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ABSTRACT Arrhythmia is one of the most persistent chronic heart diseases in the elderly and is associated 

with high morbidity and mortality such as stroke, cardiac failure, and coronary artery diseases. It is significant 

for patients with arrhythmias to automatically detect and classify arrhythmia heartbeats using 

electrocardiogram (ECG) signals. In this paper, we develop three robust deep convolutional neural network 

(DCNN) models, including a plain-CNN network and two MSF(multi-scale fusion)-CNN architectures (A 

and B), to aid in better feature extraction for the detection of arrhythmia and thus significantly improve the 

performance metrics. The proposed models are trained and tested with a public MIT-BIH arrhythmia database 

on five types of signals. Six groups of ablation experiments are conducted to analyze the performance of the 

models. The accuracy, sensitivity, and specificity obtained from MSF-CNN architecture A are higher than 

those from the plain-CNN model, demonstrating that the different parallel group convolution blocks (1×3, 1

×5, and 1×7) dramatically improve a model’s performance. Additionally, the best model MSF-CNN 

architecture B achieves an average accuracy, sensitivity, and specificity of 98.00%, 96.17%, and 96.38%, 

respectively. This illustrates the method with residual learning and concatenation group convolution blocks 

has a profound effect on the feature learning of the model. The results of ablation experiments show that our 

proposed biometric recognition and diagnosis network with residual learning (MSF-CNN B) achieves a rapid 

and reliable diagnosis approach on ECG signal classification, which has the potential for introduction into 

clinical practice as an excellent tool for aiding cardiologists in reading ECG heartbeat signals. 

INDEX TERMS Heartbeat, Arrhythmia, Deep Learning, Convolutional Neural Network, 

Electrocardiogram Signal

I. INTRODUCTION 

Arrhythmias are an important group of cardiovascular diseases 

that are characterized by slow, fast, or irregular heartbeats 

[1,2]. They may occur alone or in conjunction with other 

cardiovascular diseases. Some serious arrhythmias also may 

occur suddenly and lead to sudden death, stroke, cardiac 

failure, and coronary artery diseases [3]. 

Electrocardiogram (ECG), a noninvasive, inexpensive, and 

reliable diagnostic tool, which reflects the specific changes in 

electrical signal activity over time. It is an important standard 

in the diagnosis of arrhythmias [4]. ECG signals include 

important morphological information, which are usually 

obtained by ECG inspection equipment, such as 

electrocardiograph, 24-hour Holter, and wireless wearable 

devices [5]. And they are widely used in the analysis of cardiac 

function. Cardiac arrhythmias are currently diagnosed by 

manual interpretation of the ECG signal. To automatically 

diagnose arrhythmias through ECG records, monitoring 
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equipment must be able to analyze the morphological 

characteristics of ECG signals [6] as well as the correlation 

between heartbeats, and finally detect abnormal heartbeats and 

determine types.  

According to the standard from the Association for the 

Advancement of Medical Instrumentation (AAMI) [7], ECG 

signals can be divided into five categories: normal beat (N), 

supraventricular ectopic (S), ventricular ectopic (V), fusion 

beat (F), and unknown beat (Q). The AAMI standard focuses 

on the detection of ventricular ectopic beats (VEBs) and non-

VEBs, and each category includes several types of heartbeats. 

The specific classification is shown in Table 1. In Table 1, 

each heartbeat represents different cardiac activity patterns. 

Under different cardiac activity states, each ECG signal has a 

different implication and requires different targeted treatments 

[8]. At present, visual evaluation based on cardiologists is an 

important standard of diagnosis. It requires numerous well-

trained specialists to correctly identify the type of signal, 

which not only leads to the deviation between subjective 

judgment and the actual situation [9], but also consumes 

considerable time and energy. Therefore, it is of utmost 

importance for cardiologists to automatically identify 

abnormal heart rhythms before clinical treatment. 

TABLE 1 MAPPING OF THE MIT-BIT ARRHYTHMIA DATABASE HEARTBEAT 

TYPES TO THE AAMI STANDARD 

AAMI 

heartbeat 

types 

N 

 

S 

 

V 

 

F 

 

Q 

 

MIT-BIH 

heartbeat 

types 

 NOR AP 

PVC 

fVN 

 

P 

LBBB aAP 

 fPN 

AE NP 

VE RBBB 

SP  U 
Nodal(jun
ctional) 

Abbreviations:  

Heartbeat types: N: Any heartbeat not in the S, V, F, Q 

classes; S: Supraventricular Ectopic beat; V: Ventricular 

ectopic beat; F: Fusion beat; Q: Unknown beat; NOR: Normal 

beat; LBBB: Left bundle branch block beat; AE: Atrial escape 

beats; RBBB: Right bundle branch block beat; AP: Atrial 

premature beat; AAP: Aberrated atrial premature beat; PAC: 

Premature atrial contraction beat; NP: Nodal(junctional) 

premature beat; SP: Supraventricular premature beat; PVC: 

Premature ventricular contraction; VE: Ventricular escape 

beat; fVN: Fusion of ventricular and normal beat; P: Paced 

beat; FPN: Fusion of paced and normal beat; U: Unclassified 

beat. 

Over the past decades, ECG signal recognition and 

classification have become an established technique that can 

effectively assist physicians in clinical diagnosis [4]. The 

relevant automatic recognition models mainly rely on 

traditional pattern matching methods. These methods have 

achieved great progresses, but the complex feature extraction 

process consumes considerable computing resources [4]. In 

recent years, deep learning has become a mainstream pattern 

recognition method. It is an end-to-end learning approach that 

does not require complex process of hand-crafted extracted 

features. Moreover, great achievements have been obtained in 

the fields of image classification [10-14], object detection [15-

17], and image segmentation [18-21]. Therefore, in this paper, 

we introduce a deep learning technology into the study of one-

dimensional signals and propose a more accurate, rapid, and 

robust discriminant model to analyze the classification of ECG 

signals.  

This paper is organized as follows: Section II introduces 

literature related to the classification of ECG signals, 

including data pre-processing, machining learning methods, 

and deep learning methods. Then the database is described in 

section III. We propose a plain-CNN network and two MSF-

CNN architectures (A and B) and deeply analyze the 

configuration parameters of three network architectures in 

section IV. In section V, the experimental results are shown in 

detail, and the performance evaluation is also compared with 

recent popular algorithms. Finally, we conclude our work and 

propose future research directions in section VI.  

II.  RELATED WORK 

In this section, we survey related literature on traditional 

machine learning approaches and recent popular deep learning 

methods based on the detection and classification of ECG 

signals. In general, traditional machine learning methods 

mainly consist of three steps for the classification of 

arrhythmias: data preprocessing, feature extraction and 

selection, and feature classification. However, the deep 

learning approach is an end-to-end model, which shows the 

capacity to self-learn from the input ECG signal segmentation. 

A. DATA PRE-PROCESSING 

The pre-processing of ECG signals mainly includes denoising 

and segmentation. Firstly, the ECG signals are contaminated 

by various noise and artefacts [22]. In arrhythmias, as the ECG 

signals belong to low-amplitude and low-frequency signals, 

diverse noises lead physicians to perform an incorrect 

assessment and reduce the accuracy of diagnosis. Therefore, 

the denoising of ECG signals is a significant baseline [23] of 

data pre-processing. The goal is to reduce noises and artefacts 

and determine the point of interest, which is beneficial to 

extract effective waveform features from ECG signals. Many 

scholars have proposed different preprocessing methods. In 

general, they can be divided into four categories: filtering 

methods, transformation filtering methods, statistical methods, 

and a combination of these methods [24-28]. Additionally, the 

ECG signals segmentation is also necessary, which mainly 

divides the whole signal record into a large number of 

heartbeats or RR intervals, and the heartbeats or RR intervals 

belonging to same classification are grouped together 

according to the annotations of the expert.  
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B. MACHINING LEARNING METHODS 

In recent decades, traditional machine learning algorithms 

have been widely used in the classification of arrhythmia 

signals and have made remarkable achievements. The 

machining learning methods include the complex processing 

of feature extraction, feature selection and feature learning. 

1) FEATURE EXTRACTION AND SELECTION 

Feature extraction and selection are a pivotal part of the 

classification of ECG signals in traditional machine learning 

methods, which is conducive to obtaining the most essential 

features of signals and providing an accurate feature for the 

final classification. The main features of ECG signals include 

time-domain features (also known as waveform features), 

frequency domain features, and statistical features [22].  

Time-domain features mainly refer to physical parameters 

reflecting the activity regularity of the ECG signal, including 

the frequency and amplitude of each waveform, such as P-

wave, Q-wave, R-wave, S-wave, T-wave, and intervals 

information, such as PR-interval, QT-interval, and RR-

interval. The QRS-complex and RR-interval features from 

ECG signals are significant in the time-domain, which mainly 

reflect the position, duration, amplitude, and shape of a 

specific waveform or deflection in signals [29-30]. Otherwise, 

digital filters [31], neural networks [32], high-order moments 

[33], and phasor transforms [34] have also been used for 

detecting of the QRS-complex. 

Frequency-based approaches are one of the most popular 

feature extraction techniques for representing ECG signals 

[22]. Many researchers claim the wavelet transform is the best 

approach for feature extraction and selection from the ECG 

signals [35]. Within the wavelet transform, the discrete 

wavelet transforms (DWTs) is the most widely used in ECG 

signal classification. In addition to DWT, continuous wavelet 

transforms (CWTs) are also used to extract features from ECG 

signals, which overcomes the disadvantages of representation 

coarseness and instability from DWT [36].  

The main statistical features are the expectation, variance, 

maximum, minimum, standard deviation, and high-order 

moment of ECG signal [24]. In general, these features provide 

an effective method for analyzing the complexity and 

distribution of waves on any time series. Therefore, in the case 

of ECG recording, these functions are conducive for 

distinguishing the variation process of particular patients and 

diseases [22]. 

In general, the above feature extraction and selection 

methods are implemented in machine learning classification 

algorithms. In this work, we introduce the deep learning 

approach into 1-D ECG signal classification. It is an end-to-

end model with self-learning. The features are automatically 

extracted from the ECG signals by the convolutional neural 

network. The hand-crafted feature extraction and selection 

process is unnecessary. 

2) FEATURE LEARNING METHODS 

These methods are summarized according to different types of 

classifiers, including statistical methods [37], decision tree 

classification models [38-39], neural network methods [39-

40], and support vector machines (SVMs) [40]. 

For example, Li and Zhou [38] presented an approach to 

classify ECG signals using wavelet packet entropy (WPE) and 

random forests (RF) following the recommendations from 

AAMI. The experimental results have shown that the WPE 

and RF methods are superior to several state-of-the-art 

competitive methods. A. M. Alqudah [37] introduced a novel 

method to model cardiac-related biological signals (ECG and 

PPG) based on Gaussian mixture waves. The proposed 

method has been applied to the MICIC and MIT-BIH 

arrhythmia databases. 

Moreover, A. M. Alqudah et al. [39] utilized two classifier 

techniques, the probabilistic neural network (PNN) algorithm 

and random forest (RF) algorithm to extract gaussian mixture 

and wavelets features, which were applied to classify the ECG 

beat into six classes, normal beat (N), left bundle branch block 

beat (LBBBB), right bundle branch block beat (RBBBB), 

premature ventricular contraction (PVC), atrial premature beat 

(APB), and aberrated atrial premature (AAP).  

Hammad et al. [40] employed four support vector machines 

(SVM), two Neural Networks (NNs), and a k-nearest neighbor 

(KNN) classifier to classify the ECG signals. These algorithms 

extracted 13 features from each ECG segmentation and set 

them as an input of the proposed classifier. All the records of 

the MIT-BIH arrhythmia database were used to validate these 

algorithms.  

In general, although these above methods have shown 

favorable classification performances, they also have 

numerous shortcomings. First, these automatic ECG signal 

classification models mainly depend on machine learning and 

pattern recognition. In the process, ECG signal segmentations 

are regarded as a sequence of stochastic patterns. The hand-

crafted extracted feature process requires burdensome 

computational resource and time. Second, in terms of 

classification algorithms and training datasets, the robustness 

of classification models is still limited because they fail to 

handle large intra-class variations. In addition, the above 

algorithms often subject to overfitting and show poor 

performance during validating the different datasets. 

Furthermore, the classifier algorithms don’t perform well in 

practical applications under the condition of the various ECG 

signals from different patients, which shows a common 

disadvantage of inconsistent performance results when 

classifying a new ECG record. This makes them less reliable 

clinically or in practice. Finally, the recent ECG monitoring 

models require well-established cardiologists for diagnosis, 

which also consumes a lot of time and energy. 

C. DEEP LEARNING METHODS 

Deep learning is a new technology that has become the 

mainstream in computer vision and pattern recognition. In the 

past few years, deep learning has been widely used in the fields 

of image classification [10-14], object detection [15-17], and 

image segmentation [18-21]. In recent years, deep learning-
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based methods have been successfully applied to analyze ECG 

signal so that overcome the challenges from traditional 

machine learning-based methods.  

For example, Kiranyaz et al. [41] presented a fast and 

accurate patient-specific ECG classification system for 

recognizing the two types of signals of supraventricular 

ectopic beats (S) and ventricular ectopic beats (V). The model 

designed three convolutional layers and two multi-layer 

perceptron to obtain the experimental result.  

In additional, Jun et al. [42] proposed a deep neural network 

for the classification of premature ventricular contraction 

(PVC) beats. Acharya et al [43] developed a 9-layer CNN 

model to automatically classify five classes of heartbeats. 

Murugesan et al. [6] also implemented three robust deep 

neural networks (DNNs) (CNNs, LSTM, and CNN-LSTM) to 

detect the two types of Premature Ventricular Contraction 

(PVC) and premature atrial contraction (PAC). The results 

showcased the potential of the network as a feature extractor 

for ECG signal classification. 

Moreover, in [44], the CNN was transferred in this study to 

carry out automatic ECG arrhythmia diagnostics after 

employing the higher-order spectral algorithms. Transfer 

learning strategies were applied on a pre-trained convolutional 

neural network, namely AlexNet and GoogleNet, to carry out 

the final classification.  

Compared with traditional machine learning methods, the 

most critical feature of deep learning is that it does not require 

the processes of feature extraction and feature selection. The 

deep learning approaches have the ability to self-learning from 

input signals. In other words, the previous processes of feature 

extraction and selection in machine learning are embedded in 

the deep learning model, which can continuously learn 

features from input data. However, the above deep learning 

methods also showcased some imperfections. The research 

directions of [41], [42] and [6] were a two-class problem. It 

was a simple research point compared to the five-class 

problem in this work. Otherwise, [37] and [40] presented a 

plain CNNs model to extract features from ECG signals. The 

structure of the plain model was not conducive to the 

extraction of features from deep layers. Moreover, [43] 

proposed 9-layer models, which is enough to features 

extraction. But the model didn’t fully consider the imbalance 

between data classes, which may lead to the overfitting of 

model. Additionally, the influence of different lengths of input 

signal and the problem of unbalanced original data 

classification on model’s performance has not been fully 

considered. 

Broadly speaking, the fundamental disadvantages and 

challenges of existing machine learning methods for ECG 

signal detection and classification are that hand-crafted 

extracted feature, which not only greatly affects the accuracy 

of the algorithm, but also consumes a lot of calculation time 

and cost. The deep convolutional neural network is essentially 

realized by stacking automatic encoders. Considerable feature 

representational power effectively reveals unknown abstract 

features of input signals. It can achieve self-learning through 

end-to-end model design. Meanwhile, the radical problem of 

both methods is that they only focus on how to propose a better 

model, but do not pay attention to data processing issues: such 

as data denoising, data augmentation, and multi-scale data 

training and testing. The data preprocessing of signals should 

be focus on because signals and images are different data types. 

Hence, in this work, inspired by these previous efforts, a 

more accurate, comprehensive, and robust method based on 

deep learning is proposed to identify five different types of 

arrhythmia signals. The proposed model not only pays 

attention to the superiority of model design but also presents 

the importance of data processing in this paper. The final 

results also prove that the application of ECG signal 

classification using the convolutional neural network is 

reliable. The deep learning architecture outperforms the hand-

crafted feature extractors assembled by machine learning 

models in terms of classification accuracy, sensitivity, 

specificity, and confusion matrix. 

The contributions of this work are as follows: 

(1) We propose an end-to-end plain-CNN architecture and 

two MSF-CNN architectures (A and B) to replace additional 

hand-crafted feature extraction, selection, and classification 

using machine learning methods. The plain-CNN is a baseline 

model, the MSF-CNN A and B are implemented based on this 

baseline network. Thus, it significantly enhances the 

performance against recent state-of-the-art studies.  

(2) Moreover, the signal processing problems are fully 

considered. We first design multi-scale input signals, 

including 251 samples (named set A) and 361 samples (named 

set B). This design can improve the generalization ability of 

the model by extracting multi-scale signal features. Then, the 

signal denoising and data augmentation also are implemented 

in this paper. The data augmentation strategy is a major 

innovation in this paper. This problem has not been paid much 

attention in most ECG signal research papers before.  

(3) In particular, we present six sets of detailed ablation 

experiments on ECG signal classification and achieve 

excellent performance metrics. And we also compare the 

results from our model to recent state-of-the-art methods. 

Additionally, detailed analysis and comparison are presented 

in this paper. 

III. ECG DATABASE DESCRIPTION AND PRE-
PROCESSING 

It is crucial to acquire and process the research data in our 

work. In this section, we first introduce the MIT-BIH 

Arrhythmia Database in detail, and then we fully illustrate the 

data pre-processing, including denoising, data segmentation, 

and data augmentation.  

A. THE DESCRIPTION OF DATABASE 

The MIT-BIH Arrhythmia Database (MITDB) [45] is an 

open-source PhysioBank database that is widely used to 

research the detection and classification of ECG signals. The 
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Figure 1. A 10 s signal example of MLII and V5 from MITDB. Each ECG record is approximately 30 minutes, which includes two leads. The MLII of Figure 1 

denotes the signal of lead II, and V5 describes the lead V. 

database consists of 48 half-hour ECG records obtained from 

47 subjects, and each ECG record contains two leads (lead II 

and lead V) originating from different electrodes. Figure 1 

shows an example of signals from the MITDB. Each ECG 

record duration is approximately 30 minutes, and the signal 

sampling frequency is 360Hz. These subjects comprise 25 

males aged range from 32 to 89 and 22 females aged 23 to 89. 

The Arrhythmia database is divided into 25 subjects of normal 

ECG recordings and 23 subjects with abnormal ECG 

recordings.  

In this paper, two-lead signals (lead II or MLII) are used to 

train, validate and test the algorithm. In addition, all the signal 

records are independently annotated by at least two 

cardiologists. A total of 109,454 heartbeats are extracted in 

this work (shown in Table 2). The data directory contains the 

entire MIT-BIH arrhythmia data, which uses a custom format 

to save file length and storage space. An ECG record consists 

of three parts: a header file (.hea), a data file (.dat), and an 

annotation file (.atr). 

B. DATA PRE-PROCESSING  

We process the original raw data from the MIT-BIH 

arrhythmia database through a series of approaches such as 

denoising, data segmentation, and data augmentation to form 

the new data sets, and finally train a network with stronger 

robustness and better generalization ability. The specific 

processes are as follows:  

1）DENOISING 

The main function is to eliminate power-line interferences and 

baseline wanderings caused by patient respiration or 

movement, which will lead to several problems in detecting 

heart diseases. Baseline wandering is a low-frequency noise 

signal. For baseline wandering, the median filtering method is 

adopted to remove this kind of noise. Power-line interference 

is an interfering voltage with an integer multiple of 50 Hz that 

completely masks the ECG waveform [4]. Power-line 

interference and high-frequency noise are usually removed by 

a low pass filter. Considering the feature, first, the wavelet 

transform multi-resolution theory is leveraged to decompose 

the noisy signal. Then, we take advantage of the different 

distribution of signal and noise on the spectrum to remove the 

detail component on the scale of wavelet decomposition 

directly corresponding to the noise. Finally, wavelet inverse 

transformation is used to reconstruct signals, which can 

effectively remove the noise in the signal component.  

2）DATA SEGMENTATION 

The denoised ECG signals are classified into 5 classifications: 

normal (N), supraventricular ectopic beat (S), ventricular 

ectopic beat (V), fusion beat (F), and unknown beat (Q) 

according to the annotation from cardiologists, and these 

signals will be fed into the classification network. A complete 

normal heartbeat is shown in Figure 2, including an integrated 

rhythm from P-wave onset to T-wave offset (or U-wave onset). 

Considering the different lengths of ECG signals contain 

different amounts of feature information, data segmentation 

follows two strategies: 251 samples and 361 samples. The 

original raw ECG signals with denoising are segmented into a 

mass of heartbeats centered around the R-peak without the 

inclusion of the first and last heartbeats. Each heartbeat 

consists of 251 samples (60 samples before the R-peak and 

190 samples after R-peak), including an integrated P-, Q-, R-, 

S-, and T-peak. We regard these signals included 251 samples 

as set A. Likewise, these original raw signals with denoising 

also are segmented into 361 samples of a heartbeat (120 

samples before the R-peak and 240 samples after the R-peak). 

We regard these signals included 361 samples as set B. 

3）DATA AUGMENTATION 

It is an important part of this work, mainly to balance the 

number of five classifications (N, S, V, F, Q), which is more 

conducive to feature learning in deep neural networks. A total 
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Figure 2. A complete normal heartbeat. A complete heartbeat is a section 

of rhythm ranging from P onset to T offset (or U onset), consisting of P-

wave, PR-interval, Q-wave, R-wave, S-wave, T-wave, QT-interval and U 

wave. Each waveform corresponds to the physiological process of 

cardiac excitement. The total duration of a heartbeat is approximately 0.8 

s. 

of five types of ECG signals are considered in this work. As 

seen in Table 2, the number of samples in each category is 

different. The number of F signals is the lowest before data 

augmentation. Although unbalanced data distribution is more 

common in practical applications, the large difference in the 

number of categories is not beneficial to train the network 

model. 

Therefore, the data augmentation approaches are leveraged 

to balance the types of signals. Additionally, the unbalanced 

data distribution is modestly maintained in this paper. 

Specifically, the number of segmentations in the N class 

remains invariable because they are the most adequate. The 

number of remaining classes (S, V, F, Q) is augmented to 

match the number in the N class. In this paper, three methods 

are leveraged to implement the data augmentation strategy. 

The first method is time shift augmentation, which randomly 

shifts the signal by rolling it along the time sequence. The 

second method is noise augmentation. We add random white 

noise with a damping coefficient of 0.4 to the original signal. 

We also combine two signals proportionally to obtain the new 

signals in the same category. 

TABLE 2 THE DATA DISTRIBUTION OF HEARTBEATS IN THE MIT-BIH 

ARRHYTHMIA DATABASE 

Classification 

Number of instances 

(without 

augmentation) 

Number of 

instances (with 

augmentation) 

N (Normal) 90,595 90,595 

S (Supraventricular 
ectopic beat) 

2,781 55,620 

V (Ventricular ectopic 

beat) 

7,235 72,350 

F (Fusion beat) 802 32,080 

Q (Unknow beat) 8,041 80,410 

Total 109,454 331,055 

It should be noted that data augmentation is a process that 

generates new samples as a supplement to real data, which is 

applied only to the training processes. In testing, we leverage 

the original data without augmentation. 

IV.  NETWORK ARCHITECTURE 

In this section, we first introduce the model structure of the 

most popular convolutional neural networks. Then, three 

different architectures, a plain-CNN, and two MSF-CNN 

models (A and B), are proposed. The primary idea of the 

network is to build a robust MSF-CNN-based feature 

extraction to derive features from ECG signals. The network 

would also be easily adaptable to multiple datasets by transfer 

learning. 

A. CONVOLUTIONAL NEURAL NETWORK 

Convolutional neural networks (CNNs) are one of the most 

frequently used in the field of artificial neural networks [46]. 

Since AlexNet [47] won first place in the ImageNet 

competition in 2012 by using a 7-layer CNN, CNN has been 

widely used in the fields of image classification, semantic 

segmentation, video recognition, and speech recognition and 

has also achieved great success. The standard architecture of 

CNNs includes six parts: the convolutional layer, pooling 

layer, rectified linear activation function, batch normalization, 

fully connected layer, and softmax function. 

1) CONVOLUTIONAL LAYER 

Each convolutional layer is composed of several 

convolutional units, and all the parameters are optimized by 

the back-propagation algorithm. The main function of the 

convolution operation is to map the input to the hidden layer 

feature space so that extract different features from the input 

signal. The shallow layers can only extract some low-level 

local features such as edges, lines, and angles, while the deep 

layers iteratively extract corresponding detail features from 

high layers. The convolution operation is computed by the 

following equation (1). 

                           𝑦𝑛 = ∑ 𝑥𝑘𝑓𝑛−𝑘
𝑁−1
𝑘=0                                  (1) 

where 𝑥  denotes the input signals, 𝑓  represents the 

convolution kernel, and 𝑁 is the number of elements in the 

input signal 𝑥. The output vector is denoted by 𝑦. 

2) POOLING LAYER 

The pooling layer, namely down-samples, aims to reduce the 

number of feature maps so that it decreases the calculation cost 

by lessening the network parameters. The common pooling 

operations mainly include max-pooling and average-pooling. 

The max-pooling only outputs the maximum number in each 

kernel, thus reducing the size of the feature maps and retaining 

the local features. The average-pooling outputs the mean value 

in each kernel, thus aggregating the global feature information. 

It follows equation (2).  

                     𝑥𝑖 = max
𝑟∈𝑅

[𝑥𝑖−1(𝑛 × 𝑠 + 𝑟)]                               
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               𝑜𝑟  𝑥𝑖 = mean
𝑟∈𝑅

[𝑥𝑖−1(𝑛 × 𝑠 + 𝑟)]                             (2) 

where max and mean denote the max-pooling and average-

pooling, respectively. 𝑠 describes the stride. 𝑛 is the element 

index of a feature map. In this study, max-pooling is 

implemented in shallow layers, and mean-pooling is leveraged 

in deep layers. Thus, this configuration retains both global and 

local features. 

3) RECTIFIED LINEAR ACTIVATION FUNCTION 

The rectified linear activation function implements nonlinear 

mapping from the output of the convolutional layer, realizing 

the nonlinear transformation between the input and output of 

the neuron. Nair et al. [48] has reported that faster convergence 

and higher accuracy can be obtained using ReLU. Hence, the 

activation function of ReLU is utilized in this paper. Its 

characteristic is fast convergence and reducing the 

disappearing gradient. The ReLU is computed by the 

following equation (3). 

                      ReLU(x) = {
𝑥, 𝑥 > 0
0, 𝑥 ≤ 0

                                 (3) 

4) BATCH NORMALIZATION 

It is complicated that training a CNN by the fact that 

distribution of each layer’s inputs changes during training, 

because the parameters of previous layers usually change with 

the update of gradient. This makes it very difficult to train 

models, which requires lower learning rates and perfect 

parameter initialization to solve the problem. This 

phenomenon is called internal covariate shift. In order to 

overcome the problem, Loff et al. [49] proposed a method 

called Batch Normalization (BN), which demonstrates that the 

network training converges faster if its inputs are whitened 

(linearly transforming the input to have zero means and unit 

variances). 

5) FULLY CONNECTED LAYER  

The fully connected layer plays the role of a classifier in the 

deep neural network. It implements a weighted sum of the 

feature from previous layers. The feature space is mapped to 

the sample marker space by a linear transformation. 

(6) SOFTMAX FUNCTION 

Softmax functions are often used in the last layer of the 

convolutional neural network, which is an output layer for 

multi-classification. Softmax function maps multiple scalars 

to a probability distribution with each value range of (0,1), 

which follows equation (4). 

       𝜕(𝑧)𝑗 =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

        𝑓𝑜𝑟 𝑗 = 1, ⋯ , 𝐾           (4) 

The output of the softmax function is an 𝑋 dimensional vector, 

and 𝑋 is the number of classes. In this work, there are five 

classifications (N, S, V, F, and U). 

B. RESIDUAL LEARNING NETWORK 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. A building block of the residual learning network. 

A residual learning network was first proposed in [10] about 

image classification, which resolves the degradation problem 

of deep networks. The degradation problem appears with the 

deepening of the network layer. The specific phenomenon is 

that the accuracy saturates and then decreases rapidly with 

increasing network depth. The residual learning network is 

implemented by identity shortcut connections. As shown in 

Figure 3, it directly skips one or more convolutional layers, so 

that the output from the first several layers is introduced into 

the input of the following layers. And it is also a vital 

innovation of this paper to introduce the residual learning 

block into the one-dimensional signal analysis. 

The main reason that the residual network addresses the 

degradation problem is that the identity shortcut connections 

make every layer fit a residual mapping instead of requiring 

each few stacked layer to directly fit a desired underlying 

mapping. Formally, the desired underlying mapping is 

represented as 𝐻(𝑥), and we hope that each nonlinear layer 

will map 𝐹(𝑥): = 𝐻(𝑥) − 𝑥. The original mapping is recast 

into 𝐹(𝑥) + 𝑥, which is implemented by a feedforward neural 

network with shortcut connections (Figure 3). Thus, the 

residual network optimizes the residual function 𝐹(𝑥): =
𝐻(𝑥) − 𝑥  instead of 𝐻(𝑥) . Although both forms of the 

objective function can approximate the required function in 

principle, the difficulty of optimization is different. A large 

number of experiments also have confirmed this conclusion. 

If the optimal function is closer to the identity mapping than 

the zero mapping, it is much easier for the solver to optimize 

the residual function to zero than to fit identity mapping by 

nonlinear layers. 

In detail, the residual learning block is divided into two 

parts: identity mapping and residual mapping. As shown in 

Figure 4, the shortcut connection of the right curve is identity 

mapping, and 𝐹(𝑥) is the residual learning block, which is 

composed of two convolutional layers in our work. In the 

network model, the number of feature maps from the input and 

output may be different, and there are two representations of 

the residual learning block following equations (5) and (6).   

              𝐻(𝑥) = 𝐹(𝑥) + 𝑥                                     (5) 

Convolution layer

Convolution layer

ReLU

x   

x 

F(x)

H(x ):=F(x)+x ReLU

Shortcut 

connection
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Equation (5) is the representation of residual learning when 

the number of feature maps from the input and output is the 

same. If the number of feature maps from the input and output 

is different, the convolution of 1 × 1  will be leveraged to 

increase the dimension or decrease dimension. 

            𝐻(𝑥) = 𝐹(𝑥) + ℎ(𝑥)                                 (6) 

where ℎ(𝑥) is a convolution operation of 1 × 1 added in the 

shortcut connection. 

In addition to solving the degradation problem by 

optimizing the residual function, residual learning can also 

effectively reduce gradient dispersion. 

When the layer of network becomes deep, the gradient back 

propagation is as follows.  

𝜕𝐿𝑜𝑠𝑠

𝜕𝑥1
=

𝜕𝐹𝑁(𝑋𝐿𝑁
,𝑊𝐿𝑁

,𝑏𝐿𝑁
)

𝜕𝑋𝐿
∗ ⋯ ∗

𝜕𝐹2(𝑋𝐿2 ,𝑊𝐿2 ,𝑏𝐿2)

𝜕𝑋1
     (7) 

During the backpropagation of this gradient value, if 𝑁 is 

large, the gradient value will decrease as it propagates to the 

first few layers, and the gradient may disappear when it is 

deeper in the deep neural network. However, residual learning 

solves this problem at the level of the neural network structure. 

The gradient back propagation is as follows when the residual 

learning is utilized in the model. 

 
𝜕𝐿𝑜𝑠𝑠

𝜕𝑥1
=

𝜕𝑋𝐿+𝐹(𝑋𝐿,𝑊𝐿,𝑏𝐿)

𝜕𝑋𝐿
= 1 +

𝜕𝐹2(𝑋𝐿,𝑊𝐿,𝑏𝐿)

𝜕𝑋𝐿
          (8) 

Hence, even with deep network layers, gradient dispersion 

will be effectively contained. 

C. THE PROPOSED NETWORK ARCHITECTURE 

The design of the network mainly relies on the six parts 

computing units mentioned above. In this work, we design 

three network architectures (plain-CNN, MSF-CNN A, and 

MSF-CNN B.) with a highly modularized block, which are 

inspired by the idea of VGG published as a conference paper 

at ICLR 2015[50]. VGG is a mature deep neural network that 

has been proven to effectively solve various problems in the 

field of computer vision.  

As shown in Figure 4 (a), the plain-CNN network, a 

baseline network, is a simple CNN architecture to verify the 

processing ability of 1-D CNN for ECG signals. It includes 

three convolution layers, two fully connected layers, and 

corresponding nonparametric layers (pooling layer, batch 

normalization layer, ReLU layer, and softmax layer). The 

input signals of set A and set B are directly fed into the 

convolution layer. The first two convolution layers are 

followed by a max-pooling layer, a batch normalization (BN) 

layer, and a ReLU layer, respectively. The last convolution 

layer is followed by global average pooling. The fully 

connected layer is followed by a BN layer, a ReLU layer, and 

a dropout layer. The plain-CNN is an ordinary multi-layer 

convolution network. 

In addition, we propose a multi-scale fusion CNN 

architecture A (MSF-CNN A, in Figure 4 (b)) that integrates 

different spatial features by using one parallel group 

convolutional block (1×7,1×5, and 1×3). The MFS-CNN A is 

upgraded network based on the plain-CNN to verify the 

processing ability of three parallel convolution kernels for 

ECG signals. As shown in Figure4 (b), the network mainly 

includes one parallel group convolutional block, three 

convolution layers, two max-pooling layers, one global 

average-pooling layer, two full convolutional layers, and the 

corresponding BN, ReLU, and dropout. The datasets are first 

divided into two subsets (set A and set B) according to the 

different length of ECG signals and fed into three different 

parallel convolution kernels (1×7, 1×5, 1×3). The three 

outputs are then concatenated. This strategy can enable the 

network model to learn the hierarchical feature information 

from different spaces, and finally obtain more continuous and 

better representation. Then it is followed by the BN and ReLU 

layers. The trick of BN relieves overfitting, and ReLU 

increases nonlinear expression. The first two convolutional 

blocks contain a convolutional layer, max-pooling, BN and 

ReLU, and the last convolutional blocks are connected to a 

global max-pooling layer. The two fully connected layers are 

followed by BN, ReLU, and dropout operations. The MSF-

CNN A is mainly introduced three parallel convolution 

kernels to fully extract the feature from set A and set B.  

Finally, we design another multi-scale fusion CNN 

architecture B (MSF-CNN B, in Figure 4 (c)) based on the 

MSF-CNN A, which is inspired by VGGNets [50] and ResNet 

[10]. The MFS-CNN B is upgraded network based on the 

MFS-CNN A to verify processing ability of the concatenation 

group convolution blocks and residual learning blocks for 

ECG signals. The architecture includes one parallel group 

convolutional block (1×7, 1×5, and 1×3) as the MSF-CNN A, 

7 convolution layers, two residual learning blocks, two max-

pooling layers, one global average pooling, and two fully 

connected layers. The parallel group convolution block is the 

same as the MSF-CNN A. The difference between network A 

and B is that two or three convolutional layers (named the 

concatenation group convolution block) are grouped together 

in the deep layer of MSF-CNN B, sharing the same number of 

filters, and the concatenation group convolution blocks are   

separated by the max-pooling layer. Therefore, one parallel 

group convolutional block and two concatenation group 

convolutional blocks constitute the entire convolution MSF-

CNN B, and the global average pooling layer is behind the 

third concatenation group convolutional blocks. Most 

importantly, we implement the residual learning block to 

avoid the degradation problem described above. The 

concatenation group convolution blocks and residual learning 

blocks are a vital innovation of this model.  

In training, the operation of the fully connected layer is 

replaced by a full convolutional layer in the network. Since the 

output of the convolutional layer maintains the spatial locality 

between the feature signals, and the input size of ECG signals 

is not limited. Additionally, this conversion greatly reduces the 

number of parameters that need to be trained, and it can also 

provide a better effect. The corresponding function is shown 

in equation (9). 
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Figure 4. Example network architecture. (a): the plain network as a reference. (b): the MSF-CNN architecture A. (c): the MSF-CNN architecture B. 

Table 2 shows more details and other variants.
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  𝑦𝑗 = 𝑓(∑ 𝑘𝑖𝑗 ∗ 𝑥𝑖 + 𝑏𝑗𝑖∈𝑀 )                  (9)                                              

Where 𝑥 and 𝑦  are the input and output of the network, 

respectively. 𝑀 is the convolution kernel size, 𝑗 denotes the 

index of convolution kernels, and 𝑖 denotes the index of input 

feature maps. 𝑘𝑖𝑗  describes the convolution kernel for the 𝑖 −
𝑡ℎ input map and 𝑗 − 𝑡ℎ output map. 

In the plain-CNN, the number of convolution kernels is 64 

in the first convolutional layer and then increases by a factor 

of two after each max-pooling layer until it reaches 256. In the 

MSF-CNN A, the number of convolution kernels is also 64 in 

the parallel group convolutional block as the plain-CNN. 

However, it then increases by a factor of two after each max-

pooling layer until it reaches 512. In the MSF-CNN B, the 

configuration of convolution kernels is the same as MSF-CNN 

A, and the number of convolution kernels is 64 in the parallel 

group convolutional block and then increases by a factor of 

two after each max-pooling layer until it reaches 512 in the 

concatenation group convolution blocks. The detailed 

configuration of the three network architectures evaluated in 

this paper is described in Table 3. 

V. ABLATION EXPERIMENTS 

In this section, we first briefly describe the implementation 

details of the experiment and then introduce our performance 

metrics of the three models in our experiment. Finally, we 

carry out detailed experiments and performance comparison. 

Additionally, we also discuss the advantages and limitations 

of the proposed model. 

A. IMPLEMENTATION DETAILS 

The network is designed with a fixed input of 251 (set A) and 

361 (set B) samples, and the output is the probability of five 

categories. The outline of model is presented in Algorithm 1. 

Taking set B as an example, first, the original data is called set 

B after pre-processing, and set B is divided into trainSet and 

testSet. Then, trainSet is divided into 10 equal parts for cross-

validation. Compared with the results rt of 10 cross-validation, 

the model m with the best performance is obtained through the 

validation and comparison of the training process. Finally, the 

testSet is loaded to evaluate the model. 

The network model optimizes the cross-entropy function 

with the Adam optimizer, which is optimized by using a mini-

batch size of 128 tensors on the 4 NVIDIA TITAN Xp GPUs. 

The Adam optimization is leveraged in this paper to update the 

parameters of the proposed network structure. It has been 

observed that it allows the network to converge at a fast rate, 

thus improving the efficiency of the training process. The 

mini-batch size is chosen as 128 to trade off two 

considerations. The size results in a short convergence time by 

reducing the variance of training and brings more power for 

Adam optimizer to jump out of shallow minima in training. 

According to the experiments, the learning rate starts from 

0.001 and is divided by 10 when the error plateaus. The decay 

rate is also set to 0.0001. The initialization momentum is 0.5, 

and it is annealed to 0.9 after a multiple epoch gradually. 

Algorithm 1 MSF-CNN B 

Input:  

SetA/SetB is the dataset;  

10 is cross-validation times;  

T is test data; 

optim Algorithm is Adam; 

D is pre-trained model; 

N is heartbeat classes 

Output:  

The predicted probability p (·); 

1: (trainSet; testSet) ← split (SetA/SetB) 

2: S ← (split trainSet in equal parts of 10) 

3: for each round t=1, 2, ... ,10 do 

4:   {verify; train} ← {St; S – St} 

5:   (tf; vf) ← (generate spam feature of train and verify) 

6:   mt ← modelFit(Adam; tf) 

7:   rt ← modelEvaluate(mt; vf) 

8: end for 

9: m ← bestModel((mt; rt)|t = 1, 2, , 10) 

10: test ← (generate spam feature of testSet) 

11: res ← modelEvaluate (m; test) 

In the fully connected layer, dropout operation is adopted to 

reduce overfitting and improve generalization ability. 

Considering one-dimensional signals and the number of 

neurons, the dropout parameter is set to 0.3. According to 

equation (10), the cross-entropy loss function of five 

classification problems can be obtained. 

         L(X, y) =
1

𝑛
∑ log 𝑝(𝑦|𝑥)𝑛

𝑖=1                  (10)                                                 

where X is the input ECG signal, y is the ground truth of each 

input ECG signal, and p (·) is the predicted probability. 

In addition, 10-fold cross-validation is leveraged to evaluate 

model performance. The original dataset is randomly divided 

into 10 equal-sized subsets. The 9 subsets are used for training, 

and the remaining subset is used to test the proposed model. 

The process is repeated according to iterations. The 

performance metrics (specificity, sensitivity, and accuracy) 

are evaluated in each epoch. Finally, the classification results 

of each validation are obtained and averaged to estimate the 

performance of the model on the whole dataset. 

We find that gradient explosion and overfitting may exist in 

the comparative experiments. Therefore, to avoid these 

problems, regularization is introduced to our proposed model. 

In the experiment, the L2 norm of the model parameters 

(equation (11)) is implemented to relieve these problems. 

Specifically, the threshold is set to 0.5 to stabilize the training 

process. 

                  𝑙(x) = L(X) + σ ∑ ||𝑤𝑖||23
𝑖=1                       (11) 

where 𝑙(𝑥)  is the loss function with L2 regularization and 

𝐿(𝑥) is the cross-entropy loss function from equation (9). σ 

denotes a penalty factor, which is to balance the goal of 

achieving better training results and keeping smaller 

parameter values. Thus, the regularization can avoid 

overfitting effectively by narrowing down all the parameters. 
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TABLE 3 THE DETAILED CONFIGURATION OF THE PROPOSED NETWORKS 

Layers Plain-CNN network MSF-CNN architecture A MSF-CNN architecture B 

1 Conv (kernel size1×3, feature map 64) 
Convolution block (kernel size 

1×3, 1×5, 1×7, feature map 64) 

Convolution block (kernel size1×3, 1×5, 1×

7, feature map 64) 

2 
Max-pooling (stride 1) 
Batch Normalization 

ReLU 

Concatenation 
Batch Normalization 

ReLU 

Concatenation 
Batch Normalization 

ReLU 

3 Conv (kernel size1×3, feature map 128) Conv (kernel size1×3, feature map 128) Conv (kernel size1×3, feature map 128) 

4 

Max-pooling (stride 1) 

Batch Normalization 
ReLU 

Max-pooling (stride 1) 

Batch Normalization 
ReLU 

Conv (kernel size1×3, feature map 128) 

5 Conv (kernel size1×5, feature map 256) Conv (kernel size1×3, feature map 256) 
Max-pooling (stride 1) 

Batch Normalization 
ReLU 

6 

Global average pooling (stride 2) 

Batch Normalization 
ReLU 

Max-pooling (stride 1) 

Batch Normalization 
ReLU 

Conv (kernel size1×3, feature map 256) 

7 Fully connected layer (512) Conv (kernel size1×5, feature map 512) Conv (kernel size1×3, feature map 256) 

8 

Batch Normalization 

ReLU 
Dropout (0.3) 

Global average pooling (stride 2) 

Batch Normalization 
ReLU 

Max-pooling (stride 1) 

Batch Normalization 
ReLU 

9 Fully connected layer (1024) Fully connected layer (1024) Conv (kernel size1×3, feature map 512) 

10 

Batch Normalization 

ReLU 

Dropout (0.3) 

Batch Normalization 

ReLU 

Dropout (0.3) 

Conv (kernel size1×3, feature map 512) 

11 Softmax (5 classes) Fully connected layer (1024) 

Global average pooling  

(stride 2) 

Batch Normalization 
ReLU 

12 ———— 
Batch Normalization 

ReLU 
Dropout (0.3) 

Fully connected layer (1024) 

13 ———— Softmax (5 classes) 

Batch Normalization 

ReLU 
Dropout (0.3) 

14 ———— ———— Fully connected layer (1024) 

15 ———— ———— 
Batch Normalization 

ReLU 

Dropout (0.3) 

16 ———— ———— Softmax (5 classes) 

 

𝑤𝑖  describes the weight of 𝑖 − 𝑡ℎ layers.  

B. EVALUATION METRICS 

For the evaluation, the four-standard metrics of accuracy, 

sensitivity (also known as recall), specificity (also known as 

the true negative rate), and confusion matrix are used to 

evaluate the classification performance of the plain-CNN, 

MSF-CNN A, and MSF-CNN B, respectively. Accuracy is 

defined as the ratio of the number of correct predictions (It is 

means that positive samples are classified into positive and 

negative samples are classified into negative) to the total 

number of predictions. Sensitivity describes the proportion of 

positive cases identified with accounts for all positive cases, 

which is to judge model’s ability of detecting positives 

accurately. Specificity denotes the proportion of negative 

cases identified accounts for all negative cases, which is to 

judge model’s ability of detecting negatives accurately. 

Among them, sensitivity and specificity are two commonly 

judgment standards in the field of medical classification tasks. 

These metrics are defined in the following equations (12), (13), 

and (14): 

                   Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                     (12) 

                            Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                           (13) 

                           Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                             (14) 

TP (true positive) refers to the number of samples that are 

truly identified as positive samples, TN (true negative) refers 

to the number of samples that are truly identified as negative 

samples, FP (false positive) refers to the number of samples 

that are mistaken for positive samples, which actually is 

negative samples, and FN (false negative) refers to the number 

of samples that are mistaken for negative samples, which are 

actually positive samples. Because of the large differences in 

different categories, sensitivity and specificity are more 

relevant performance criteria in arrhythmia detection than 

accuracy. 

In addition, the confusion matrix is leveraged to validate the 

performance of proposed model, which is an important 

standard to judge the performance of multi-classification 

model.  

In the confusion matrix, the greater the number of true 

positive cases and true negative cases are, the better the 

model’s performance is. Likewise, the fewer false positive 
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examples and false negative examples, the better the overall 

performance of the model is. 

C. PERFORMANCE COMPARISON AND DISCUSSION 

In this section, we implement six groups of ablation 

experiments to analyze the performance of model. First, we 

carry out a set of experiments to compare the effects of 

different lengths (set A and set B) of signals on our models’ 

performances. Moreover, we show the change of 

performances by using the data augmentation method on 

training process. In addition, we conduct a set of experiments 

to demonstrate the function of denoising on the pre-processing 

of data. Meanwhile, we specially designed an experiment to 

verify the effect of the residual learning network. And the 

convergence analysis experiment is shown to validate our 

models’ convergence ability in the fifth group experiment. 

Finally, the confusion matrix also is implemented to analyze 

each classification signals’ performances. The detailed 

discussion about the six specific groups of experiments is as 

follows. 

1) SET A VS. SET B 

We design a set of experiments to verify the effect of set A and 

set B on three models in the first phase. Every heartbeat 

includes 251 samples in set A and 361 samples in set B. Figure 

5 presents the performances’ trends of the two datasets on the 

three models. According to Figure 5, the changing curves of 

accuracy from the three models (plain-CNN, MSF-CNN A, 

MSF-CNN B) indicate that the accuracy of set B is slightly 

better than set A, mainly because each heartbeat from set B 

includes more samples than set A, and these models can learn 

more abundant features information. Otherwise, the overall 

average classification performances (accuracy, sensitivity, and 

specificity) for set A and set B in the three models are shown 

in Table 4. In set A, the average accuracies of the three 

networks are 83.15%, 86.40%, 89.17%, respectively. The 

result of MSF-CNN A is 3.25% higher than the performance 

of the plain-CNN in the set A. Additionally, the result of MSF-

CNN B without residual learning is 2.77% higher than the 

performance of MSF-CNN A in set A. In set B, the 

performances of the three models also differ by 4.42% and 

2.78%, respectively. Otherwise, sensitivity and specificity of 

75.90% and 87.64% are also obtained in this experiment from 

set B. It is lower than the metrics from the plain-CNN network 

and MSF-CNN A in set B without residual learning. However, 

they are higher than the metrics from the three models in set 

A. It is analyzed that data imbalance may lead to this problem. 

In Table 2, the number of instances of each category without 

data augmentation is quite different. Overall, the results also 

suggest that the parallel group convolutional block in MSF-

CNN A and B and the concatenation group convolution block 

in MSF-CNN B without residual learning have an important 

effect on the performance improvement of the proposed 

models. In theory, longer ECG records cover more heartbeat 

rhythm information, which will lead to better classification 

performance. Thus, in the following experiments, we use the 

data from set B to implement ablation experiment analysis. 

 

(a)                                                              (b)                                                           (c)               

Figure 5. The accuracy plot of set A and set B. (a): the result of the plain-CNN. (b): the result of MSF-CNN A. (c): the result of MSF-CNN B. 

TABLE 4. THE AVERAGE CLASSIFICATION RESULTS FOR SET A AND SET B ON THE PROPOSED THREE MODELS 

network 
Set A (251 samples) Set B (361 samples) 

Acc. (%) Se. (%) Sp. (%) Acc. (%) Se. (%) Sp. (%) 

Plain-CNN  83.15 65.14 85.08 85.23 87.41 79.50 

MSF-CNN A 86.40 77.69 81.54 89.65 83.96 88.67 

MSF-CNN B (w/o 

residual learning) 
89.17 68.79 74.63 92.43 75.90 87.64 

2) DATA AUGMENTATION VS. WITHOUT DATA 
AUGMENTATION  

In the second phase, we set up a set of experiments to analyze 

the impact of data augmentation on the model. The data used 

in this experiment are from set B. The strategy of data 

augmentation is implemented in accordance with the 

description of section III. B, and the total number of heartbeats 

increased to 331,055 after data augmentation (shown in Table 

2). In Figure 6, we compare the performances of the proposed 

three networks architectures with data augmentation and 
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without data augmentation in set B. As seen in Figure 6, the 

models with data augmentation perform dramatically better 

than these models’ performances without data augmentation. 

Table 5 shows detailed evaluation metrics of the model 

predictions. The average accuracies of set B are 92.81%, 

95.48%, and 95.96% with data augmentation on the three 

models. The results are 7.58%, 5.83%, and 3.53% higher than 

those of the three models without data augmentation. 

Otherwise, due to data augmentation, the independent 

performance assessment of MSF-CNN B without residual 

learning results in sensitivity and specificity of 96.58% and 

92.67%, respectively. It is better than the metrics from the 

plain-CNN and MSF-CNN A with data augmentation. 

Additionally, the performances are superior to the results of 

the three models without data augmentation. The experiment 

confirms that data augmentation dramatically improves the 

classification performance of ECG signals, which is also 

beneficial to data balancing in the dataset. Therefore, we adopt 

set B with data augmentation to perform the following 

experiments. 

    
 (a)                                                           (b)                                                               (c)  

Figure 6. The accuracy plot of set B. (a): the result of the plain -CNN. (b): the result of MSF-CNN A. (c): the result of MSF-CNN B (w/o residual 

learning). 

TABLE 5. THE AVERAGE CLASSIFICATION RESULTS FOR SET B WITH DATA AUGMENTATION ON THE PROPOSED THREE MODELS  

network 

Set B (361 samples, without data augmentation) Set B (361 samples, with data augmentation) 

Acc. (%) Se. (%) Sp. (%) Acc. (%) Se. (%) Sp. (%) 

Plain-CNN 85.23 87.41 79.50 92.81 95.84 93.92 

MSF-CNN A 89.65 83.96 88.67 95.48 96.53 87.74 

MSF-CNN B (w/o 
residual learning) 

92.43 75.90 87.64 95.96 96.58 92.67 

    

3) DENOISING VS. WITHOUT DENOISING 

In this experiment, we set up a set of experiments to analyze 

the impact of denoising on the model. The data used in this 

experiment are from set B with data augmentation. As shown 

in Figure 7, the performance of denoising performs slightly 

better than these models’ performances without the processing 

of denoising. The detailed classification measures are reported 

in Table 6. The average accuracies of set B are 93.41%, 

96.38%, and 97.03% with denoising on the three models 

without residual learning, respectively.  

The results are 0.6%, 0.9%, and 1.07% higher than those of 

the three models without denoising. Moreover, compared with 

all the other models, very high sensitivity (94.43%) and 

specificity (96.41%) are obtained in this experiment. It is 

necessary to emphasize that the data augmentation strategy is  

 
(a)                                                           (b)                                                              (c)     

Figure 7. The accuracy plot of set B. (a): the result of the plain-CNN. (b): the result of MSF-CNN A. (c): the result of MSF-CNN B (w/o residual 

learning). 
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TABLE 6 THE AVERAGE CLASSIFICATION RESULTS FOR SET B WITH DATA AUGMENTATION AND DENOISING ON THE PROPOSED THREE MODELS 

network 

Set B (361 samples, with augmentation, without 
denoising) 

Set B (361 samples, with augmentation, with denoising) 

Acc. (%) Se. (%) Sp. (%) Acc. (%) Se. (%) Sp. (%) 

Plain-CNN  92.81 95.84 93.92 93.41 87.16 89.73 

MSF-CNN A 95.48 96.53 87.74 96.38 91.82 92.58 

MSF-CNN B (w/o 
residual learning) 

95.96 96.58 92.67 97.03 94.43 96.41 

MSF-CNN B 

(w/residual learning) 
______ ______ ______ 98.00 96.17 96.38 

implemented in this experiment. It is clear that the denoising 

technique has an influence on the performance of the models. 

4) RESIDUAL LEARNING VS. WITHOUT RESIDUAL 

LEARNING 

Next, we evaluate the effect of the residual learning block on 

MSF-CNN B with augmentation and denoising on set B. The 

baseline network is the same as the above MSF-CNN B 

without the residual learning block. The MSF-CNN B with 

residual learning adds a shortcut connection to each pair of 1

×3 as in Figure 4 (c). We make two major observations from 

Table 6 (the last row) and Figure 8. First, the result situation 

(accuracy) is reversed with residual learning—the MSF-CNN 

B with residual learning is better than it without residual 

learning (differ by 0.97%). Most importantly, the 

performances of sensitivity and specificity also exhibit 

excellent and stable metrics. This indicates that the residual 

learning block dramatically enhances the optimization 

efficiency by providing faster convergence at the early stage. 

Figure 8. The accuracy plot of set B with denoising. The blue solid denotes 

MSF-CNN B without residual learning, and the red solid denotes MSF-CNN 

B with residual learning. 

5) CONVERGENCE ANALYSIS  

Then, we obtain the loss details during the training and 

validation processes. Figure 9 illustrates the change curve of 

loss of set B on MSF-CNN B without residual learning block, 

and Figure 10 also shows the result of set B on MSF-CNN B 

with residual learning block. As shown in the figures 9 and 10, 

the convergence effect of the model with residual learning is 

better than that of the model without residual learning. In 

addition, these experiments’ results also show that the model 

converges after between 60 and 100 epochs during training  

and between 80 and 100 epochs during validation. Hence, 100 

epochs are used in this experiment to ensure full convergence 

of the model and reduce overfitting. Moreover, the speed of 

convergence from the model with residual learning is faster. 

Figure 9. Training and validation loss function of set B on MSF-CNN B 

without residual learning over the epochs. 

Figure 10. Training and validation loss function of set B on MSF-CNN B with 

residual learning over the epochs. 

6) CONFUSION MATRIX ANALYSIS 

Finally, in addition to evaluating each classification signal’s 

performances of the model with residual learning block, we 

also assessed a confusion matrix of ECG heartbeats (Tables 7 

and 8). They show the accuracy, sensitivity, and specificity of 

each classification. Table 8 shows a confusion matrix from the 

MSF-CNN B without a residual learning block. Table 9 

describes a confusion matrix from the model with residual 

learning block. According to Table 8, on average less than 

1.12% of the ECG heartbeats are wrongly classified across all 

10-fold when the model does not utilize a residual learning 
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block. Likewise, for the model with residual learning block, 

less than 1.00% of the ECG heartbeats are wrongly classified 

across all 10-folds. The minimal sensitivity recorded for both 

models are attributed to the detection of class F and are 92.25% 

and 92.32%, respectively. The minimal specificity for the 

model without residual learning block is attributed to the 

detection of class Q and is 95.33%. And the minimal 

specificity is 96.81%, which is a model with residual learning 

block attributed to the detection of class V. The results also 

demonstrate that the residual learning block has a positive 

impact on the performance of the model. 

TABLE 7 A CONFUSION MATRIX OF ECG HEARTBEATS WITHOUT RESIDUAL LEARNING BLOCK ACROSS ALL 10-FOLDS 

Acc=accuracy, Sen=sensitivity, Spe=specificity. 

TABLE 8 A CONFUSION MATRIX OF ECG HEARTBEATS WITH RESIDUAL LEARNING BLOCK ACROSS ALL 10-FOLDS 

Acc=accuracy, Sen=sensitivity, Spe=specificity.

Recent advances and representative techniques in 

arrhythmias are summarized in Table 9, which also yield high-

performance results. However, compared to recent advances, 

the benefits of our proposed MSF-CNN B are as follows: 

(1) Compared with most literature, the evaluation metrics 

from our proposed model, including accuracy, sensitivity, 

specificity, and confusion matrix, is comprehensive and 

outperform the most of recent advances. And our proposed 

MSF-CNN is end-to-end based on deep learning, which 

replaces additional hand-crafted feature extraction using 

traditional machining learning. 

(2) Even though the performance of our model is slightly 

lower than [61], our proposed model deals with multi-

classification problems, rather than the two-classification 

problem studied in [61]. 

(3) We implemented the 10-fold cross-validation approach 

in the proposed models, thus boosting the robustness of the 

models. 

Otherwise, compare with our work, even though the 

average accuracy from reference [59] is better than our 

model’s performance result, the performance metrics 

(accuracy, sensitivity, and specificity) of our paper are more 

comprehensive than the metrics (only accuracy) of [59]. And 

the deep learning method of STFT-Based Spectrogram [59] 

also provide a new idea for future work. In additional, the 

CNN and RNN (Recurrent Neural Network) is two popular 

deep learning methods to process the time series data. In [62], 

though the performance is superior to our models’ result, 

compared with the LSTM-based auto-encoder network in [62], 

our model is more lightweight and less computationally 

expensive. The LSTM is a replacement of the traditional RNN. 

And it is a bidirectional model, which is utilized to extract the 

bidirectional information from the forward model and 

backward model at the same time. There is no doubt that the 

advantage will also cost a lot of computational expensive. 

Most importantly, we think the LSTM-based auto-encoder 

(AE) network [62] is a positive strategy, which can effectively 

extract the characteristic information of time series signals. 

We will fully consider the optimization methods of [62] in our 

future work. 

VI. CONCLUSION AND FUTURE WORK 

In this study, three end-to-end network models, including a 

plain-CNN and two MSF-CNN architectures (A and B), are 

presented to automatically identify and classify the five 

Confusion Matrix 
Predicted 

Acc (%) Sen (%) Spe (%) 
N S V F Q 

True 

N 87904 511 1036 926 218 98.49 97.03 98.05 

S 36 54579 427 105 473 99.98 98.13 97.24 

V 678 236 69815 1231 390 98.42 96.50 96.96 

F 803 176 924 29617 560 98.44 92.25 99.11 

Q 721 93 243 367 78986 99.05 98.23 95.33 

Confusion Matrix 
Predicted 

Acc (%) Sen (%) Spe (%) 
N S V F Q 

True 

N 88837 267 48 526 917 99.46 98.06 97.68 

S 43 54930 26 497 124 97.52 98.76 99.68 

V 544 103 70903 267 533 99.41 98.00 96.81 

F 97 233 307 31438 5 99.32 92.32 99.46 

Q 86 279 108 299 79638 99.28 99.04 98.37 
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different types of ECG heartbeats. The plain-CNN is a 

baseline network with multiple convolution layers, which is a 

simple CNN architecture to verify the processing ability of 1-

D CNN for ECG signals. The MSF-CNN A is proposed to 

improve the learning ability of the plain-CNN. It is an 

upgraded network based on baseline network to verify the 

processing ability of three parallel convolution kernels for 

ECG signals, which increases a parallel group convolution 

block (including three different convolution kernels with 

1×7,1×5, and 1×3). Finally, the MSF-CNN B based on the 

MSF-CNN A is improved by implementing a residual learning 

block with three concatenation groups convolution blocks to 

promote the performance of the model. It is an upgraded 

network based on the MFS-CNN A to verify processing ability 

of the concatenation group convolution blocks and residual 

learning blocks for ECG signals.  

The three proposed models are trained and tested with a 

public MIT-BIH arrhythmia database on five types of signals, 

N, S, V, F, and Q. Six groups of ablation experiments are also 

conducted to analyze the performances of these models. The 

best model MSF-CNN B with residual learning and group 

convolution blocks (including the parallel and concatenation 

group convolution blocks) achieves an average accuracy, 

sensitivity, and specificity of 98.00%, 96.17%, and 96.38% in 

set B. Otherwise, the strategy of multi-scale data, data 

augmentation, and denoising also have an important effect on 

the training of the three models in our experiments.  

Therefore, our proposed deep neural network algorithm 

(MSF-CNN B) shows the potential of deep learning-based 

approach for feature extraction of the MIT-BIH arrhythmia 

database. As is evident from these results, the proposed 

approach is an efficient automatic cardiac arrhythmia 

classification method and provided a reliable recognition 

system based on well-established CNN architectures instead 

of training a deep CNN from scratch. It has the potential to 

provide accurate ECG signal classification in clinical practice. 

In future work, we would like to introduce more clinical 

diagnosis data to test the proposed model. Additionally, the 

temporal (heartbeats) and spatial (spectrogram) signal features 

will be combined to improve the performance metrics of the 

models in future work. We would also like to determine the 

severity grades of patients with chronic heart diseases by the 

detection and classification of ECG signals, which may 

represent normal, abnormal, and cardiac electrical activity 

conditions that may be life-threatening. 

Specifically, compared with the self-organizing structural 

size method [63-65], the deep convolutional neural network is 

complicated to fast determine its optimal structure given 

specific applications. Hence, we will propose a new method 

combined the self-organizing maps and convolutional neural 

network to the ECG signal research in the future work. 

Moreover, we will try our best to propose a new method 

combined the optimization approaches [66-68] and 

convolutional neural network to the ECG signal research in 

the future. This new method will focus on the following 

aspects: 

(1) The real-world constraints must be considered in the 

new model. We will put theory research results into a specific 

filed or for a specific product. 

(2) It’s considerable to design an adaptive parameter system 

to improve the robustness of optimization model.  

(3) We will consider the imbalanced data classification 

problem and sufficient prior knowledge. The dendritic neuron 

model [69] and evolutionary cost-sensitive [70] will provide a 

new idea in future work. 
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TABLE 9 A SUMMARY OF SELECTED WORKS FOR AUTOMATIC ARRHYTHMIA CLASSIFICATION OF ECG SIGNALS FROM THE DATABASE OF MIT-BIH ARRHYTHMIA 

Literature 
and Time 

Main Work Database Approach 

Performance (%) 

Accuracy (Correct 

recognition rate) 
Sensitivity (Recall) 

Specificity (positive 

predictivity) 

2017 [51] 
Five classification 

(N, S, V, F, Q) 

MIT-BIH 

arrhythmia 

database 

ML and DL: 
MFSWT; DNN 

97.50 / / 

2018 [52] 
Two classification 

(S, V) 

MIT-BIH 

arrhythmia 

database 

ML: PSO 

optimized least-

square twin SVM 

89.90 80.80(S), 82.20(V) 96.70(S), 99.00(V) 

2019 [53] Ten classification 

Chinese 

Cardiovascular 

Disease Database 

ML: PPNN 74.16 75.23 73.92 

2019 [54] 

The ventricular 

ectopic beat 

detection 

MIT-BIH 

arrhythmia 

database 

DL: 1D-CNN 95.50 85.80 64.50 

2019 [55] 
Five classification 

(N, S, V, F, Q) 

MIT-BIH 

arrhythmia 

database 

DL: DRNNs 
based on BGRU  

98.40 / / 

2019 [56] 
Seven 

classification 

Chinese 

Cardiovascular 

Disease Database 

DL: Parallel 
GRU RNN 

95.98 / / 

2019 [57] 

Six classification 

(Normal, L, R, V, 

A, P) 

MIT-BIH 

arrhythmia 

database 

ML: KNN 97.70 / / 

2019 [58] Two-classification 

MIT-BIH 

arrhythmia 

database 

DL: CNN 94.70 77.30(S), 93.70(V) 97.70(S); 98.80(V) 

2019 [59] Five classification 

MIT-BIH 

arrhythmia 

database 

DL: CNN of 

STFT-Based 

Spectrogram 

99.00 / / 

2020 [60] 
Multi-

classification 

Chinese 

Cardiovascular 

Disease Database 

DL: MTGBi-
LSTM 

88.86 94.19 / 

2020 [61] Two-classification 
Personal Wearable 

Devices 
DL: LSTM-RNN 

99.20(VEB) 

98.30(SVEB) 

93.00(VEB) 

66.90(SVEB) 

99.80(VEB) 

99.80(SVEB) 

2020 [62] Five classification 

MIT-BIH 

arrhythmia 
database 

ML and DL: 

LSTM, SVM 
99.45 98.63 99.66 

This 

paper 

Five 

classification (N, 

S, V, F, Q) 

MIT-BIH 

arrhythmia 
database 

DL: Plain-CNN 

MSF-CNN A 

MSF-CNN B 

93.41(Plain-CNN) 

96.38(MSF-CNN A) 

98.00(MSF-CNN B) 

87.61(Plain-CNN) 

91.82(MSF-CNN A) 

96.17(MSF-CNN B) 

89.73(Plain-CNN) 

92.58(MSF-CNN A) 

96.38(MSF-CNN B) 

Abbreviations:  

Heartbeat types: S: Supraventricular ectopic beat; V: 

Ventricular ectopic beat; F: Fusion beat; Q: Unknown beat; N: 

any heartbeat not in the S, V, F, Q classes or normal beat; PVC: 

Premature ventricular contraction beat; PAC: Premature atrial 

contraction beat; L: Left bundled branch blocks; R: Right 

bundled branch blocks; V: Premature ventricular contractions; 

A: Atrial premature beats; P: Paced beats; VEB: Ventricular 

ectopic beats; SVEB: Supraventricular ectopic beats. 

Approaches: ML: Machine learning, DL: Deep learning, 

SVM: Support vector machine; DNN: Deep neural network, 

CNN: Convolutional neural network; MFSWT: Slice wavelet 

transform; PSO: Particle swarm optimization; PPNN: 

Probabilistic process neural network; DRNNs: Deep recurrent 

neural networks; BGRU: Bidirectional gated recurrent unit; 

KNN: k-Nearest Neighbor; MTG: Multi-Task Group.  
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