
Appendix A. Geršgorin’s Paper from 1931,
and Comments on His Life and Research.

Appendix A.1. Semen Aronovich
Geršgorin

It is interesting to first comment on the
contents of Geršgorin’s original paper
from 1931 (in German), on estimating
the eigenvalues of a given n × n com-
plex matrix, which is reproduced, for the
reader’s convenience, at the end of this
appendix. There, one can see the origi-
nality of Geršgorin pouring forth in this
paper! His Satz II corresponds exactly to
our Theorem 1.1, his Satz III corresponds
to our Theorem 1.6, and his Satz IV, on
separated Geršgorin disks, appears in Ex-
ercise 4 of Section 1.1. In his final result of
Satz V, he uses a positive diagonal sim-
ilarity transformation, as in our (1.14),
which is dependent on a single parame-
ter α, with 0 < α < 1, to obtain bet-
ter eigenvalue inclusion results. This ap-
proach was subsequently used by Olga Taussky in Taussky (1947) in the
practical estimation of eigenvalues in the flutter of airplane wings! However,
we must mention that his Satz I is incorrect. His statement in Satz I is that
if A = [ai,j ] ∈ C

n×n satisfies

|ai,i| ≥ ri(A) :=
∑

j∈N\{i}
|ai,j |, for all i ∈ N,

with strict inequality for at least one i, then A is nonsingular. But, as we have

seen in Section 1.2, the matrix A =
[

1 0
0 0

]
is a counterexample, as A satisfies

the above conditions, but is singular. (Olga Taussky was certainly aware of
this error, but she was probably just too polite to mention this in print!)
As we now know, her assumption of irreducibility in Taussky (1949), (cf.
Theorem 1.9 in Chapter 1) clears this up nicely, but see also Exercise 1 of
Sec. 1.2.

We also mention here the important contribution of Fujino and Fischer
(1998) (in German) which provided us with the biographical data below on
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Geršgorin, as well as a list of his significant publications. This paper of Fujino
and Fischer (1998) also contains pictures, from the Deutsches Museum in
Munich, of ellipsographs, a mechanical device to draw ellipses, which were
built by Geršgorin. There is a very new contribution on the life and works of
Geršgorin by Garry Tee (see Tee (2004)).

Semen Aronovich Geršgorin

• Born: 24 August 1901 in Pruzhany (Brest region), Belorussia
• Died: 30 May 1933 in St. Petersburg
• Education: St. Petersburg Technological Institute, 1923
• Professional Experience: Professor 1930-1933, St. Petersburg Machine-

Construction Institute

SIGNIFICANT PUBLICATIONS

1. Instrument for the integration of the Laplace equation, Zh. Priklad. Fiz.
2 (1925), 161-7.

2. On a method of integration of ordinary differential equations, Zh.
Russkogo Fiz-Khimi. O-va. 27 (1925), 171-178.

3. On the description of an instrument for the integration of the Laplace
equation, Zh. Priklad. Fiz. 3(1926), 271-274.

4. On mechanisms for the construction of functions of a complex variable,
Zh. Fiz.- Matem. O-va 1 (1926), 102-113.

5. On the approximate integration of the equations of Laplace and Poisson,
Izv. Leningrad Polytech. Inst. 20 (1927), 75-95.

6. On the number of zeros of a function and its derivative, Zh. Fiz.- Matem.
O-va 1(1927), 248-256.

7. On the mean values of functions on hyper-spheres in n-dimensional space,
Mat. Sb. 35 (1928), 123-132.

8. A mechanism for the construction of the function ξ = 1
2 (z − r2

z ), Izv.
Leningrad Polytech. Inst. 2 (26) (1928), 17-24.

9. On the electric nets for the approximate solution of the Laplace equation,
Zh. Priklad. Fiz. 6 (3-4) (1929), 3-30.

10. Fehlerabschätzung für das Differenzverfahren zur Lösung partieller Dif-
ferentialgleichungen, J. Angew. Math. Mech. 10 (1930).

11. Über die Abgrenzung der Eigenwerte einer Matrix. Dokl. Akad. Nauk
(A), Otd. Fiz.-Mat. Nauk (1931), 749-754.

12. Über einen allgemeinen Mittelwertsatz der mathematischen Physik, Dokl.
Akad. Nauk. (A) (1932), 50-53.

13. On the conformal map of a simply connected domain onto a circle, Mat.
Sb. 40 (1933), 48-58.

Of the above papers, three papers, 10, 11, and 13, stand out as seminal
contributions. Paper 10 was the first paper to treat the important topic
of the convergence of finite-difference approximations to the solution of
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Laplace-type equations, and it is quoted in the book by Forsythe and Wasow
(1960). Paper 11 was Geršgorin’s original result on estimating the eigenvalues
of a complex n × n matrix, from which the material of this book has grown.
Paper 13, on numerical conformal maps, is quoted in the book by Gaier
(1964). But what is most impressive is that these three papers of Geršgorin
are still being referred today in research circles, after more than 70 years!

Next, we have been given permission to give below a translation, from
Russian to English, of the following obituary of Geršgorin’s passing, as
recorded in the journal, Applied Mathematics and Mechanics 1 (1933), no.1,
page 4. Then, after this obituary, Geršgorin’s original paper (in German) is
given in full.

APPLIED MATHEMATICS AND MECHANICS
Volume 1, 1933, No.1

Semen Aronovich Geršgorin has passed away. This news will cause great
anguish in everybody who knew the deceased.

The death of a great scientist is always hard to bear, as it always causes
a feeling of emptiness that cannot be filled; it is especially sad when a young
scientist’s life ends suddenly, with his talent in its full strength, when he is
still full of unfulfilled research potential.

Semen Aronovich died at the age of 32. Having graduated from the Tech-
nological Institute and having defended a brilliant thesis in the Division of
Mechanics, he quickly became one of the leading figures in Soviet Mechanics
and Applied Mathematics. Numerous works of S.A., in the theory of Elastic-
ity, Theory of Vibrations, Theory of Mechanisms, Methods of Approximate
Numerical Integration of Differential Equations and in other parts of Me-
chanics and Applied Mathematics, attracted attention and brought universal
recognition to the author. Already the first works showed him to be a very
gifted young scientist; in the last years his talent matured and blossomed.
The main features of Geršgorin’s individuality are his methods of approach,
combined with the power and clarity of analysis. These features are already
apparent in his early works (for example, in a very clever idea for construct-
ing the profiles of aeroplane wings), as well as in his last brilliant (and not yet
completely published) works in elasticity theory and in theory of vibrations.

S.A. Geršgorin combined a vigorous and active research schedule which, in
his last years, centered around the Mathematical and Mechanical Institute at
Leningrad State University, as well as around the Turbine Research Institute
(NII Kotlo-Turbiny) with wide-ranging teaching activities.

In 1930 he became a Professor at the Institute of Mechanical Engineering
(Mashinostroitelnyi); he then became head of the Division of Mechanics at
the Turbine Institute. He also taught very important courses at Leningrad
State University and at the Physical-Mechanical Institute of Physics and
Mechanics.

A vigorous, stressful job weakened S.A.’s health; he succumbed to an
accidental illness, and a brilliant and successful young life has ended abruptly.
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S.A. Geršgorin’s death is a great and irreplaceable loss to Soviet Science.
He occupied a unique place in the Soviet science - this place is now empty.

A careful collection and examination of everything S.A. has done, has
been made, so that none of his ideas are lost - this is the duty of Soviet
science in honor of one of its best representatives.
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Appendix B. Vector Norms and Induced
Operator Norms.

With C
n denoting, for any positive integer n, the complex n-dimensional

vector space of all column vectors v = [v1, v2, · · · , vn]T , where each vi is a
complex number, we have

Definition B.1. Let ϕ : C
n → R. Then, ϕ is a norm on C

n if

i) ϕ(x) ≥ 0 (all x ∈ C
n);

ii) ϕ(x) = 0 if and only if x = 0;
iii) ϕ(γx) = |γ|ϕ(x) (any scalar γ, any x ∈ C

n);
iv) ϕ(x + y) ≤ ϕ(x) + ϕ(y) (all x,y ∈ C

n).

(B.1)

Next, given a norm ϕ on C
n, consider any matrix B = [bi,j ] ∈ C

n×n, so
that B maps C

n into C
n. Then,

||B||ϕ := sup
x�=0

ϕ(Bx)
ϕ(x)

= sup
ϕ(x)=1

ϕ(Bx)(B.2)

is called the induced operator norm of B, with respect to ϕ.

Proposition B.2. Given any A = [ai,j ] ∈ C
n×n, let σ(A) denote its spec-

trum, i.e.,
σ(A) := {λ ∈ C : det(λI − A) = 0},

and let ρ(A) denote its spectral radius, i.e.,

ρ(A) := max{|λ| : λ ∈ σ(A)}.

Then, for any norm ϕ on C
n,

ρ(A) ≤ ||A||φ.(B.3)

Proof. For any λ ∈ σ(A), there is an x �= 0 in C
n with λx = Ax. Then, given

any norm ϕ on C
n, we normalize x so that ϕ(x) = 1. Thus, from (B.1iii),

(B.2), and our normalization, we have

ϕ(λx) = |λ|ϕ(x) = |λ| = ϕ(Ax) ≤ ||A||φ · ϕ(x) = ||A||ϕ,

i.e., |λ| ≤ ||A||ϕ. As this is true for each λ ∈ σ(A), then ρ(A) ≤ ||A||ϕ.
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Proposition B.3. Let A and B be any matrices in C
n×n, and let ϕ be any

norm on C
n. Then, the induced operator norms of A + B, and A · B satisfy

||A + B||ϕ ≤ ||A||ϕ + ||B||ϕ and ||A · B||ϕ ≤ ||A||ϕ · ||B||ϕ.(B.4)

Proof. From (B.1) and (B.2), we have

||A + B||ϕ = sup
ϕ(x)=1

ϕ((A + B)x) = sup
ϕ(x)=1

ϕ(Ax + Bx)

≤ sup
ϕ(x)=1

{ϕ(Ax) + ϕ(Bx)}

≤ sup
ϕ(x)=1

ϕ(Ax) + sup
ϕ(x)=1

ϕ(Bx)

= ||A||ϕ + ||B||ϕ.

Similarly, from (B.2)

||A · B||ϕ = sup
x�=0

ϕ(A(Bx))
ϕ(x)

≤ sup
x�=0

{
||A||ϕ · ϕ(Bx)

ϕ(x)

}
≤ ||A|| · ||B||.

For x := [x1, x2, · · · , xn]T ∈ C
n, perhaps the three most widely used

norms on C
n are 	1, 	2, and 	∞, where

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

||x||�1 :=
n∑

j=1

|xj |, ||x||�2 :=

(
n∑

i=1

|xi|2
) 1

2

,

and
||x||�∞ := max

1≤i≤n
|xi|.

(B.5)

Given any matrix C = [ci,j ] ∈ C
n×n, the associated induced operator norms

of C for the norms of (B.5) are easily shown to be
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

||C||�1 = max
1≤j≤n

(
n∑

i=1

|ai,j |
)

; ||C||�2 = [ρ(CC∗)]
1
2 ,

and

||C||�∞ = max
1≤i≤n

⎛
⎝

n∑
j=1

|ai,j |

⎞
⎠ ,

(B.6)

where C∗ := [cj,i] ∈ C
n×n.



Appendix C. The Perron-Frobenius Theory of
Nonnegative Matrices, M -Matrices, and
H-Matrices.

To begin, if B = [bi,j ] ∈ R
n×n is such that bi,j ≥ 0 for all 1 ≤ i, j ≤ n,

we write B ≥ O. Similarly, if x = [x1, x2, · · · , xn]T ∈ R
n is such that xi >

0 (xi ≥ 0) for all 1 ≤ i ≤ n, we write x > 0 (x ≥ 0). We also recall
Definition 1.7 from Chapter 1, where irreducible and reducible matrices
in C

n×n are defined. Then, we state the following strong form of the Perron-
Frobenius Theorem for irreducible matrices A ≥ O in C

n×n. Its complete
proof can be found, for example, in Horn and Johnson (1985), Section 8.4,
Meyer (2000), Chapter 8, or Varga (2000), Chapter 2. For notation, we again
have N := {1, 2, · · · , n}.

Theorem C.1. (Perron-Frobenius Theorem) Given any A = [ai,j ] ∈ R
n×n,

with A ≥ O and with A irreducible, then:
i) A has a positive real eigenvalue equal to its spectral radius

ρ(A);
ii) to ρ(A), there corresponds an eigenvector x =

[x1, x2, · · · , xn]T > 0;
iii) ρ(A) increases when any entry of A increases;
iv) ρ(A) is a simple eigenvalue of A;
v) the eigenvalue ρ(A) of A satisfies

sup
x>0

⎧
⎪⎪⎨
⎪⎪⎩

min
i∈N

⎡
⎢⎢⎣

∑
j∈N

ai,jxj

xi

⎤
⎥⎥⎦

⎫
⎪⎪⎬
⎪⎪⎭

= ρ(A) = inf
x>0

⎧
⎪⎪⎨
⎪⎪⎩

max
i∈N

⎡
⎢⎢⎣

∑
j∈N

ai,jxj

xi

⎤
⎥⎥⎦

⎫
⎪⎪⎬
⎪⎪⎭

.(C.1)

In the case that A ≥ O but is not necessarily irreducible, then the analog
of Theorem C.1 is

Theorem C.2. Given any A = [ai,j ] ∈ R
n×n with A ≥ O, then:

i) A has a nonnegative eigenvalue equal to its spectral radius
ρ(A);

ii) to ρ(A), there corresponds an eigenvector x ≥ 0 with x �=
0;

iii) ρ(A) does not decrease when any entry of A increases;
iv) ρ(A) may be a multiple eigenvalue of A;
v) the eigenvalue of ρ(A) of A satisfies
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ρ(A) = inf
x>0

⎧
⎪⎪⎨
⎪⎪⎩

max
i∈N

⎡
⎢⎢⎣

∑
j∈N

ai,jxj

xi

⎤
⎥⎥⎦

⎫
⎪⎪⎬
⎪⎪⎭

.(C.2)

Next, given A = [ai,j ] ∈ R
n×n, then A is said (cf. Birkhoff and Varga

(1958)) to be essentially nonnegative if ai,j ≥ 0 for all i �= j, (i, j ∈ N),
and essentially positive if, in addition, A is irreducible. Similarly, we use
the notation

Z
n×n :=

{
A = [ai,j ] ∈ R

n×n : ai,j ≤ 0 for all i �= j (i, j ∈ N)
}

,(C.3)

which also is given in equation (5.5) of Chapter 5. We see immediately that
A is essentially nonnegative if and only if −A ∈ Z

n×n.
For additional notation, consider any A = [ai,j ] ∈ C

n×n. We say that
M(A) := [αi,j ] ∈ R

n×n is the comparison matrix of A if αi,i := |ai,i|, and
αi,j := −|ai,j | for i �= j (i, j ∈ N), i.e.,

M(A) :=

⎡
⎢⎢⎢⎣

+|a1,1| −|a1,2| · · · −|a1,n|
−|a2,1| +|a2,2| · · · −|a2,n|

...
...

−|an,1| −|an,2| · · · +|an,n|

⎤
⎥⎥⎥⎦ ,(C.4)

where we note that M(A) ∈ Z
n×n, for any A ∈ C

n×n. This brings us to our
next important topic of M -matrices.

Given any A = [ai,j ] ∈ Z
n×n, let μ := max

i∈N
ai,i, so that A = μI−B, where

the entries of B = [bi,j ] ∈ R
n×n satisfy bi,i = μ−ai,i ≥ 0 and bi,j = −ai,j ≥ 0

for all i �= j. Thus, bi,j ≥ 0 for all 1 ≤ i, j ≤ n, i.e., B ≥ O. Then, as in
Definition 5.4, we have

Definition C.3. Given any A = [ai.j ] ∈ Z
n×n, let A = μI − B be as de-

scribed above, where B ≥ O. Then, A is an M-matrix if μ ≥ ρ(B). More
precisely, A is a nonsingular M -matrix if μ > ρ(B), and a singular M -
matrix if μ = ρ(B).

With Definition C.3, we come to

Proposition C.4. Given any A = [ai,j ] ∈ R
n×n which is a nonsingular

M -matrix (i.e., A = μI − B where B ≥ O with μ > ρ(B)), then A−1 ≥ O.

Proof. Since A = μI − B where B ≥ O with μ > ρ(B), we can write that
A = μ{I − (B/μ)}, where ρ(B/μ) < 1. Then I − (B/μ) is also nonsingular,
with its known convergent matrix expansion of

{I − (B/μ)}−1 = I + (B/μ) + (B/μ)2 + · · · .(C.5)

Since B/μ is a nonnegative matrix, so are all powers of (B/μ), and it follows
from (C.5) that
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{I − (B/μ)}−1 ≥ O; whence, A−1 =
1
μ
{I − (B/μ)}−1 ≥ O.

In a similar way (cf. Berman and Plemmons (1994), (A3) of 4.6 Theorem),
Proposition C.4 can be extended to

Proposition C.5. Given any A = [ai,j ] ∈ R
n×n which is a (possible singu-

lar) M -matrix (i.e., A = μI − B with B ≥ O and μ ≥ ρ(B)), then, for any
x = [x1, x2, · · · , xn]T > 0, A+ diag[x1, · · · , xn] is a nonsingular M -matrix.

Now, we come to the associated topic of H-matrices. Given A = [ai,j ] ∈
C

n×n, let M(A) be its comparison matrix of (C.4).

Definition C.6. Given A = [ai,j ] ∈ C
n×n, then A is an H-matrix if M(A)

of (C.4) is an M -matrix.

Proposition C.7. Given any A = [ai,j ] ∈ C
n×n for which M(A) is a non-

singular M -matrix, then A is a nonsingular H-matrix.

Proof. By Definition C.6, A is certainly an H-matrix, so it remains to show
that A is nonsingular. As in the proof of Theorem 5.5 in Chapter 5, given
any u = [ui, u2, · · · , un]T ∈ C

n, then the particular vectorial norm p(u) on
C

n is defined by

p(u) := [|u1|, |u2|, · · · , |un|]T (any u = [u1, u2, · · · , un]T ∈C
n).(C.6)

Now, it follows by the reverse triangle inequality that, for any y =
[y1, y2, · · · , yn]T in C

n,

|(Ay)i|=

∣∣∣∣∣∣
∑
j∈N

ai,jyi

∣∣∣∣∣∣
≥ |ai,i| · |yi| −

∑
j∈N\{i}

|ai,j | · |yj | (any i ∈ N).(C.7)

Recalling the definitions of M(A) of (C.4) and p(u) in (C.6), the inequalities
of (C.7) nicely reduce to

p(Ay) ≥ M(A)p(y) (any y ∈ C
n),(C.8)

and we say that M(A) is a lower bound matrix for A. But as M(A) is, by
hypothesis, a nonsingular M -matrix, then (M(A))−1 ≥ O, from Proposition
C.4. As multiplying (on the left) by (M(A))−1 preserves the inequalities of
(C.8), we have

(M(A))−1p(Ay) ≥ p(y) (any y ∈ C
n).(C.9)

But, the inequalities of (C.9) give us that A is nonsingular, for if A were
singular, we could find a y �= 0 in C

n with Ay = 0, so that p(y) �= 0 and
p(Ay) = 0. But this contradicts the inequalities of (C.9).
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It is important to mention that the terminology of H- and M - matrices
was introduced in the seminal paper of Ostrowski (1937b). Here, A.M. Os-
trowski paid homage to his teacher, H. Minkowski, and to J. Hadamard, men
who had inspired Ostrowski’s work in this area. By naming these two classes
of matrices after them, their names are forever honored and remembered in
mathematics.

The theory of M -matrices and H-matrices has proved to be an incredibly
useful tool in linear algebra, and it is as fundamental to linear algebra as
topology is to analysis. For example, one finds 50 equivalent formulations of
a nonsingular M -matrix in Berman and Plemmons (1994). Some additional
equivalent formulations can be found in Varga (1976), and it is plausible
that there are now over 70 such equivalent formulations of a nonsingular
M -matrix.



Appendix D. Matlab 6 Programs.

In this appendix, Professor Arden Ruttan of Kent State University has kindly
gathered several of the various Matlab 6 programs for figures generated in
this book, so the interested readers can study these programs and alter them,
as needed, for their own purposes.

Programs are listed on the following pages according to their figure numbers.
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Fig. 2.1

x=[-2.5:0.05:2.5];
y=[-2.5:0.05:2.5];;
[X,Y]=meshgrid(x,y);
hold on
plot([1],[0],’Marker’,’o’,’MarkerSize’,2)
plot([-1],[0],’Marker’,’o’,’MarkerSize’,2)
axis equal
colormap([.7,.7,.7;1,1,1])
caxis([-1 1])
Z=abs(X+i*Y-1).*abs(X+i*Y+1)-2.0^2;
contourf(X,Y,-Z-1,[-1 -1],’k’)
Z=abs(X+i*Y-1).*abs(X+i*Y+1)-1.41^2;
contourf(X,Y,-Z-1,[-1 -1],’k’)
Z=abs(X+i*Y-1).*abs(X+i*Y+1)-1.2^2;
contourf(X,Y,-Z-1,[-1 -1],’k’)
Z=abs(X+i*Y-1).*abs(X+i*Y+1)-1.0^2;
contourf(X,Y,-Z,[0 0],’k’)
Z=abs(X+i*Y-1).*abs(X+i*Y+1)-0.9^2;
contourf(X,Y,-Z,[0 0],’k’)
Z=abs(X+i*Y-1).*abs(X+i*Y+1)-0.5^2;
contourf(X,Y,-Z-1,[-1 -1],’k’)
plot([-1],[0],’.k’)
plot([1],[0],’.k’)

title(’Figure 2.1’)
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Fig. 2.2

hold on
x=[-.5:0.05:2.5];
y=[-1.5:0.05:1.5];;
[X,Y]=meshgrid(x,y);
Z=abs(X+i*Y-1)-1;
contour(X,Y,-Z,[0 0],’k’)
y=[-.5:0.05:2.5];
x=[-1.5:0.05:1.5];;
[X,Y]=meshgrid(x,y);
Z=abs(X+i*Y-i)-1;
contourf(X,Y,-Z,[0 0],’k’)
x=[-2.5:0.05:0.5];
y=[-1.5:0.05:1.5];;
[X,Y]=meshgrid(x,y);
Z=abs(X+i*Y+1)-1;
contourf(X,Y,-Z,[0 0],’k’)
y=[-2.5:0.05:0.5];
x=[-1.5:0.05:1.5];;
[X,Y]=meshgrid(x,y);
Z=abs(X+i*Y+i)-1;
contourf(X,Y,-Z,[0 0],’k’)

x=[-2.5:0.05:2.5];
y=[-2.5:0.05:2.5];;
[X,Y]=meshgrid(x,y);
Z=abs(X+i*Y-1).*abs(X+i*Y-i)-1;
contourf(X,Y,-Z-1,[-1 -1],’k’)
axis equal
colormap([.7,.7,.7;1,1,1])
axis([-2.2,2.2,-2.2,2.2])
Z=abs(X+i*Y-1).*abs(X+i*Y+1)-1;
contourf(X,Y,-Z-1,[-1 -1],’k’)
Z=abs(X+i*Y-1).*abs(X+i*Y+i)-1;
contourf(X,Y,-Z-1,[-1 -1],’k’)
Z=abs(X+i*Y+1).*abs(X+i*Y-i)-1;
contourf(X,Y,-Z-1,[-1 -1],’k’)
Z=abs(X+i*Y-i).*abs(X+i*Y+i)-1;
contourf(X,Y,-Z-1,[-1 -1],’k’)
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Z=abs(X+i*Y+1).*abs(X+i*Y+i)-1;
contourf(X,Y,-Z-1,[-1 -1],’k’)
plot([0],[1],’.k’)
plot([0],[-1],’.k’)
plot([1],[0],’.k’)
plot([-1],[0],’.k’)
text(0,.8,’i’)
text(0,-1.2,’i’)
text(1,-.2,’1’)
text(-1,-.2,’-1’)

title(’Figure 2.2’)
a=’Set Transparency of grey part to .5’

Fig. 2.7

x=[-2.5:0.05:2.5];
y=[-2.5:0.05:2.5];;
[X,Y]=meshgrid(x,y);
hold on
axis equal
caxis([-1,0])
colormap([.7,.7,.7;1,1,1])
axis([-2,2,-2,2])
Z=abs((X+i*Y).^2-1)-1;
contourf(X,Y,-Z,[0 0],’k’)
Z=(abs(X+i*Y-1).^2).*abs(X+i*Y+1)-1/2.0;
contourf(X,Y,-Z-1,[-1 -1],’k’)
plot([1],[0],’.k’,’MarkerSize’,10)
plot([-1],[0],’.k’,’MarkerSize’,10)
text(-1.08,-.075,’-1’)
text(1,-.1,’1’)
text(0,-.2,’0’)
text(-.3,.5,’|z-1| |z+1|=1/2’)
text(-.3,-.6,’|z -1|=1’)

title(’Figure 2.7’)
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Fig. 2.9

x=[-2.5:0.05:2.5];
y=[-2.5:0.05:2.5];;
[X,Y]=meshgrid(x,y);
hold on
axis equal
caxis([-1,0])
colormap([.7,.7,.7;1,1,1])
axis([-2,2,-2,2])
Z=abs((X+i*Y).^4-1)-1;
contourf(X,Y,-Z-1,[-1 -1],’k’)
Z=abs(X+i*Y-1).*abs(X+i*Y-i)-1.0;
contourf(X,Y,-Z-1,[-1 -1],’k’)
%plot([1],[0],’Marker’,’+’,’MarkerSize’,10)
%plot([-1],[0],’Marker’,’+’,’MarkerSize’,10)
a=’Set transparency to 0.5’
title(’Figure 2.9’)
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Fig. 3.2

x=[-.5:0.05:2.5];
y=[-1.5:0.05:1.5];;
[X,Y]=meshgrid(x,y);
Z=abs(X+i*Y-1)-1;
contour(X,Y,Z,[0 0],’k’)
hold on
axis equal
colormap([.7,.7,.7;1,1,1])
caxis([-1 0])
axis([-2.2,2.2,-2.2,2.2])
y=[-.5:0.05:2.5];
x=[-1.5:0.05:1.5];;
[X,Y]=meshgrid(x,y);
Z=abs(X+i*Y-i)-1;
contour(X,Y,Z,[0 0],’k’)
x=[-2.5:0.05:0.5];
y=[-1.5:0.05:1.5];;
[X,Y]=meshgrid(x,y);
Z=abs(X+i*Y+1)-1;
contour(X,Y,Z,[0 0],’k’)
y=[-2.5:0.05:0.5];
x=[-1.5:0.05:1.5];;
[X,Y]=meshgrid(x,y);
Z=abs(X+i*Y+i)-1;
contour(X,Y,Z,[0 0],’k’)

x=[-2.5:0.05:2.5];
y=[-2.5:0.05:2.5];;
[X,Y]=meshgrid(x,y);
Z=abs((X+i*Y).^4-1)-1;
contourf(X,Y,-Z-1,[-1 -1],’k’)
%plot([1],[0],’Marker’,’+’,’MarkerSize’,10)
%plot([2],[0],’Marker’,’+’,’MarkerSize’,10)
title(’Figure 3.2’)
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Fig. 3.4

x=[0:0.05:5];
y=[-2:0.05:2];
[X,Y]=meshgrid(x,y);
caxis([-1 0])
colormap([.7,.7,.7;1,1,1])
Z=(abs(X+i*Y-2).^2).*abs(X+i*Y-1)

-abs(X+i*Y-1)-abs(X+i*Y-2);
contourf(X,Y,-Z-1,[-1 -1],’k’)
axis equal
hold on
Z=(abs(X+i*Y-2).^2).*abs(X+i*Y-1)

-abs(X+i*Y-1)+abs(X+i*Y-2);
contourf(X,Y,-Z,[0 0],’k’)
Z=(abs(X+i*Y-2).^2).*abs(X+i*Y-1)

+abs(X+i*Y-1)-abs(X+i*Y-2);
contourf(X,Y,-Z,[0 0],’k’)
text(2,.4,’(13)(2)’)
text(.7,.25,’(1)(23)’)
text(1.5,1.5,’(1)(2)(3)’)
plot([1],[0],’.k’)
plot([2],[0],’.k’)
title(’Figure 3.4’)
text(1,-.2,’1’)
text(2,-.2,’2’)
text(2,-.2,’0’)
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Fig. 6.1

x=[-20:0.1:40];
y=[-20:0.1:20];
[X,Y]=meshgrid(x,y);
hold on
axis equal
axis([.5 7.5 -2 2])
colormap bone
brighten(.9)
Z=-100*bc1(X,Y);% 0.059759, 5.831406
contourf(X,Y,Z,[0 0],’k.’)
Z=-bc2(X,Y); % 0.063666, 4.693469
contour(X,Y,Z,[0 0],’k’)

Z=-bc3(X,Y); %3.617060, 32.247282
contour(X,Y,Z,[0 0],’k’)
plot([2.2679],[0],’kx’)
plot([4],[-1],’kx’)
plot([4],[1],’kx’)
plot([5.7321],[0],’kx’)

with files bc1, bc2, and bc3, respectively:
function mm=bc1(x,y)
z=x+i*y;
mm=abs(z-2).*(abs(z-4).^2).*abs(z-6)

-(abs(z-3)+1).*(abs(z-5)+1);

function mm=bc2(x,y)
z=x+i*y;
mm=abs(z-2).*abs(z-4)-(abs(z-3)+1);

function mm=bc3(x,y)
z=x+i*y;
mm=abs(z-4).*abs(z-6)-(abs(z-5)+1);
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Fig. 6.2, and 6.3

x=[-20:0.1:40];
y=[-20:0.1:20];
[X,Y]=meshgrid(x,y);
hold on
Z=bb1(X,Y);
contour(X,Y,Z,[0 0], ’b--’)
Z=bb2(X,Y);
axis equal
axis([-15 35 -16 16])
contour(X,Y,Z,[0 0], ’b--’)

Z=bb3(X,Y);
contour(X,Y,Z,[0 0], ’b’)

Z=bb4(X,Y);
contour(X,Y,Z,[0 0], ’b--’)
W=bb(X,Y);
contour(X,Y,W,[102.96 102.96])
x=[0.03:.0005:0.12];
y=[-.04:.0005:0.04];
[X,Y]=meshgrid(x,y);
Z=bb1(X,Y);
contour(X,Y,Z,[0 0])
Z=bb2(X,Y);
contour(X,Y,Z,[0 0])
Z=bb3(X,Y);
contour(X,Y,Z,[0 0])
Z=bb4(X,Y);
contour(X,Y,Z,[0 0])
figure
hold on
Z=bb1(X,Y);
contourf(X,Y,Z,[0 0])
Z=bb2(X,Y);
contourf(X,Y,Z,[0 0],’k-’)
Z=bb3(X,Y);
contourf(X,Y,Z,[0 0],’k-’)
Z=bb4(X,Y);
contourf(X,Y,Z,[0 0],’k-’)
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Fig. 6.5

x=[-20:0.1:40];
y=[-20:0.1:20];
hold on
axis equal
axis([-15 35 -15 15])
caxis([-1 0])
colormap([.7,.7,.7;1 1 1])
[X,Y]=meshgrid(x,y);
Z=b1(X,Y)-1;
contour(X,Y,Z,[0 0],’k’)
Z=b2(X,Y)-1;
contour(X,Y,Z,[0 0],’k’)
Z=b3(X,Y)-1;
contour(X,Y,Z,[0 0],’k’)
Z=b4(X,Y)-1;
contour(X,Y,Z,[0 0],’k’)
Z=bb(X,Y)-102.96;
contour(X,Y,Z,[0 0],’k’)
Z=bb1(X,Y).*bb3(X,Y)-1;
contourf(X,Y,Z-1,[-1 -1],’k’)
plot([15],[0],’.k’)
plot([-14 35],[0 0],’-k’)
text(0,-1,’0’)
text(15,-1,’15’)
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Fig. 6.6

x=[0.03:0.001:.12];
y=[-0.04:0.001:0.04];
[X,Y]=meshgrid(x,y);
hold on
axis equal
axis([-.005 .12 -.04 .04])
colormap([1,1,1;.7,.7,.7])
Z=b1(X,Y)-1;
contourf(X,Y,Z-1,[-1 -1],’k’)
Z=b2(X,Y)-1;
contourf(X,Y,Z-1,[-1 -1],’k’)
Z=b3(X,Y)-1;
contourf(X,Y,Z-1,[-1 -1],’k’)
Z=b4(X,Y)-1;
contourf(X,Y,Z-1,[-1 -1],’k’)
Z=bb1(X,Y).*bb3(X,Y)-1;
contourf(X,Y,Z,[0 0],’k’)
plot([-.005 .12],[0 0],’-k’)
plot([.0482],[0],’.k’)
plot([.0882],[0],’.k’)
plot([0],[0],’.k’)
text(.09,-.004,’0.0882’)
text(.05,-.004,’0.0482’)
text(0,-.004,’0’)
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Desplanques, J. (1887) Théorèm d’algébre, J. de Math. Spec. 9, 12-13. [ 6, 31]
Deutsch, E. and Zenger, C. (1975) On Bauer’s generalized Gershgorin disks. Numer.

Math. 24, 63-70. [ 96]
Eiermann, M. and Niethammer, W. (1997) Numerische Lösung von Gleichungssys-

temen, Studientext der Fernuniversität Hagen. [ 96]
Elsner, L. (1968) Minimale Gerschgorin-Kreise, Z. Angew. Math. Mech. 48, 51-55.

[ 125]
Engel, G. M. (1973) Regular equimodular sets of matrices for generalized matrix

functions, Linear Algebra and Appl. 7, 243-274. [ 40, 70, 125]
Fan, K. and Hoffman, A. J. (1954) Lower bounds for the rank and location of

the eigenvalues of a matrix. Contributions to the Solution of Systems of Linear
Equations and the Determination of Eigenvalues (O. Taussky, ed.), pp. 117-130.
National Bureau of Standards Applied Mathematics Series 39, U.S. Government
Printing Office. [ 22, 25, 33]

Fan, K. (1958) Note on circular disks containing the eigenvalues of a matrix, Duke
Math. J. 25, 441-445. [ 23, 33, 127, 132, 153]

Feingold, D. G. and Varga, R. S. (1962) Block diagonally dominant matrices and
generalizations of the Gerschgorin circle theorem, Pacific J. Math. 12, 1241-1250.
[ 72, 153, 156, 186]

Fiedler, M. and Pták, V. (1962a) Generalized norms of matrices and the location
of the spectrum, Czechoslovak Math. J. 12(87), 558-571. [ 153, 156, 186]

Forsythe, G.E. and Wasow, W.R. (1960) Finite-difference Methods for Partial Dif-
ferential Equations, Wiley and Sons, New York. [ 191]
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Johnson, C. R. (1973) A Geršgorin inclusion set for the field of values of a finite
matrix, Proc. Amer. Math. Soc. 41, 57-60.. [ 82, 95]

Johnston, R. L. (1965) Block generalizations of some Gerschgorin-type theorems,
Ph.D. Thesis, Case Institute of Technology, 43 pp. [ 181, 184, 187]

Johnston, R. L. (1971) Gerschgorin theorems for partitioned matrices, Linear Al-
gebra and Appl. 4, 205-220. [ 184]

Karow, M. (2003) Geometry of Spectral Value Sets, Ph.D. Thesis, Universität Bre-
men, Bremen, Germany. [ 58, 71]

Kolotolina, L. Yu. (2001) On Brualdi’s theorem, Notes of the LOMI-Seminars 284,
1-17 (in Russian). [ 71]

Kolotolina, L. Yu. (2003a) Nonsingularity/singularity criteria for nonstrictly block
diagonally dominant matrices, Linear Algebra and Appl. 359, 133-159. [ 33, 186]

Kolotolina, L. Yu. (2003b) Generalizations of the Ostrowski-Brauer Theorem, Lin-
ear Algebra and Appl. 364, 65-80. [ 33]

Korganoff, A. (1961) Calcul Numérique, Tome 1, Dunod, Paris. [ 70]
Levinger, B. W. and Varga, R. S. (1966a) Minimal Gerschgorin sets II, Pacific J.

Math. 17, 199-210. [ 110, 125]
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eigenvalue inclusion result, 6
equimodular set, 98
equiradial set, 39
essentially nonnegative matrix, 99

extended Brualdi radial set, 59
extended equimodular set, 98
extended equiradial set, 39
extreme point of a convex set, 137

F
Fan’s Theorem, 23
field of values, 79
first recurring theme, 6
Frobenius normal form, 12

G
G-function, 128
Geršgorin disk, 2
Geršgorin set, 2

H
H-matrix, 201
Hölder inequality, 21
Hermitian part, 79
Householder set, 27

I
i-th Geršgorin disk, 2
i-th weighted Geršgorin disk, 7
induced operator norm, 26
interactive supplement, 70
irreducible matrix, 11
irreducibly diagonally dominant matrix,

14

J
Jordan normal form, 7, 9, 32

K
K-function, 149

L
lemniscate of order m, 43
lemniscate set, 43
length of a cycle, 45
loop of a directed graph, 12
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lower bound matrix, 131, 187
lower semistrictly diagonally dominant

matrix, 17

M
M -matrix, 108, 129, 201
minimal Geršgorin set, 97

relative to the permutation, 111
minimal point of a partially ordered

set, 137
monotone norm, 172

N
near paradox, 68
nonsingular M -matrix, 129
nontrivial permutation, 117
norm �-tuple, 156
normal reduced form, 12, 46

O
Ostrowski sets, 22
oval of Cassini, 36

P
partial order, 133
partition of C

n, 155
partitioned

Brauer set, 159, 186
Brualdi set, 160
Geršgorin set, 158, 186
Householder set, 166, 186
Robert set, 166, 186

partitioning of a matrix, 156
permutation matrix, 11
permutations on n integers, 20
permuted

Brualdi set, 77
Brauer set, 76
Geršgorin set, 74

Perron-Frobenius Theorem, 201
π-irreducible, 158
π-irreducible block diagonally dominant

matrix, 158

proper subset of N , 7
Pupkov-Solov’ev set, 93

Q
QR method, 32

R
reciprocal norm, 157
reduced cycle set, 55
reducible matrix, 11
rotated equimodular set, 114
row sum, 2

S
S-strictly diagonally dominant, 85
second recurring theme, 23, 98, 129
semistrict diagonal dominance, 17
separating hyperplane theorem, 83
spectral radius, 5
spectrum of a square matrix, 1
star-shaped set, 103
strictly block diagonally dominant, 157
strictly diagonally dominant, 6
strong cycle, 45, 53
strongly connected directed graph, 13
support line, 80

T
Toeplitz-Hausdorff Theorem, 79
trivial permutation, 117

V
variation of the partitioned Robert set,

177
vectorial norm, 131, 153, 183
vertex set of a cycle, 56
vertices of a directed graph, 12

W
weak cycle, 45, 53
weakly irreducible matrix, 51, 71
weighted Geršgorin set, 7
weighted row sum, 7



Symbol Index

||A||∞ induced operator norm, 26
(||A−1||φ)−1 reciprocal norm of A, 157
Bγ(A) Brualdi lemniscate, 46
B(A) Brualdi set, 47
BR(A) minimal Brualdi set, 123
Bφ

π(A) partitioned Brualdi set, 160
C complex numbers, 1
C∞ extended complex plane, 15
C

n complex n-dimensional vector space of column vectors, 1
C

m×n rectangular m × n matrix with complex entries, 1
ci(A) i-th column sum of A, 18
cxi (A) i-th weighted column sum for A, 22
Co(S) convex hull of S, 82
diag[A] diagonal matrix derived from A, 28
Dπ block-diagonal matrix, 165
Di(A) Dashnic-Zusmanovich matrix, 88
D(A) intersected form of the Dashnic-Zusmanovich matrix, 89
F (A) field of values of A, 79
Fn collection of functions f = [f1, f2, · · · , fn], 127
G(A) directed graph of A, 12
Gφ(A;B) Householder set for A and B, 27
Gn G-function, 128
Hφ

π(A) partitioned Householder set, 166
H(A) Hermitian part of A, 79
In identity matrix in C

n×n, 1
J Jordan normal form, 7
J(A) Johnson matrix, 82
K(A) Brauer set, 36
Ki,j(A) (i, j)-th Brauer Cassini oval, 36
Kn K-function, 150
	i1,···,im

(A) lemniscate of order m, 43
L(m)(A) lemniscate set, 43
M(A) comparison matrix for A, 202
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N the set {1, 2, · · · , n}, 1
Pφ permutation matrix, 73
PS�(A) Pupkov-Solov’ev matrix, 93
R real numbers, 1
R

n real n-dimensional vector space of column vectors, 1
R

m×n rectangular m × n matrix with real entries, 1
ri(A) i-th row sum of the matrix A, 2
rx
i (A) i-th weighted row sum of A, 7
Rφ

π(A) partitioned Robert set, 166
∂T boundary of a set T , 15
T closure of a set T , 15
int T interior of a set T , 15
−−→vivj directed arc of a directed graph, 12
V (γ) vertex set of a cycle, 56
V φ

π (A) variation of the partitioned Robert set, 177
Z

n×n collection of real n × n matrices with nonpositive
off-diagonal entries, 129

γ :=(i1 i2 · · · ip) cycle of a directed graph, 45
Γi(A) i-th Geršgorin disk, 2
Γ (A) Geršgorin set, 2
Γ rx

i (A) i-th weighted Geršgorin disk, 7
Γ rx

(A) weighted Geršgorin set, 7
ΓR(A) minimal Geršgorin set, 97
π partition of C

n, 155
ρ(A) spectral radius of A, 5
σ(A) spectrum of A, 1
ϕ vector norm on C

n, 26
Φπ collection of norm-tuples, 156
ω(A) equiradial set for A, 39
ω̂(A) extended equiradial set for A, 39
Ω(A) equimodular set for A, 98
Ω̂(A) extended equimodular set for A, 98
rot

Ω (B) rotated equimodular set for A, 114
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