based version is used in the im-
plementation as it features a low area overhead compared
to a packet-switched based NoC. The NoC is based on
a 2-D mesh topology with an XY-routing algorithm with
configurable size and I/O data widths at design time. Further-
more, the NoC internal architecture consists of 1© a 5 ports
circuit-switched router including a control path circuitry and
arbiters for path reservation, 2© a crossbar to switch between
the I/O ports and using round-robin arbitration scheme, 3©
synchronous network links for communication between the
routers as shown in Figure 1 (a). The circuit-switched NoC
reserves a static transmission path between the source and
destination. This is performed by sending a single-flit setup
packet from the source containing the X-Y coordinate of the
destination node. Moreover, the NoC can transmit a single
packet flit every one clock cycle with a 32-bit payload data.

In addition, a network interface (NI) is implemented to
allow communication between the processing cluster and
the NoC. The used ARTNoC I/O interfaces are compatible
with the AXI-stream interface. Therefore, the proposed NI
architecture is based on a flit-based streaming approach.
Hence, the NI links between the address-based shared bus
used by the cluster and the AXI-stream interface of the NoC.
Moreover, the NI allows the transmitting or receiving of
data directly from/to the PEs via the PE stream port without
passing by the shared bus interconnect which provides a
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FIGURE 3. Network Interface (NI) block diagram.

tightly coupled connection between the PE and the NoC. An
overview of the NI internal architecture is shown in Figure 3.
The NI has two separated channels for sending and receiving
data. It is connected to the shared bus interconnect as AXI-
slave memory-mapped peripheral that can be accessed by
all PEs. Moreover, the NI supports the streaming of data
directly to a single PE via the stream port in order to reduce
the data interference between multiple PEs for hard real-
time applications. The NI internal architecture consists of
1© an AXI-stream FIFO of size 64 locations to store the

transmitted or received data to/from the NoC, 2© a custom
AXI-stream to AXI-4 converter to connect the FIFO and its
control signals to the cluster AXI-interconnect. A certain PE
can access the NI by setting a synchronization flag (for either
sending or receiving) in the shared memory indicating that
the NI is used by this PE to prevent NoC deadlocks and
data interference between several NI requests from different
PEs. The data flow between a PE to a NI for NoC sending
is performed by setting a pointer to the shared data memory
or PE DTCM to transfer a specified size of data. The data
is transmitted by a form of a group of 32 packet-flits to
the NI-TX FIFO either by the PE stream port or the AXI-
interconnect based on the NI control signals. Similarly, in
the receiving direction, the received packet-flits are stored
in the NI-RX FIFO until a reading request comes from a
certain PE to transfer the packets to the shared data memory
or DTCM. Due to the separated read/write channels of the
AXI-interconnect, transmitting and receiving of data can be
done concurrently.

D. COMMUNICATION MODEL
Typical many-core and MPSoC architectures are considered
as a suitable platform to run multi-tasks applications. Each
task is mapped to one or more PEs or processing clusters
based on the computation requirements. The tasks are con-
nected via a directed data flow graph that defines the data
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FIGURE 4. Sequence diagram of the Synchronous message-based
communication model for NoC data transfer between the clusters.

Shared Instr. Mem.

ITCM0

ITCM3

FIGURE 5. Instruction memory mapping and its relevant linker script
(.ld) for a single processing cluster.

flow and the execution period of each task for a specific
application. In this work, a communication model between
the clusters with unidirectional RX/TX channels is devel-
oped based on the NoC and NI architectures described in
the previous subsection. The communication model applies
a message-based communication approach initiated by the
transmitting cluster and ending by the receiving cluster. Fig-
ure 4 shows a sequence diagram of synchronous message-
based communication between two processing clusters. The
proposed communication model provides a synchronization
mechanism between the sender and receiver clusters to avoid
NoC deadlocks and prevents packet losses during the trans-
mission. As shown in Figure 4, the transmission is initiated
by any PE in the sender cluster. The first transmitted packet
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contains the X-Y coordinate of the destination followed by 32
packet-flits containing the first 32 payload packets. The send-
ing PE is blocked until it receives an acknowledgement (ack)
packet from the receiving cluster to indicate a successful
establishment of a communication channel. Afterwards, the
sending cluster starts to stream the following data packet-flits
and the receiving PE in the receiving cluster is blocked until
successful receiving of the complete size of data. However,
the software latency cost is higher than the physical data
streaming latency of the NoC. Due to the reading and writing
processes from/to the shared or TCM data memories on
both processing clusters. Listing 1 shows the C application
programming interfaces (APIs) for the proposed communi-
cation model depicted in Figure 4 for sending (send_data)
and receiving (rec_data) over the NoC architecture using the
NI. The communication APIs are executed from the shared
instruction memory of the cluster to be accessable to all of
the PEs in a cluster.

E. PROGRAMMING METHOD AND SOFTWARE
EXECUTION
Programming many-core architectures or MPSoCs is a chal-
lenging task for the programmer to effectively uses their
computation and communication resources. For this reason,
a bare-metal programming method is developed for the pro-
posed many-core architecture to generate multiple binary
files from multi-tasks application source codes e.g. (c codes)
corresponding to the number of used processing clusters.
Whereas, each processing cluster executes a single binary
file for its mapped task from the application data flow graph.
Task mapping and partitioning processes are done statically
by the programmer at design time. Therefore, the proposed
programming method does not support mapping or partition-
ing methods during runtime.

The PULP-RISC-V GNU toolchain [27] is used to compile
the C source codes for the RV32IMC architecture. After-
wards, the generated (.elf) file is converted to a Verilog
memory file using the objcopy-tool of the toolchain. The
Verilog memory file contains the generated binary file or
the complete instruction set for a single cluster. Finally, a
BRAM coefficient file (.coe) is generated from the Verilog
memory file to be loaded on the shared instruction memory
during design time. In-order to programme each PE inside the
processing cluster a memory initialization stage is required to
load the ITCM of each PE by the corresponding instruction
sets of a specific task running on this PE. Therefore, a linker
script (.ld) is developed as shown in Figure 5 for instruction
memory mapping. The linker script defines the instruction
memory partitions based on the memory address space for
the complete processing cluster. Hence, during the memory
initialization, each PE starts to load its instruction set from
the shared instruction memory based on the address mapping
to its ITCM as shown in Listing 2. In the application C
code each function which has to be executed from a local
ITCM has to be preceded with a memory section attribute
e.g. (__attribute__((section(”.tcm_rom0”)))) which defines

its executable ITCM as shown in Listing 2.

IV. IMPLEMENTATION RESULTS AND PERFORMANCE
EVALUATION
Physical hardware implementation, system scalability/recon-
figuration and performance analysis results of different de-
sign configurations are discussed and presented in this sec-
tion. The Xilinx Virtex Ultrascale+ XCVU9P FPGA is used
for implementation and prototyping of the proposed RISC-V
based many-core architecture.

Besides, Xilinx Vivado Design Suite HLx 2017.4 is used
for RTL synthesis, simulation, verification, FPGA place and
routing as well as bitstream generation. In this section, the
many-core architecture is evaluated based on :

1) The hardware resources utilization of the different
building blocks described in Section III.

2) The system scalability in terms of the number of PEs
(RV32 cores) inside the processing cluster and its

1 uint32_t*const NI_TX = (uint32_t)*0xA0000000;
2 uint32_t*const NI_RX = (uint32_t)*0xA000F000;
3 void send_data(uint_32t A[data_size], uint_32t data_size,

uint_32t x_y_dest){
4 uint32_t t = 0; uint32_t ack = 0;
5 while(t < data_size/32){
6 NI_TX->data = x_y_dest;//start TX
7 for(int m = 0; m < 32; m++)
8 NI_TX->data = A[m+(32*t)];
9 if(t == 0){//waiting for ack from RX node

10 while(ack != 0x00000001){
11 while(NI_RX->FIFO_data_count < 32);
12 for(int n = 0; n < 32; n++)
13 ack = NI_RX->data;
14 }}}
15 return;}
16 void rec_data(uint_32t B[data_size], uint_32t data_size,

uint_32t x_y_source){
17 for(int t = 0; t < data_size/32; t++){
18 while(NI_RX->FIFO_data_count < 32);
19 for(int j = 0; j < 32; j++)
20 B[j+(32*t)] = NI_RX->data;
21 if(t == 0){//send ack to the TX node
22 NI_TX->data = x_y_source;
23 for(int j = 0; j < 32; j++)
24 NI_TX->data = 0x00000001;//ack to the TX

node
25 }}
26 return;}

Listing 1. C API functions for sending/receiving data to/from the NI.

1 uint32_t*const tcm0_instr=(uint32_t*)&TCM_ROM0_START;
2 uint32_t*const tcm_rom0_init=(uint32_t*)&ITCM0_INIT_START

;
3 void __main(){//exec. from the shared instr.mem on all

PEs
4 if(read_csr(0xF14U) == 0){//copy instr. from shared
5 //instr. mem. to ITCM0 of PE-0 (thread-ID = 0)
6 for(int i = 0; i <= &ITCM0_INIT_END - &

ITCM0_INIT_START; ++i)
7 tcm0_instr[i] = tcm_rom0_init[i];
8 }
9 if(read_csr(0xF14U) == 0) main_0();// execute on PE-0

10 }
11 void main_0(void){load_0(src[size],dest[size],size);}
12 __attribute__((section(".tcm0_rom")))//map to to ITCM0
13 uint32_t load_0(uint32_t* src, uint32_t* dest, int size)

{}

Listing 2. Memory initialization C code for a single processing cluster.
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FIGURE 6. Complete system and testing setup for the 36 RV32 PEs
many-core implementation, the MicroBlaze is used to dump the clusters
data memories.

impact on the overall memory bandwidth of a single
cluster.

3) The performance of NoC communication is measured
in term of data transfer latency and the maximum
achievable data rate between the clusters.

All benchmarks and test cases used for evaluation are writ-
ten in software (C codes) and compiled using the PULP-
RISC-V GNU toolchain [27] as described in the previous
subsection (programming method and software execution) to
generate the corresponding (.elf) files and coefficient files
(.coe) to be loaded into the shared instruction memory of
each cluster during the synthesis phase. The numbers of
execution cycles in this section are software measured by
using the performance counter register of the RI5CY core
(PCCR) [25]. The number of cycles measured by the PCCR
can be read using read_csr assembly function call in the
application software and stored back in the cluster shared
data memory to be retrieved back during the simulation (on
Vivado simulator) and testing on FPGA. In addition, dynamic
and partial reconfiguration (DPR) is applied to change the
processing cluster configuration in terms of number of cores
and memory sizes during runtime without re-synthesizing the
complete architecture.

A. HARDWARE IMPLEMENTATION AND PROTOTYPING
The proposed many-core architecture has been implemented
in a modular and hierarchical design process by creating each
module as an intellectual-property (IP) block and integrating
them inside the cluster module. The PE module contains the
RI5CY core integrated with the I, D-Bridges with parameter-
ized size D/I-TCMs. Also, NIs for transmitting and receiv-
ing are implemented as separate modules containing AXI-
stream FIFOs of 32-bit data width and depth of 64 locations
plus the required protocol converters. Afterwards, the pro-
cessing cluster module integrates multiple PE modules con-
nected to the AXI-interconnect via the AXI-I, D interfaces.

TABLE 2. Hardware Resources Utilization and Power Consumption for
36 PEs (9 clusters) Many-Core Platform on Xilinx XCVU9P.

Resources Utilization

Units LUT LUT
RAM FF BRAM DSP

Complete Setup 395308 257 145288 1537 219
MicroBlaze &

Peripherals 1580 203 696 32 0

NoC (3×3)
64127
5.42%

0
0%

4752
0.2%

0
0%

0
0%

Single
Processing
Cluster†

36579
3.1%

6
∼0%

15532
1.3%

167
7.73%

24
0.35%

Shared
Data Mem.1 127 2 14 64 0

Shared Inst.
Mem.2 51 2 13 15 0

AXI
interconnect 597 0 68 0 0

NIs 845 0 1937 2 0
RISC-V

PE
7878

0.66%
0

0%
1944

0.08%
20

0.92%
6

0.09%
RISC-V

Core 7626 0 1908 0 6

ITCM3 5 0 0 4 0
DTCM4 17 0 0 16 0

I, D
Bridges 231 0 2 0 0

Total (%)∗

(complete setup) 33.4% ∼0% 12.28% 71.15% 3.2%

Max. Freq. 120 MHz
Total Power
Estimated

(complete setup)
13.869 W

Power Estimated
(one cluster†) 1.443 W

Power Estimated
(NoC (3×3)) 1.91 W

†4 PEs, Mem. size:1256,264,316,464KB. ∗% of total chip resources.

Besides, AXI-BRAM controllers with parameterized size
shared instruction/data dual-ported BRAMs and NI modules
are connected to the AXI-interconnect. In addition, the NoC
(ARTNoC) is implemented as a single parameterized module
including the circuit-switched routers based on the mesh
topology size and the network links. The NoC parameters
are mesh size, flit size and the maximum number of packet-
flits for single-stream transmission over the NoC. Figure 6
shows the complete implementation and testing setup for 9
processing clusters with 36 RI5CY cores synthesized and
placed on the Xilinx XCVU9P FPGA. A single MicroBlaze
soft-core processor is connected to each cluster via the AXI-
interconnect for system monitoring and to dump the shared
data memory of each cluster. Hence, the shared data memory
in each cluster is considered as a memory-mapped peripheral
to the MicroBlaze during the monitoring stage to extract the
memories contents for results and operations checking.

Table 2 shows the hardware resources utilization for the
complete system depicted in Figure 5 of the many-core
architecture with 3x3 NoC size. The processing cluster is
configured with 4 PEs, 256 KB shared data memory and
64KB shared instruction memory. Each PE is configured with
16KB ITCM and 64 KB DTCM. As shown in Table 2 (third
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TABLE 3. Comparison between different processing cluster/tile with respect to architecture specifications and hardware resources utilization.

Platform RISC-V
ISA # PE Memory

Size [KB]
Resources per (Cluster/Tile) FPGA

Device [Xilinx]
Freq.

[MHz]
Power

[W]LUT FF BRAM DSP
HERO [7] RV32IMC 8 4160 128K 43K 384 48 Zynq-7000 (XC7Z045) 57 NA∗

OpenPiton+Ariane T [8] RV64GC 1 384 90K 81K 88 19 Virtex-Ultra.+ (XCVU9P) 100 NA∗

Savas et al. T [12] RV64G 1 1024 28241 9042 257.5 15 Virtex-Ultra. (XCVU095) 113 NA∗

GRVIPhalanx [17] RV32I 8 36 4800 NA∗ 12 NA∗ Virtex-Ultra.+ (XCVU9P) 150 0.34
ESP T [10, 28] RV64GC 1 1024 50290 38481 36‡ 27 Virtex-Ultra.+ (XCVU9P) 250 1.484†

This Work RV32IMC 4 1344 36579 15532 164 24 Virtex-Ultra.+ (XCVU9P) 120 1.443†

T Tile based architecture without HW accelerators, ∗ (Not available), † estimated power, ‡ reduction in BRAM blocks is due to using
LUTRAMs instead of BRAMs during synthesis (5598 LUTRAMs is used from total 50290 LUTs).

row), a processing cluster consumes∼3% of the total amount
of LUT on the FPGA. While the complete NoC consumes
∼6% of the FPGA LUTs. Therefore, combining several cores
in a cluster is more resource efficient than connect single
cores directly to the NoC which leads to a high resources
utilization and high power consumption by a large size NoC
to achieve large scale many-core architectures. Furthermore,
the power consumption of the complete system is estimated
by Xilinx Power Estimator (XPE) at a clock frequency of 120
MHz as shown in Table 2 (last row).

Table 3 shows a comparison between our proposed cluster
and several state-of-the-art cluster- /tile-based architectures
specifications. The comparison is based on single cluster/tile
specifications and hardware resources utilization without
adding hardware accelerators. Our proposed cluster architec-
ture supports a more complex RV32 core with M (multipli-
cation and division) extension with more memory resources
in comparison with the cluster architecture of GRVIPha-
lanx [17]. Furthermore, in comparison with HERO [7] with
similar RV32 extensions for PE, the hardware resources
utilization of (LUTs and FFs) are less than∼30% of HERO’s
cluster resources utilization while using 4 PEs (half of PEs
number used by [7]). In contrast, the tile-based architectures
of [8, 10, 12] support a single core RV64G/C with floating
point execution unit and multiple levels of caches subsystems
which increase the resources utilization compared to the pro-
posed cluster-based architecture with scratchpad memories
and less complex RISC-V cores.

B. DESIGN SCALABILITY AND COMPUTING
PERFORMANCE
Design scalability determines the capability and the flexibil-
ity of a parallel computing architecture to meet the required
computing resources, memory bandwidth and communica-
tion data rate for parallel algorithms with growing complex-
ity. Moreover, scalability is used to predict the performance
of many-core architectures from the measured performance
of single cores. In this work, the proposed many-core ar-
chitecture is evaluated based on the maximum achievable
memory bandwidth with respect to the number of PEs per
cluster. Also, the computing performance is evaluated by
the achievable number of operations per second (Op/s) and
the maximum data transfer latency between the clusters over

1 2 3 4
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FIGURE 7. Memory bandwidth scalability for a single processing cluster
with respect to the number of RV32 cores per cluster.

the NoC. The memory bandwidth is measured by a parallel
executing of a copy function on all PEs to copy data of size of
4 KB through 3 evaluation scenarios 1© shared data memory
to shared data memory (SH-SH), 2© from shared data mem-
ory to the DTCM (SH-DTCM) or vice versa (DTCM-SH)
and 3© from DTCM to DTCM (DTCM-DTCM). Figure 7
shows the memory bandwidth scalability for one processing
cluster. As a result, the data transfer bandwidth in case
of shared to shared data memory is scaled by 1.5x using
two PEs compared to one PE. However, the dual-port data
memory is used, memory bandwidth is not scaled by the
same factor due to the waiting cycles consumed for address
collision mitigation if two PEs write or read from the same
address at the same time. In contrast, splitting the memory
write destinations by using DTCM in (SH-DTCM) scenario
exploits the dual-ported memory feature by increasing the
scalability to 2x in case of using 2 PEs.

Moreover, in case of using shared data memory for reading
or writing, increasing the number of PEs over 2 will not
increase the memory bandwidth scalability in proportional
to the number of PEs due to the traffic contention through
the AXI-interconnect. On the other hand, as shown in Figure
7, memory bandwidth is proportionally scalable with the
increasing number of PEs in case of using DTCMs for writ-
ing and reading in a non-uniform memory access (NUMA)
mode. The total memory bandwidth for the complete many-
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6 NoC Data Transfer Latency

 NI connected to the AXI-interconnect

 Tightly coupled NI (connected to PE AXIS interface)

FIGURE 9. Total latency in number of cycles for the NoC data transfer in
cases of connecting the NI to the AXI-interconnect or directly to the PE
AXIS interface.

core architecture is calculated as follows:

Memory BW =
f req.×nPE ×2×data_size

ncycles
×ncluster (1)

Where, nPE is the number of PEs per cluster, data_size is
the data transfer size from memory source to destination per
bytes within one cluster, ncycles is the measured number of
clock cycles, and ncluster is the total number of processing
cluster in the many-core architecture. Figure 8 shows the total
memory bandwidth for different many-core sizes and mem-
ory types configurations. A maximum memory bandwidth of
4.3 GB/s is achieved by a 3x3x4 many-core configuration
using only DTCMs which is ∼5x the maximum memory
bandwidth achieved with the same many-core configuration
using only shared data memories.

In order to measure the data transfer latency for a single
NoC transfer. A variant set of data sizes are transferred be-
tween two processing clusters by using two NI configuration
modes. In the first configuration the NI is connected as a
slave peripheral to the bus and the data and control signals are
sent/received through the AXI-interconnect to the PEs. While
in the second NI configuration the control signals only are
transferred via the AXI-interconnect and the data signals are
directly connected to the PE via the AXIS interface. Figure 9
shows the measured data latency for both NI configurations.

Therefore, connecting the NI data port (RX/TX FIFOs) di-
rectly to the PE decreases the data transfer latency by ∼10x
compared to connect it to the AXI-interconnect. However,
connecting the NI to a single PE prevents the other PEs in a
cluster to share it and to connect to the NoC.

A fixed point parallel square matrix multiplication bench-
mark is implemented in order to evaluate the computing
performance of the proposed many-core architecture. The
parallel block matrix algorithm is used to partition the A
matrix into sub-matrices equals to the number of processing
clusters. While the B matrix is partitioned into sub-matrices
equals to the number of PE per cluster e.g. (A_size = 32×
32, Asub_size = 32/ncluster×32 ;B_size = 32×32, Bsub_size =
32 × 32/nPE ). Each processing cluster is responsible for
an A sub-matrix and each PE inside a cluster compute the
multiplication of a sub-matrix A with a sub-matrix B. For
evaluation, two many-core configurations with 4 and 8 clus-
ters including 16/32 RV32 cores are used for computation. In
addition, a ninth cluster is used for block matrix generation,
data transfer and results collection from each cluster. Table 4
shows the measured computing latency of the parallel matrix
multiplication with different fixed point sizes using only
the shared data memory or the DTCMs of each processing
cluster for LD/ST the sub-matrices elements. Furthermore,
the computing performance at a clock frequency = 120 MHz
is calculated as follows:

Per f ormance (Op/s) =
2×n3

ncycles
× f req. (2)

Where n3 is the computing complexity of square matrix
multiplication of size (n×n), ncycles is the computing latency
per clock cycles and the multiplication by 2 is the number
of multiply and accumulate (MAC) operations. As shown
in Table 4 (DTCM column), The computing performance is
increased by ∼1.75x in case of using DTCMs for LD/ST
operations in comparison of only using the shared data mem-
ories. Besides, the computing scalability is doubled in case
of using 32 cores compared to 16 cores for local and shared
data memory configuration. Also, from Table 4 (performance
results), it can be observed that increasing the matrix sizes
increases the computing performance. Whereas, the total
number of LD/ST operations is proportional to the square
size of the matrix while the computation is O(n3). Therefore,
a decreasing in the percentage of LD/ST cycles from/to the
memory to the total computing cycles ncycles has occurred
which increases the computing performance based on equa-
tion (2). Similarly, reducing the fixed-point data size from 32-
bit to 16- or 8-bit decreases LD/ST cycles from/to the data
memory. Therefore, the total computing latency is reduced
and the computing performance is increased. As a result, a
maximum performance of 878.4 FP-MOp/s can be achieved
in case of 8-bit (64×64) matrix size over 32 cores with
DTCM as shown in Table 4. Moreover, Figure 10 shows the
overall speedup (acceleration) achieved when parallelizing
different matrix multiplication sizes over 16 cores (4 clusters)
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TABLE 4. Computing performance and data transfer latency for matrix multiplication benchmark using 16/32 cores at clock frequency = 120 MHz.

Data Memory→ Shared Data Mem. DTCM Data Transfer
Latency2

[Cycle]Fixed Point
Size

Matrix
Size

Computing
Latency1 [Cycle]

Performance1

[FP-MOp/s]
Computing

Latency1 [Cycle]
Performance1

[FP-MOp/s]
16 Cores 32 Cores 16 Cores 32 Cores 16 Cores 32 Cores 16 Cores 32 Cores 16 Cores 32 Cores

8-bit
16×16 3695 1691 265.2 600 2119 1279 463.2 765.6 17040 28440
32×32 23439 14216 336 553.2 15995 9216 480 852 68160 113760
64×64 180960 91304 348 688.8 125155 71624 501.6 878.4 273096 459078

16-bit
16×16 5603 3024 175.2 320.4 2375 1559 392.4 630 33720 56280
32×32 42333 21834 180 360 18043 10579 411.6 744 135276 225360
64×64 333578 169825 188.4 360 141539 83086 420 757.2 541200 901860

32-bit
16×16 10584 4009 92.88 240 2800 1762 348 547.2 64320 112728
32×32 83210 31392 94.44 240 21300 11952 360 660 270480 450840
64×64 660497 248339 96 253.2 166876 91836 376.8 684 1082160 1803720

1 Data transfer latency over the NoC for matrix elements sending and output collection is excluded from the computing latency and
performance. 2 Total data transfer latency between the clusters over the NoC. Numbers in bold represent the highest performance for each
fixed point size.
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FIGURE 10. Overall matrix multiplication speedup over 16/32 cores for different matrix sizes n with several bit-widths and memory configurations.

and 32 cores (8 clusters) using different bit-width opera-
tions and memory types (shared data or DTCM memory).
The speedup is calculated by (n3)/Computing latencycycles.
Where Computing latencycycles is the execution time per
clock cycles for multiplication and n3 is the computing
complexity of the matrix multiplication. The (red bars) in
Figure 10 represents 8-bit width matrix multiplication. It
shows a scalable performance of 1.8x by using 8 clusters
compared to 4 clusters. While in case of 32-bit width (green
bars) multiplication the performance scalability is 1.7x as
the numbers of memory operations increased compared to
the 8-bit width multiplication case. Moreover, using DTCM
instead of shared data memory increases the multiplication
speedup by at least the double (>2x) in cases of 32, 16-bit
width multiplication as shown in Figure 10.

C. MATRIX LU DECOMPOSITION (USE CASE)
LU decomposition is a key function for linear algebra cal-
culations required by signal/image processing applications.
LU decomposition factors a square matrix of size (n×n) as
a product of a lower (L) and upper (U) triangular matrices.

TABLE 5. Performance evaluation of the LU decomposition test case.

Matrix Size
[32-bit]

Computing Latency
[Cycle] Data Transfer Latency

[Cycle]16 Cores 32 Cores
32×32 9360 3880 270562
64×64 51172 25128 541200

It is performed by a sequence of Gaussian eliminations to
form A=LU. LU decomposition can be performed for a non-
singular matrix A in a column-oriented method as shown in
Algorithm 1. The algorithm is parallelized over the many-
core architecture as follows. Matrix A is divided column-
wise over the number of processing clusters. Each cluster
receiving a sub-matrix of A and computes a sub-matrix for

Algorithm 1 LU Decomposition
1: n : rows[A]
2: Loop-1: Acols are divided by # clusters = 4 or 8
3: for k← 1 to n do
4: ukk← akk
5: Loop-2: Asub_cols are divided by # cores = 4
6: for i← k+1 to n do
7: lik← aik/ukk
8: uki← aki
9: end for

10: Loop-3: Asub_cols are divided by # cores = 4
11: for i← k+1 to n do
12: for j← k+1 to n do
13: ai j← ai j− lik×uk j
14: end for
15: end for
16: end for
17: return L and U
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NoC Region Processing Cluster Region

FIGURE 11. Placement of 9 reconfigurable processing clusters and a
static 3x3 mesh NoC on the Xilinx Virtex Ultrascale+ XCVU9P floorplan.

L and U as shown by Algorithm 1 (Loop-1) then store the
results in its shared data memory. Inside each cluster, the A
sub-matrix is divided again column-wise over the number of
cores (PEs) per cluster as shown by Algorithm 1 (Loop-2,
Loop-3). Therefore, the computation is conducted in parallel
over the number of PE as each PE is responsible to produce
a sub-matrix for L and U. The LU calculation requires MAC
and reciprocal operations with a total computing complexity
of ∼ O( 2

3 n3). For performance evaluation, 16 and 32 cores
many-core configurations are used to compute the LU de-
composition for two square matrix sizes of (32×32, 64×64).
In addition, an extra cluster is used for matrix generation
and results collection. Table 5 shows the computing and data
transfer latency for the different many-core and matrix sizes
configurations. Whereas the data transfer latency is higher
than the computing latency due to the software cost of data
transfer latency over the NoC (described in Section III) plus
the memory read/write overhead by each PE.

D. RUN-TIME RECONFIGURATION
In order to provide high flexibility and configurability for
the proposed many-core architecture. Xilinx dynamic partial
reconfiguration (DPR) technique is supported to change the
configuration of the many-core architecture during run-time
without the need to synthesize the complete architecture for
every configuration changes. For the many-core implemen-
tation setup depicted in Figure 6, the FPGA floorplan is
divided into 9 reconfigurable regions to host a reconfigurable
processing cluster each and one static region including a 3x3
NoC, a single MicroBlaze, and testing peripherals as shown
in Figure 11. Each processing cluster can host a dynamic
number of PEs depends on the computation requirements
of the target applications. In addition, the shared memory
sizes can be changed at run-time by uploading a new partial
bitstream with a new memory configuration.

Moreover, DPR provides the feature to change the running
application over a cluster at run-time by changing the con-
tents of the shared instruction memory using a new partial
bitstream. For experimental analysis, an external reconfig-
uration technique using the JTAG interface is developed

TABLE 6. DPR resources utilization and reconfiguration time.

Resources Utilization
LUT FF BRAM DSP

Reconfigurable Region 103680 207360 192 768
2 PEs (%) 16% 3.4% 62.8% 1.6%
3 PEs (%) 23% 5% 73% 2.34%
4 PEs (%) 30.4% 6.3% 83.6% 3.14%

Reconfiguration Time (s)
via JTAG 0.91 s

to load the partial bitstreams from an external device (e.g.
PC) to the Virtex Ultrascale+ FPGA configuration memory.
Table 6 shows the resources utilization of the reconfiguration
region assigned to a single cluster and the percentage of
usage by a different number of PEs. Besides, the measured
reconfiguration time for a single reconfiguration region is
equal to ∼0.9s and it could be reduced by using SelectMap
or PCIe interfaces.

V. CONCLUSION
This work proposes a novel modular RISC-V based many-
core architecture with a high degree of design scalability
and regularity for FPGA platforms. The architecture is based
on a configurable cluster-based design connected through a
scalable generic NoC architecture. The processing cluster
features a RISC-V based multicore computing architecture
supporting a software managed shared and local memory
systems. Moreover, it supports design-/run-time configurable
number of PEs and memory sizes based on the target applica-
tion requirements. Several building blocks for PEs, memory
systems and interconnections are developed and designed
based on a modular and regular manner and implemented in
the form of configurable IP blocks to be integrated together to
generate different many-core taxonomies. The proposed ap-
proach aims to ease the development and the implementation
of homogeneous/heterogeneous many-core architectures by
reducing the design time and the non-recurrent engineering
costs. The many-core architecture is evaluated based on dif-
ferent architecture configurations to measure the design scal-
ability in terms of growing numbers of processing clusters,
the number of PEs per cluster and the achievable memory
bandwidth as well the hardware resources utilization of the
architecture building blocks. The results show a high degree
of computing and memory bandwidth scalability by using
local memory blocks per processing cluster for memory
intensive applications e.g. (matrix multiplication) compared
to using shared memory blocks. Moreover, the used NoC
architecture allows the integration of a scalable number of
processing clusters for compute intensive applications.

As for the future work, it is planned to integrate custom
hardware accelerators for linear algebra functions to the
proposed architecture in order to provide a real-time comput-
ing architecture for signal-/image processing applications. In
addition, an internal DPR controller coupled with a RISC-V
core will be implemented inside a static cluster to speedup
the reconfiguration time to support real-time requirements.
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