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Early fault diagnosis of rolling element bearing is still a difficult problem. Firstly, in order to effectively extract the fault impulse
signal of the bearing, a new enhanced morphological difference operator (EMDO) is constructed by combining two optimal
feature extraction-type operators. Next, in the process of processing the test signal, in order to reduce the interference problem
caused by strong background noise, the probabilistic principal component analysis (PPCA) method is introduced. In the
traditional PPCA method, two important system parameters (decomposition principal component k and original variable n) are
usually set artificially; this will greatly reduce the noise reduction performance of PPCA. To solve this problem, a parameter
adaptive PPCA method based on grasshopper optimization algorithm (GOA) is proposed. Finally, combining the advantages of
the above algorithms, a comprehensive rolling bearing fault diagnosis method named APPCA-EMDF is proposed in this paper.
Experimental comparison results show that the proposed method can effectively diagnose the vibration signals of rolling
element bearing.

1. Introduction

Rolling bearings are widely used in the field of rotating
machinery. It is vulnerable to damage because it operates at
high speed and variable loads. -is not only brings diffi-
culties to the safety production of the machinery but also
causes huge economic losses to enterprises. When a local
fault occurs in the rolling bearing, an impulse signal of
periodic vibration will be generated [1, 2]. -ese fault signals
are usually subject to background noise and harmonic in-
terference caused by other equipment. -erefore, the early
weak fault extraction of rolling bearings is very necessary [3].

A number of detection techniques have been developed
to address this issue, such as empirical mode decomposition
(EMD) [4], spectral kurtosis (SK) [5], and variational mode
decomposition (VMD) [6].-en, traditional time-frequency
analysis methods tend to denoise, while these algorithms
also have their own shortcomings. Different from the above
fault diagnosis analysis methods, morphological filter (MF)
directly changes the geometry of the original signal through

the structural element (SE); at the same time, MF can also
handle nonlinear and nonsteady signals [7]. At first, MF was
applied to image processing by Matheron and Serra [8], and
later it was widely used in mechanical fault diagnosis due to
its simple and fast advantages [9–14]. Two important factors
affect the performance of MF filter: the selection of SE and
morphological operator. For the SE, a large number of lit-
eratures show that the length of SE has a great influence on
the filtering performance of the signal [15–17]. For the
morphological operator, the construction of morphological
operators also plays an important role.

Morphological operators are mainly composed of four
basic operators: opening, closing, dilation, and erosion. At
present, based on these four basic morphological operators,
a variety of new morphological operators are cascaded to-
gether, and they have been successfully applied to vibration
signals. MG is composed of the difference between the di-
lation and erosion operators. Raj and Murali [18], Li et al.
[19], and Hu et al. [20] successfully applied the MG operator
to the fault diagnosis of rolling bearings. Dong et al. [21]
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introduced the AVG operator with the average of opening
and closing operators. Hu and Xiang [22] proposed the CMF
operator by using the average of the opening-closing and
closing-opening operators and demonstrated the denoising
performance of CMF. Wang et al. [23] and Meng et al. [24]
used the CMF operator to detect bearing failure. DIF is
composed of the difference between the closing and opening
operators. Li et al. [25, 26] and Zhang et al. [27] successfully
applied the DIF operator to the fault diagnosis of mechanical
systems.

Previous scholars used the morphological operator with
single structure to deal with the fault of rolling bearings. -e
results show that the morphological operator with a single
structure can no longer meet the requirements when dealing
with signals with complex frequency components. -ere-
fore, some scholars have studied that the new morphological
operator constructed by the product can not only enhance
the feature extraction ability but also weaken the interfer-
ence of random noise. Lv and Yu [13] used basic mor-
phological operators to construct some combination
difference operators and chose two optimal operators from
them to construct the average combination difference op-
erator (ACDIF). -en, they used the TEK index factor to
select the optimal scale of the operator and finally applied the
proposed method to fault diagnosis of rolling bearing. Li
et al. [15] made a detailed qualitative analysis of some
common basic morphological operators. According to the
purpose of processing the signal, these morphological op-
erators are divided into two categories: noise reduction-type
operators and feature extraction-type operators, and they
constructed the MGPO operator based on the superior
performance of the two morphological operators. Based on
Li’s research, Yan et al. [28] derived a new operator named
MHPO, and they successfully applied MHPO to the fault
diagnosis of rolling bearings.

Unfortunately, in the above studies, few papers have
quantitatively studied the filtering performance of these
morphological operators. In this paper, a set of rolling
bearing fault simulation signals and four sets of filtering
performance indicators are used to quantitatively analyze
the feature extraction capability of the feature extraction-
type operator and rank their filtering performance. -en, a
new enhancement operator named EMDO is constructed.

Although EMDO can extract more impulse signals, due
to the interference of background noise, the filtering per-
formance of EMDO will be affected. In order to solve this
problem, the probabilistic principal component analysis
(PPCA) [29–32] is introduced to make up for the deficiency
of EMDO in denoising capability. PPCA first establishes an
appropriate probability model for each variable, and it
decomposes the principal components and noise of the
signal into orthogonal space by increasing the dimension,
realizes the decorrelation between principal components
and noise, and finally achieves the purpose of noise re-
duction. In the PPCA model, two important system pa-
rameters, the number of decomposed principal components
k and the original variable n, have a great impact on the
model’s noise reduction results. At present, existing papers

have manually selected the system parameters of PPCA,
which greatly affects the noise reduction performance [33].

In order to obtain the optimal parameters of PPCA, this
paper chooses grasshopper optimization algorithm (GOA)
to optimize the system parameters of PPCA. GOA is a
mathematical optimization algorithm proposed by Saremi
et al. [34] in 2017, which is used to simulate the behavior of
grasshoppers in nature. Compared with other optimization
methods, GOA has the characteristics of fast convergence
and difficulty in generating local optimal solutions [34].
Finally, this paper combines the advantages of the above two
methods to propose a new comprehensive fault diagnosis
method for rolling bearing fault diagnosis.

-e remainder of this article is organized as follows.
Section 2 briefly introduces mathematical morphological
theory and proposes the EMDO operator. Section 3 de-
scribes the APPCAmethod for noise reduction as well as the
construction process of the APPCA-EMDF algorithm. Ex-
perimental verification of the proposed method is illustrated
in Section 4. Conclusions are drawn in Section 5.

2. Basic Theory of Mathematical Morphology

2.1. Morphological Filter. Assume that the original signal f
(n) is a group of one-dimensional discrete array F� (0, 1, 2,
. . ., N − 1). -e structure element g (m) is defined as another
one-dimensional discrete array G� (0, 1, 2, . . ., M − 1) and
satisfiesN≥M.-en, the four basic morphological operators
can be expressed as follows.

Dilation:

(f⊕g)(n) � max[f(n − m) + g(m)]. (1)

Erosion:

(fΘg)(n) � min[f(n + m) − g(m)]. (2)

Opening:

(f ∘g)(n) � (fΘg⊕g)(n). (3)

Closing:

(f • g)(n) � (f⊕gΘg)(n), (4)

where ⊕, Θ, ○, and ● represent the dilation, erosion,
opening, and closing operators, respectively. Besides, several
main morphological filters are introduced as follows.

Average of closing and opening (AVG) [21]:

AVG(f(n)) �
(f • g)(n) +(f ∘g)(n)

2
. (5)

Morphological gradient (MG) [18–20]:

MG(f(n)) � (f⊕g)(n) − (fΘg)(n). (6)

Difference filter (DIF) [25–27]:

DIF(f(n)) � (f • g)(n) − (f ∘g)(n). (7)

-e opening-closing FOC and closing-opening FCO filters
are defined as
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FOC(f(n)) � (f ∘g•g)(n), (8)

FCO(f(n)) � (f • g ∘g)(n). (9)

A combination morphological filter with FOC and FCO
(CMF) [23,24] is defined as

y(n) �
FCO(f(n)) + FOC(f(n))

2
. (10)

FCO and FOC gradient operation (GCO&OC) [35]:

Gco&oc(f(n)) � (f • g ∘g)(n) − (f ∘g • g)(n). (11)

Black top-hat (BTH) operation and positive BTH
(PBTH) operation [27]:

BTH(n) � (f • g)(n) − f(n), (12)

PBTH � f(n) − (f • g)(n). (13)

White top-hat (WTH) operation and negative WTH
(NWTH) operation [22]:

WTH(n) � f(n) − (f ∘g)(n), (14)

NWTH � (f ∘g)(n) − f(n). (15)

In order to verify the filtering performance of the
morphological operator, the SE needs to be selected. Some
scholars [17, 19, 35] have proved that only the length of SE
has a great impact on the filtering results. -erefore, in order
to improve the calculation efficiency, this paper chooses a
flat SE with zero height. -e relationship between the length
of SE and the scale is L� λ+ 2, and the selection range of
scale is usually from 1 to fs/fo, where fs and fo represent
sampling frequency and fault frequency, respectively.

2.2. Property of Morphology Operators. According to the
purpose of processing fault signals, morphological operators
can generally be divided into two categories: noise reduc-
tion-type operations and feature extraction-type operations
[15, 17].-e noise reduction-type operations tend to denoise
the signal, while the feature extraction-type operations are
more inclined to extract fault features. -e specific classi-
fication results of the 15morphological operators introduced
in Section 2.1 are shown in Table 1.

In order to extract weak fault signals from strong
background noise, this paper mainly studies the filtering
performance of feature extraction-type operators. Li et al.
[25] introduced the characteristics of some basic morpho-
logical operators in detail, but they did not quantitatively
study the fault feature extraction capabilities of morpho-
logical operators under different SNRs. -erefore, this paper
quantitatively evaluates the filtering performance of the
feature extraction-type operators. In order to analyze their
engineering applicability to rolling bearing faults, a set of
bearing fault simulation signal models is established [36]. It
is as follows:

y(t) � y1(t) + y2(t) + y3(t) + δ(t). (16)

-e fault model of the inner race of a bearing is com-
posed of four parts: the inner race fault signal
y1(t) � 4e− 100t sin(2π · 200 · t), the random impulse inter-
ference signal y2(t), the harmonic interference signal
y3(t) � 1.2 sin(2π · 30 · t) + 1.1 cos(2π · 40 · t), and the
white Gaussian noise signal δ(t). Here, a local fault is
generated in the inner race of the bearing. -e fault fre-
quency of the signal fo � 16Hz, the number of random
impulses of the signal is 3, and the resonant frequency is
300Hz.-e sampling frequency of the signal is 1024Hz, and
the number of sampling points is 1024.

Feature energy factor (FEF) [17, 28] and amplitudes at
the 3th harmonics of the bearing fault frequency (3thA)
[37,38] have been proved to be an effective index factor for
evaluating the feature extraction capability of morphological
operators. As the statistical measurement index, permuta-
tion entropy (PE) [25, 39] and envelope spectrum sparsity
(ESS) [40] represent the randomness and sparsity of signals,
which can effectively reflect the intensity of background
noise in the test signal, and they are a set of effective in-
dicator factors for measuring signal denoising performance.
-erefore, in this paper, four representative evaluation
factors are selected to prove the filtering performance of
these feature extraction-type operators. -e four evaluation
indicators are shown in Table 2.

For signal y(t), flat SE with a height of zero is selected and
the scale is 5. When the SNR changes from − 10 dB to 0 dB,
the variation of four evaluation index factors with the SNR is
shown in Figure 1.

For FEF factor, the larger the FEF, the stronger the
operator’s fault feature extraction ability. In formula F1 of
Table 2, M� 4 and f� 200Hz. It can be clearly seen from
Figure 1(a) that the FEF of the 7 operators increases with the
increase of SNR. MG received the largest FEF, followed by
DIF. WTH and NWTH obtain the minimum FEF. For PE
factor, if the signal is more regular, then the PE is smaller. In
Figure 1(b), the PE index of 7 operators does not increase
significantly with the change of SNR. -e PE index of MG is
the global minimum, followed by Gco_oc and DIF. It shows
that the filtering performance of these three operators is
better than the other four morphological operators. -e
greater the ESS, the stronger the denoising performance of
the operator. As shown in Figure 1(c), when SNR changes
from − 10 dB to − 6 dB, the ESS of Gco_oc is the best. When
SNR changes from − 6 dB to 0 dB, MG has the best ESS. -e
ESS index of DIF is stable between 5 and 6, and its ESS ranks
the third place among all operators. BTH, PBTH, NWTH,
and WTH operators obtain almost the same ESS, indicating
their poor filtering performance. -e 3thA is a key index to
evaluate the feature extraction ability of the operator. -e
3thA of these operators with SNR is shown in Figure 1(d). In
Figure 1(d), when SNR increased from − 10 dB to 0 dB, MG
received the largest 3thA than other operators, while the 3th
A of DIF was slightly lower than the MG, ranking second.
Among all operators, the 3thA index factor of Gco_oc was the
lowest.
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Table 2: Evaluation indicator.

Number Name Definition
F1 Feature energy factor FEF � (E/E∗) � (􏽐

M
i�1 Y2

i (f)/􏽐 Y(f)2)

F2 Permutation entropy PE � (− 􏽐
m!
m�1p(π) ln p(π)/ln(m!))

F3 Envelope spectrum sparsity ESS(Y(f)) � (

��������������

(1/n)􏽐
n− 1
i�0 Y2

i (f)

􏽱

/(1/n)􏽐
n− 1
i�0 |Yi(f)|)

F4 Amplitudes at the 3rd harmonics of the bearing fault frequency 3thA � A(3fo)

Note. Y (f ) is the Hilbert envelope spectrum of y (t), n is the length of the spectral,M is the number of fault frequencies p(π) � Y(π)/(N − (m − 1)τ),N is the
length of the time signal, m is the embedding dimension, π is a permutation, τ is the time lag, A represents the amplitude of the signal, and fo represents the
fault frequency of the signal.
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Figure 1:-e results of the evaluation indicator varying with SNR: (a) feature energy factor; (b) permutation entropy; (c) envelope spectrum
sparsity; (d) 3rd harmonic amplitude.

Table 1: Classification of the morphology operators.

Noise reduction-type operations Feature extraction-type operations
Dilation MG (dilation-erosion)
Erosion WTH (signal-opening)
Opening BTH (closing-signal)
Closing PBTH (signal-closing)
FCO (closing, opening) DIF (closing-opening)
FOC (opening, closing) GCO&OC (FCO-FOC)
AVG (average of closing and opening) NWTH (opening-signal)
CMF (average of FCO and FOC)
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It can be seen from the above analysis that the feature
extraction ability of BTH,WTH, PBTH, and NWTH is poor,
while the MG operator and DIF operator show superior
filtering performance.

Research through reference [17, 19] shows that for the
simulation signal y(t) of equation (16), the optimal scale of
these operators is 1–10. In addition, if the scale of the SE is
too large, some useful information will be removed. In order
to further prove the filtering performance of the feature
extraction-type operator at different scales, when the SNR of
signal y(t) is − 3, the evaluation indicator of the operator
varying with the scale is shown in Figure 2.

In Figure 2(a), when the scale is between 1 and 8, MG
received the largest FEF than other operators. When the
scale is between 9 and 10, DIF obtains the best FEE.
-erefore, from FEF factor analysis, it is concluded that MG
and DIF show excellent feature extraction performance. In
Figure 2(b), the PE value of the operators decreases and
becomes stable with the increase of scale. Compared with
other operators, MG obtains the smallest PE in the whole
scale, followed by Gco_oc, and DIF ranks third. -e PE values
of PBTH, NWTH, BTH, andWTH are larger, indicating that
their filtering performance is not as good as the MG, DIF,
and Gco_oc operators. -e results of ESS index factor of these
operators changing with scale are shown in Figure 2(c). In
Figure 2(c), the change trend of the operator’s ESS with the
scale is opposite to PE.-e same conclusion can be obtained
from the analysis results. In Figure 2(d), the variation trend
of 3thA index of these operators is similar to FEF. MG and
DIF still get the largest value at full scale.

-rough the comprehensive analysis of the evaluation
indexes of the above operators, it can be concluded that the
rank of feature extraction ability of 7 operators is as follows:

MG>DIF>Gco_oc>BTH�PBTH>NWTH�WTH

Based on the above quantitative research on filtering
performance of feature extraction operator, it can be con-
cluded that MG and DIF have superior fault feature ex-
traction ability. -erefore, a new morphological differential
operator named EMDO is constructed based on the ex-
cellent performance of the two operators.

EMDO(n) � MG(n) · DIF(n)

� [(f⊕g)(n) − (fΘg)(n)] · [(f • g)(n) − (f ∘g)(n)].

(17)

-e newly proposed EMDO operator has two advan-
tages: (1) if the fault information is detected by both MG and
DIF, then EMDO will amplify the fault information; (2)
because Gaussian noise shows randomness, when Gaussian
noise is detected by only one of them, EMDO will output a
smaller amplitude.

2.3. Comparison of Morphology Operators. When SNR of
signal y(t) is − 6 dB, its time-domain diagram and frequency-
domain diagram are shown in Figure 3, respectively. In
Figure 3(b), the fault frequency fo can no longer be detected
due to the interference of strong background noise, so the

simple envelope analysis can no longer be used to detect
early weak fault of the rolling bearings.

In order to further verify the superiority of the proposed
operator in this paper, five other morphological operators
(MG [19], DIF [25], MGPO [15], MHPO [28], and ACDIF
[13]) were selected to compare with the proposed operator in
fault feature extraction capabilities. Since the FEF index
factor is sensitive to the characteristic information of the
signal, it can directly reflect the operator’s ability to extract
fault characteristic information. -is paper chooses FEF to
optimize the scales of the operators. In formula F1 of Table 2
M� 4 and f� 200Hz.-e FEF values of abovemorphological
operators changing with the scale are shown in Figure 4.

It can be seen from Figure 4 that before reaching the
optimal scale, the FEF of each operator increases with the
scale, and when it reaches the optimal scale, it decreases with
the increase of the scale. -e optimal scale distribution of
these operators is between 1 and 10. When the optimal scale
is 4, EMDO obtains the highest FEF of 33.67%, which is
larger than other operators.-e effectiveness and superiority
of EMDO have been proven. -e FEFs of MG and DIF were
significantly lower than EMDO. -is shows that the newly
constructed operator is enhanced in feature information
extraction capability. -e maximum FEFs of MG, DIF,
MGPO, MHPO, and ACDIF operators are 23.37%, 22.61%,
26.32%, 25.14% and 23.36%, respectively. -e FEF values of
the above six operators are far greater than the envelope
spectrum analysis. -e results of processing the signal y(t) in
Figure 3(a) by these operators under their optimal scale are
shown in Figure 5.

It can be seen from Figure 5 that all six operators can
extract the fault characteristic frequency fo, but 2fo extracted
by MG, DIF, and ACDIF is weak. Due to the interference of
background noise, the frequency components in the range of
0–200Hz are seriously polluted. Although MGPO can ex-
tract the fault frequencies fo, the amplitude of the fault
frequency is relatively weak, and 4fo cannot be detected.
MHPO operator can detect 4fo; however, there are many
interference frequency components in the range of
0–200Hz. Especially when the background noise further
increases, MHPO is not as robust as EMDO. As shown in
Figure 5(f ), the operator proposed in this paper can clearly
detect the fault frequencies fo, 2fo, 3fo, and 4fo. Combined
with the above analysis, it is further proved that the EMDO is
superior to other morphological operators in the extraction
ability of fault features.

3. The Method of APPCA-EMDF

It can be seen from the above analysis that the advantages of
feature extraction-type operators lie in the ability of fault
feature extraction, but their denoising performance is in-
sufficient. In order to make up the deficiency of feature
extraction-type operator in denoising ability, this paper
presents an adaptive PPCA denoising method.

3.1. PPCA. In the PPCA model [29–32], it is assumed that
the main fault information of the original signal is stored in
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the principal component space, and the remaining noise
information and linear correlation information are saved in
the remaining subspace. -e PPCA model for the n-di-
mensional original variable X is as follows:

X � p · u + E, (18)

where X � x1, x2, · · · , xm􏼈 􏼉 ∈ Rn×m is a matrix (it is generated
by a one-dimensional signal x � xr − xr where xr is the test
failure data and xr is the mean of xr ) of n×m, n is the
dimension of the original variable X, and m is the length of
the signal. P � p1,p2, · · · ,pm􏼈 􏼉 ∈ Rn×k is a matrix of n× k,
and the limiting condition is k< n, where k is the number of
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Figure 3: Time-domain diagram and envelope spectrum of simulation signal y(t).
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Figure 2:-e results of the evaluation indicator varying with scale: (a) feature energy factor; (b) permutation entropy; (c) envelope spectrum
sparsity; (d) 3rd harmonic amplitude.
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main components. u � u1,u2, · · ·um􏼈 􏼉 ∈ Rk×m is the prin-
cipal component matrix of k×m. E is an isotropic Gaussian
noise matrix; u and E both satisfy Gaussian distribution,
u∼N(0, I),E∼N(0, σ2I), where I is the identity matrix and
σ2 is the variance of the noise variable.-erefore,X follows a
Gaussian distribution N(0,PPT + σ2I).

-e probability distribution of u is as follows:

p(u) � (2π)
− k/2

e
− 1/2σ2( )XTX( ). (19)

-e prior probability distribution of x under the variable
u is as follows:

p(x | u) � (2π)
− n/2

e
− 1/2σ2( )‖X− P·u‖2( ). (20)

According to equations (19) and (20), the probability
distribution of the original data x is as follows:

p(x) � 􏽚 p(x | u)p(u)dx � (2π)
− n/2

|C|
− 1/2

e
− (1/2)XTC− 1X( ),

(21)

where C � PPT + σ2I is the covariance matrix, which is
determined by the parameters P and σ2.

According to equations (19)–(21), once the values of the
parameters P and σ2 are determined, the probability model is
obtained. -e above parameters can be estimated using the
expectation maximization (EM) algorithm [41], and the
iterative formula derived is as follows:

􏽥P � SP σ2I + M− 1PTSP􏼐 􏼑
− 1

, (22)

􏽥σ2 �
1
n
tr S − SPM− 1􏽥P

T
􏼒 􏼓, (23)

where S is the covariance matrix of the original data S �

(1/m) 􏽐
m
i�1 xixT

i and tr(·) is the trace of the matrix. -e pa-
rameters P and σ2 are obtained by iterative convergence of
equations (22) and (23). Finally, a PPCA model is established.

When the PPCA model is established, the solution
method of the reduced-dimensional data is shown below.

ui � pT
i X. (24)

From equation (24), each principal component signal
(data after dimensionality reduction) is a projection of the
original variable data X on the corresponding principal
component vector pi. Although PPCA is a better noise re-
duction algorithm, the system parameters of PPCA (the
number of principal components k and the original variable
n) need to be determined by personal experience, which will
seriously affect its noise reduction performance. In PPCA,
the parameter n determines the dimension of the con-
struction matrix, and the parameter k determines the
number of eigenvalues after dimensionality reduction.

In order to test the noise reduction performance after
signal processing, Deng et al. [40] proposed a new and ef-
fective signal noise reduction index SIESS by combining ESS
and PE. Because the kurtosis Kr is suitable for early fault
diagnosis of rolling bearings, this paper proposed a new

dimensionless comprehensive evaluation index KSP to de-
tect the noise reduction performance of the signal.

KSP �
Kr × ESS

PE
, (25)

where the expressions of ESS and PE are shown in Table 2.
-e larger the KSP, the better noise reduction performance
of the signal. -erefore, the maxKSP can indicate the op-
timal noise reduction result of PPCA. For the signal y(t) in
Figure 3(a), the distribution of KSP under different system
parameters (n, k) is shown in Figure 6.

From Figure 6, the distribution of KSP is relatively
discrete and random with the change of n and k. When
n� 19 and k� 8, the maximum value of KSP is 14.98. -e
noise reduction effect of PPCA is affected by the unrea-
sonable setting of parameters n and k. -erefore, in order to
achieve the best noise reduction effect of PPCA, this article
chooses GOA to adaptively optimize the system parameters
of PPCA. -e GOA [34] is described as follows.

3.2. GOA. GOA is a mathematical optimization algorithm
that simulates the behavior of grasshopper swarms in nature.
-ere are two distinct main features of the grasshopper
swarm behavior: (1) during the larval stage, the grasshoppers
move slowly and the number of steps is small; the grass-
hopper behavior in adulthood shows a long distance of
movement and agility; (2) the process by which grasshopper
swarms look for food sources can be divided into two trends:
exploration and exploitation. During exploration, the search
swarms are encouraged to move suddenly, and in exploi-
tation, they are encouraged to move locally. Grasshopper
swarms naturally accomplish both functions and seek goals.
-erefore, the mathematical model used to simulate the
behavior of the grasshopper swarm is as follows:

Xi � Si + Gi + Ai, (26)

where Xi is the position of the ith grasshopper, Si represents
social interaction, Gi defines the gravity force on the ith
grasshopper, and Ai represents wind advection.

Si � 􏽘
N

j�1,j≠i
s dij􏼐 􏼑􏽢dij � 􏽘

N

j�1,j≠ i

s xi − xj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
xi − xj

dij

, (27)

s(r) � fe
− r/l

− e
− r

, (28)

where dij � |xi − xj| indicates the distance between the ith
and jth grasshopper (the interval of dij is usually 1 to 4 in the
GOA), 􏽢dij � (xi − xj)/dij shows a unit vector from the ith
grasshopper to the jth grasshopper, s(•) is used to represent
the function of social forces between grasshoppers, f rep-
resents the intensity of attraction, l indicates attractive length
scale, and f and l are two important parameters of the GOA
(they are described in [34]). Usually, f and l are equal to 1.5
and 0.5.

Gi � − g􏽢eg, (29)
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where g represents the gravitational constant and 􏽢eg is a
unity vector towards the center of Earth.

Ai � u􏽢ew, (30)

where u indicates a constant drift and 􏽢ew represents a unity
vector of the wind direction.

Substituting S, G, and A into equation (26):

Xi � 􏽘
N

j�1,j≠ i

s xj − xi

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
xj − xi

dij

− g􏽢eg + u􏽢ew, (31)

where the expression of s(•) is as shown in equation (28) and
N is the number of grasshoppers.

However, the above mathematical model cannot be
directly used to solve the optimization problem because the
grasshoppers reach the comfort zone too fast and the swarms
cannot converge in the designated area. -erefore, the
following modified equation is used to solve the above
problem [34].

X
d
i � c 􏽘

N

j�1,j≠ i

c
ubd − lbd

2
s x

d
j − x

d
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓
xj − xi

dij

⎛⎝ ⎞⎠ + 􏽢Td,

(32)

where ubd is the upper boundary ofD-dimensional space, lbd
is the lower boundary of D-dimensional space, 􏽢Td indicates
the optimal target found so far in the Dth dimension, and c
represents a decreasing coefficient; its equation is as follows:

c � cmax − l
cmax − cmin

L
, (33)

where cmax represents the maximum value of the decreasing
coefficient c, cmin represents the minimum value of the
decreasing coefficient c, l indicates the current number of
iterations, and L indicates the total number of iterations. In
this paper, cmin and cmax are taken as 0.00001 and 1,
respectively.

-e mathematical model of the GOA is described above.
-e specific optimization process is as follows. Firstly, ini-
tialize the swarm and randomly generate the swarms Xi,
initialize system parameters (e.g. cmax, cmin, l, and L),

calculate the fitness of each search agent, and let T be equal
to the optimal fitness. Secondly, using equation (32) to
update the position of the current target search agent, in
order to avoid the optimization model falling into the local
optimal solution, the decreasing coefficient c is updated each
time by using equation (33), and the distance between
grasshoppers is normalized in each iteration. Finally, when
the iteration condition is satisfied, the global optimal so-
lution is obtained. A more detailed introduction to the GOA
is given in [34].

3.3.APPCA-EMDF. -eproposed parameter adaptive PPCA
method takes the maxKSP value as the objective function and
optimizes the parameters through the GOA. -e specific
objective function is shown in the following equation:

fitness � max
c�(n,k)

KSPi􏼈 􏼉

s.t.n � 1, 2, . . . , 20

k � 1, 2, 3, ..., 20,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(34)

where fitness represents the objective function of the opti-
mization, KSPi (i� 1, 2, . . ., c) is the KSP index after PPCA
decomposition and reconstruction of the signal, and c � (n, k)
represents the optimized system parameters of PPCA. -is
article proposes an early weak fault detection method for
rolling bearings based on a combination of adaptive PPCA
and enhanced morphological differential filtering.

-e specific flowchart is shown in Figure 7.
-e specific working steps are as follows:

Step 1: input the vibration signal y(t), set the optimi-
zation range of PPCA parameters (n, k), and determine
the initial parameters of GOA (the maximum iteration
steps L and the number of population N) [34].
Step 2: in the process of each iteration, the signal y(t) is
decomposed and the fitness of the signal is calculated after
each decomposition. -e maximum fitness is retained.
Step 3: determine the termination condition of the
program. If l≥ L, return yes; otherwise, return no; then
l� l+ 1, and continue iteration until the condition is
satisfied [34].
Step 4: save the optimal system parameters (n, k) and
obtain the maximum objective function value. PPCA
applies optimal system parameters to the signal for
noise reduction.
Step 5: the morphological analysis scale range is de-
termined and the SE is determined.
Step 6: calculate the FEF value at each scale and de-
termine the optimal scale λ for EMDF.
Step 7: EMDF uses the optimal scale λ to perform the
morphological calculation.
Step 8: envelope analysis finally realizes fault diagnosis.

4. Simulation

4.1. Case 1:;eTraditional Bearing FaultModel. -emethod
proposed in this paper is used to process the simulation

KSP
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10 15 205
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Figure 6: KSP obtained after noise reduction by PPCA.
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signal y(t) in Figure 3(a). -e range of optimization pa-
rameters (n, k) of APPCA is selected according to equation
(34). -e parameters of GOA are selected as follows:
maximum number of iterations L� 10 and search agents
N� 20. -e GOA convergence curve of the maxKSP value
obtained after each iteration is shown in Figure 8(a). In
Figure 8(a), when the number of iterations reaches 3, the
curve starts to converge. -e optimal n, k, and maxKSP
values obtained by GOA are 16, 8, and 14.981, respectively.
PPCA processes the signal y(t) with the optimal n and k. -e
noise reduction result is shown in Figure 8(b). Comparing
Figure 8(b) with Figure 3(a), it can be clearly found that the
background noise is effectively suppressed. Next, the cal-
culated full-scale FEF value of the denoising signal is shown
in Figure 9(a). In Figure 9(a), it can be seen that the optimal
scale obtained by EMDF is 4. -e signal of Figure 8(b) is
processed with EMDF, and the time-domain and frequency-
domain diagrams of the calculation results are shown in
Figures 9(b) and 9(c), respectively. Comparing the calculated
results with Figures 5(a)–5(f), it can be found that the
APPCA-EMDF method can clearly detect the bearing fault
characteristic frequency of 16Hz and its harmonic

frequencies of 32Hz, 48Hz, and 64Hz. At the same time, the
background noise is effectively suppressed, and the feature
extraction capability of the fault is greatly enhanced.

4.2. Case 2: Complex Fault Model of Bearings. In order to
further verify the anti-interference ability and weak fault
extraction ability of the algorithm proposed in this paper, a
new set of rolling bearing simulation fault model is estab-
lished, whose expression is as follows:

y′(t) � y1(t) + y2(t) + y3(t) + y4(t) + δ(t),

y1(t) � 􏽘
I

i�1
Aisi t − iTa − τi( 􏼁,

y2(t) � 􏽘
N

n�1
Bnsn t − nTb( 􏼁,

y3(t) � 􏽘
M

m�1
Cm sin 2πfm + φm( 􏼁,

y4(t) � 􏽘
P

p�1
Cp cos 2πfp + φp􏼐 􏼑.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(35)

Set PPCA parameter range and 
initialize GOA

Input vibration 
signal y(t)

Denoise and reconstruct
signals with PPCA

Calculate fitness a�er each
reconstructed signal

l ≥ L?

l = l + 1
No

Save optimal parameters

Use the optimal parameters
(n,k) to denoise the signal to

obtain the signal y(t)’

Yes

Step 1

�e analytical scale range and
the structural element (SE) are determined

�e optimal scale λ of EMDF is
obtained through FEF optimization

Feature extraction-
type operators

FEF PE ESS 3thA

Evaluation indicator

�e filtering performance of the
feature extraction-type operators is

ranked

EMDO operator is constructed

Step 2

�e signal y(t)’ is
processed

Spectrum analysis and 
fault diagnosis 

Step 3

Figure 7: Flowchart of the proposed method.
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-e fault model of the bearing is composed of five
parts: the fault signal y1(t), the random pulse interference
signal y2(t), the harmonic interference signals y3(t) and
y4(t), and the white Gaussian noise signal δ(t). In the
model, A represents the amplitude of the fault signal, T
represents the time interval between the two shock signals,
and τ represents a random variable that is usually used to
simulate random sliding of the roller bearing. B is a
variable representing the amplitude of the random impulse
signal. C represents the amplitude of the harmonic in-
terference signal, f represents the frequency of the har-
monic signal, and φ represents the phase angle. s(t)

represents the impulse response function of the me-
chanical system and can be described as follows:

s(t) � Me
− at sin 2πfnt + φ( 􏼁, (36)

whereM represents the amplitude, a is the decay factor, fn is
the resonance frequency, and φ is the phase angle.

A simulated signal is established based on equation (35).
Here, a local fault is generated in the inner race of the
bearing. -e fault frequency of the signal fo � 16Hz, the
amplitude A� 4, the decay factor a is set to 100, the natural
frequency fn � 200Hz, and the phase is zero. -e number of
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Figure 9: Case1: (a) correlation curve between FEF and scale λ; (b) time-domain spectrum processed by the EMDF method; (c) frequency-
domain spectrum processed by the EMDF method.
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random impulses of the signal is 10, and the resonant fre-
quency is 300Hz. In harmonic interference, the harmonic
frequencies of the signals y3(t) are 30Hz and 40Hz, with an
amplitude of 1.2 and 1.1, respectively. -e harmonic fre-
quencies of the signals y4(t) are 30Hz and 50Hz, with an
amplitude of 1 and 1.2, respectively. -e SNR of white
Gaussian noise is − 10 dB. -e sampling frequency of the
signal is 2048Hz, and the number of sampling points is 2048.
-e components of the simulated signal are shown in
Figure 10. -e obtained simulated signal y′(t) and its en-
velope spectrum are shown in Figure 11. It can be found in
Figure 11(b) that due to the serious interference of harmonic
frequency and background noise, only 10Hz, 20Hz, and
50Hz interference frequencies can be identified, making it
difficult to detect the bearing fault frequency.

-e method proposed in this paper is used to process the
simulation signal y′(t). -e obtained GOA optimization
curve and the time-domain diagram after noise reduction
are shown in Figures 12(a) and 12(b), respectively. In
Figure 12(a), when iterating to 4, the objective function value
converges, the maximum KSP value obtained is 12.945, and
the optimized PPCA parameters n� 18 and k� 7. Next,
feature extraction is carried out for the denoised signal. -e
processed results are shown in Figures 13(a)–13(c). In
Figure 13(c), the fault characteristic frequencies 16Hz,
32Hz, and 48Hz still can be clearly detected.-is shows that
the algorithm proposed in this paper has strong anti-in-
terference ability and weak fault feature extraction ability.

For comparison, the three algorithms (ACDIF [13],
VMD [6], and SK [5]) were used to process the simulation
signal in Figure 11(a), and the processing results are shown
in Figures 14–16. In Figure 14(c), ACDIF can only detect a
weak fault frequency 16Hz, and the harmonic interference
frequency 10Hz is clearly present. In Figure 15(c), although
VMD can identify the fault frequency of 16Hz, the fre-
quency components of 32Hz and 48Hz have weak ampli-
tude, and they are seriously disturbed. It can be seen in
Figure 16(c) that the SK method cannot effectively detect the
fault characteristics of the bearing if the background noise
and other frequency interference components are serious.

5. Experimental Validations

5.1. Case 1: Bearing Fault Diagnosis of Wind Turbine.
Wind energy is used as a clean energy source, and the
number of wind turbines in the world is gradually in-
creasing. Due to the long-term service of wind turbines in
extreme environments, the transmission system of wind
turbines is easily damaged. Once the wind turbine is
damaged, it will bring huge economic losses to the wind
turbine operator. -erefore, fault monitoring of wind tur-
bines is particularly important.

By monitoring the vibration of multiple wind turbines in
Tuoshan Wind Farm, the abnormal vibration amplitude of
the front bearing of No. 16 wind turbine can be found, so the
fault monitoring is carried out. -e structural model of the
wind turbine and its sensor arrangement are shown in
Figure 17(a). -e test system monitors 8 positions in the
cabin (test points 1–8 in Figure 17(a)). During the test,

abnormal vibration signal of measuring point 2 was found,
and the field measured photos are shown in Figure 17(b).
-e tested generator front-end bearing model is SKF
NU1030. -e specific structural geometric parameters of the
bearing are shown in Table 3. -e rated power of the wind
turbine is 1500 kW, the blade speed is stable at 22.3 rpm, the
motor speed is 1740 rpm, and the rotation frequency of the
generator fr � 29Hz. -e sampling frequency of the test
system is 16384Hz, and the total length of the test signal is
81920. -e fault frequencies of the inner ring, outer ring,
cage, and rolling element of the rolling bearing calculated
from Table 4 are fi � 384.7Hz, fo � 315.9Hz, fc � 13.11Hz,
and fB � 97.1Hz.

-e time-domain diagram and the FFT diagram of the
collected generator front-end vibration signals are shown in
Figures 18(a) and 18(b), respectively. In Figure 18(a), im-
pulse signals with different energy amplitudes can be seen,
but due to the interference of background noise, the periodic
vibration impulse signals of the bearings are not very ob-
vious, so further processing and analysis are needed. In
Figure 18(b), the vibration energy of the test signal is mainly
concentrated in the middle frequency band. In the low
frequency band, the weak outer ring failure frequency of the
rolling bearing can only be identified at 315.6Hz.

-erefore, the method proposed in this paper is used to
process the experimental signal to detect the bearing fault at
the front of the generator. Firstly, the experimental signal
was denoised using PPCA, and the GOA was used to
adaptively optimize the system parameters (n, k) of PPCA.
-e obtained objective function convergence curve is shown
in Figure 19(a). In Figure 19(a), when iterating to 3, the
objective function converges, the maxKSP obtained is
1.6684, and the optimal system parameters of PPCA are
n� 20 and k� 8. -e optimal parameters are used to denoise
the experimental signals, and the results are shown in
Figure 19(b). Compared with Figure 18(a), it can be found
that the signal denoised by APPCA presents relatively clean
impulse vibration. It can be seen in Figure 19(c) that there is
an impulse vibration signal with a period interval of 3.2ms,
which is fully consistent with the characteristic frequency of
the outer ring fault of the rolling bearing of 315.6Hz. Finally,
in order to further enhance the fault information, the EMDF
is used to process the denoised signal. In formula F1 of
Table 2, M� 3 and f� 1000Hz. As can be seen from
Figure 20(a), when the scale is 3, EMDF obtains the largest
FEF factor. -e time-domain and frequency-domain results
of the denoised signals processed using the optimal scale are
shown in Figures 20(b) and 20(c), respectively. In
Figure 20(c), in addition to the rotation frequency of 29Hz,
the fault frequency of bearing outer ring of 315.8Hz and its
harmonic frequencies of 630Hz and 946.9Hz can be clearly
detected. -e analysis results show that the method pro-
posed in this paper can both detect the bearing faults in the
front end of the generator and enhance the fault
information.

For comparison, the three algorithms (ACDIF, VMD,
and SK) were still used to process the experimental signal
in Figure 18(a), and the processing results are shown in
Figures 21–23. In the ACDIF method, the optimal scale

12 Shock and Vibration



–4

0

4

A
m

pl
itu

de

0.2 0.4 0.6 0.8 1.00.0
Time (s)

(a)

–6

–3

0

3

6

A
m

pl
itu

de

0.2 0.4 0.6 0.8 1.00.0
Time (s)

(b)

–3

0

3

A
m

pl
itu

de

0.2 0.4 0.6 0.8 1.00.0
Time (s)

(c)

–3

0

3

A
m

pl
itu

de

0.2 0.4 0.6 0.8 1.00.0
Time (s)

(d)

Figure 10: (a) Impulsive signal y1(t), (b) random impulsive signal y2(t), (c) harmonic signal y3(t), and (d) harmonic signal y4(t).
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Figure 15: Analysis results of simulation signals by the VMD method with k� 4 and α� 2000: (a) frequency spectrum of the four
decomposed modes; (b) time-domain spectrum of mode u2; (c) envelope spectrum of mode u2.
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Table 3: Structural parameters of rolling bearing.

Structural parameters Parameter values
Bearing type NU 1030
Inside diameter 150mm
Pitch diameter 187.5mm
Roller diameter 18mm
Outside diameter 225mm
-e number of roller 24
Contact angle 0°

Table 4: Mathematical equations of bearing fault frequencies.

Fault frequency Formula
Inner race fault frequency fi � fr(N/2)(1 + (Rd/Pd)cosφ)

Outer race fault frequency fo � fr(N/2)(1 − (Rd/Pd)cosφ)

Cage fault frequency fC � (fr/2)(1 − (Rd/Pd)cosφ)

Ball fault frequency fB � fr(Pd/2Rd)(1 − (R2
d/P

2
d)cos2φ)

Note. N is the number of roller, Rd is the roller diameter, Pd is the pitch diameter, and φ is the contact angle.
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Figure 18: -e experimental signal of the wind turbine generator: (a) time-domain spectrum; (b) FFT spectrum.
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selection of the operator is shown in Figure 21(a), and the
processed frequency-domain results are shown in
Figure 21(c). In Figure 21(c), the rotation frequency of
29 Hz can be detected, but the amplitude of the fault
frequency fo of the bearing outer ring is relatively weak,
and the effect of fault feature extraction is not obvious. In
the VMD method, the penalty factor α is 2000, and
the decomposition mode k is 5. According to the max-
imum weight kurtosis index, the most sensitive mode
selected is u5, and the selection result is shown in

Figure 22(a). -e final processing result is shown in
Figure 22(c). -e fault frequency fo and its harmonic
frequency 2fo of the bearing outer ring can be detected,
but the amplitude of the fault characteristic frequency is
relatively weak, and the fault feature extraction capability
is not strong. In Figure 23(c), from the results obtained by
processing the experimental signals with the SK method,
the fault frequency fo is severely contaminated due to
interference from the background noise and can hardly
be detected.
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Figure 20: Processing results of wind turbine generator denoising signal by the EMDFmethod: (a) correlation curve between FEF and scale
λ; (b) time-domain spectrum; (c) envelope spectrum.
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Figure 21: Analysis results of experimental signals by the ACDIF method: (a) correlation curve between TEK and scale λ; (b) time-domain
spectrum; (c) envelope spectrum.
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Figure 22: Analysis results of experimental signals by the VMD method with k� 5 and α� 2000: (a) frequency spectrum of the five
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5.2. Case 2: Early Fault Diagnosis of Bearings. In order to
verify the early fault feature extraction ability of the pro-
posed algorithm, the bearing life cycle data collected by the
University of Cincinnati’s Intelligent Maintenance System
(IMS) [42] were applied. Bearing test benches, sensors, and
their schematic diagrams are shown in Figures 24(a) and
24(b), respectively. During the experiment, a total of three
sets of experimental data were tested. In this paper, the
second set of experimental data is selected for processing.
-is group of data consists of 984 files. Each group of data is
collected every 10 minutes. -e specific geometric pa-
rameters of the tested bearing are shown in Table 5. During
the experiment, the motor speed was 2000 rpm and the
sampling frequency was 20 kHz. According to Table 5, the
fault frequency of bearing outer ring (fBPFO) is 236.4 Hz.
-e root mean square (RMS) value of the full life cycle of
the bearing is shown in Figure 25(a). As can be seen in
Figure 25(a), the damage form of the bearing is divided into
three stages: early, middle, and late stages, corresponding to
the A, B, and C points in the Figure 25(a). -eir corre-
sponding time-domain diagrams are shown in
Figures 25(b)–25(d), respectively. It can be seen from
Figure 25(b) that the impulse amplitude of bearing early
fault is relatively weak.

In this paper, the time-domain signal in Figure 25(b) is
processed. Its FFT spectrum and envelope spectrum are
shown in Figures 26(a) and 26(b), respectively. In

Figure 26(b), only the weak fault frequency fFBPO can be
identified, and the bearing fault information is seriously
disturbed by background noise.

-e method proposed in this paper is used to process the
experimental data. First, the GOA optimization curve and
the noise reduction results are shown in Figures 27(a) and
27(b), respectively. In Figure 27(a), when iterating to 4, the
objective function value converges, the maximum KSP value
obtained is 17.059, and the optimized PPCA parameters
n� 15 and k� 6. By comparing Figure 27(b) with
Figure 25(b), it can be found that significant bearing fault
impulse signals can be detected after noise reduction pro-
cessing by PPCA. Next, feature extraction is performed on
the denoised signal. -e processed results are shown in
Figures 28(a) to 28(c). In Figure 28(c), the fault characteristic
frequency (fBPFO) of the bearing outer ring can be clearly
detected, and its corresponding high-order characteristic
frequency (2fBPFO, 3fBPFO, and 4fBPFO) can also be detected.
-e fault feature extraction effect is obvious.

ACDIF, VMD, and SK were used to process the same
experimental signals for comparison. -e experimental re-
sults obtained are shown in Figure 29–Figure 31, respec-
tively. In Figure 29(b), although the fault frequency (fBPFO,
2fBPFO, and 3fBPFO) of the bearing outer ring can be detected,
the fault characteristics are more seriously polluted by noise
and there are many interference components. It can be seen
from Figures 30(b) and 31(b) that the fault feature extraction
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Figure 23: Analysis results of experimental signals by the SK method: (a) fast kurtogram; (b) envelope signal; (c) envelope spectrum.
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Figures 24: (a) -e whole life cycle test bench for rolling element bearings. (b) Diagram of experimental device.

Table 5: Structural parameters of rolling bearing.

Structural parameters Parameter values
Bearing type ZA-2115
Inside diameter 49.21mm
Pitch diameter 71.50mm
Roller diameter 8.41mm
Axial load 26.7 kN
-e number of roller 16
Contact angle 15.17°
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Figure 25:-e test signal for experimental rolling bearing: (a) RMS for the whole life cycle; (b) early-stage vibration waveform of measuring
point A; (c) mid-stage vibration waveform of measuring point B; (d) late-stage vibration waveform of measuring point C.
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Figure 27: -e experimental signal denoising results: (a) fitness convergence curve for PPCA optimization; (b) time-domain diagram after
noise reduction by APPCA.
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Figure 26: -e experimental signal: (a) FFT spectrum; (b) envelope spectrum.
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capabilities of the VMD method and the SK method are still
relatively weak.

-rough the comparison of the above experiments and
engineering applications, it can be clearly found that the
method proposed in this paper can effectively extract the
fault characteristic information of rolling bearings. -is
method not only has good noise reduction performance but
also can play a role in enhancing the early weak faults and
has good filtering performance.

6. Discussion

-e previous analysis results can qualitatively prove that the
method proposed is effective. In order to further compare
the superiority of the APPCA-EMDF in this paper with the
existing decomposition methods (ACDIF, VMD, and SK),
some quantitative indicators are applied, such as kurtosis
and FEF indicators. -e larger the kurtosis and FEF index,
the stronger the feature extraction ability of the signal. At the
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Figure 28: Processing results of denoising signal by the EMDF method: (a) correlation curve between FEF and scale λ; (b) time-domain
spectrum; (c) envelope spectrum.
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Figure 29: Analysis results of experimental signals by the ACDIF method: (a) time-domain spectrum; (b) envelope spectrum.
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Figure 30: Analysis results of experimental signals by the VMDmethod with k� 5 and α� 2000: (a) time-domain spectrum of mode u4; (b)
envelope spectrum of mode u4.
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same time, the calculation efficiency of the above methods is
also compared. -e test was performed on a computer
configured with Inter (R) Core (TM) i7-6700HQ, CPU
2.6Hz, and RAM 8GB.-e comparison results are shown in
Tables 6–8, respectively.

From the comparison results of Table 6–Table 8, it can be
seen that although the SK method has the highest com-
putational efficiency, its fault feature extraction ability is the
weakest. -e APPCA-EMDF method in this paper obtains
the largest kurtosis value and FEF value, which shows that its
fault feature extraction ability is better than other decom-
position methods (ACDIF, VMD, and SK). However, the
method proposed in this article is less computationally ef-
ficient. -e reason for this phenomenon is that GOA is used
to optimize PPCA system parameters, and a lot of calcu-
lation costs are caused in the process of iterative optimi-
zation. -erefore, we need to further improve the
computational efficiency of the algorithm in the future.

In future work, we can try to use the multiscale mor-
phological analysis method because morphological opera-
tors can contain more abundant fault information
components at full scale. We can also try to combine the
algorithm proposed in this paper with the intelligent rec-
ognition algorithm to achieve accurate classification of
bearing faults. Finally, we can try to find out how the noise
elimination performance of PPCA is under the condition of
other interference signals. How to improve the calculation

efficiency of the algorithm proposed in this paper is also a
problem to be studied in the future.

7. Conclusions

In this paper, a new rolling element bearing fault method
named APPCA-EMDF is proposed. By quantitatively ana-
lyzing the fault extraction capability of the feature extrac-
tion-type operators, a morphological operator named
EMDO was proposed. Compared with MG, DIF, MGPO,
MHPO, and ACDIF operators, the fault extraction ability of
EMDO is superior, and it has an enhanced effect on fault
characteristics. Next, in order to solve the interference
problem caused by strong background noise, a parameter
adaptive PPCA method based on the GOA method is
proposed. APPCA can make up for the deficiency of EMDF
in denoising capability. Simulation and engineering appli-
cation results show that the method proposed in this paper is
effective in detecting early fault of rolling element bearings.
Compared with ACDIF, VMD, and SK methods, the pro-
posed method has certain advantages.

Nomenclature

PPCA: Probabilistic principal component analysis
EMDF: Enhanced morphological difference filter
EMDO: Enhanced morphological difference operator
GOA: Grasshopper optimization algorithm
MF: Morphological filter
SE: Structural element
MG: Morphology gradient
AVG: Average of opening and closing operators
CMF: Average of the opening-closing and closing-

opening operators
ACDIF: Average combination difference morphological

filter
TEK: Teager energy kurtosis
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Figure 31: Analysis results of experimental signals by the SK method: (a) envelope signal; (b) envelope spectrum.

Table 6:-e comparison results of APPCA-EMDF, ACDIF, VMD,
and SK methods in simulation case 2.

Method APPCA-EMDF ACDIF VMD SK
CPU time (s) 40.02 16.81 35.16 3.95
Kurtosis 12.8540 4.9885 5.0105 4.5118
FEF 0.3635 0.1026 0.2375 0.0074

Table 7:-e comparison results of APPCA-EMDF, ACDIF, VMD,
and SK methods in experimental case 1.

Method APPCA-EMDF ACDIF VMD SK
CPU time (s) 220.13 120.4 195.33 20.77
Kurtosis 10.0620 5.0291 4.7969 2.1238
FEF 0.0591 0.0092 0.0234 0.0004

Table 8:-e comparison results of APPCA-EMDF, ACDIF, VMD,
and SK methods in experimental case 2.

Method APPCA-EMDF ACDIF VMD SK
CPU time (s) 107.86 62.61 95.38 11.55
Kurtosis 8.9002 4.5460 3.2179 3.9950
FEF 0.1041 0.0432 0.0614 0.0285
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MGPO: Morphology gradient product operation
MHPO: Morphology-hat product operation
BTH: Black top-hat
PBTH: Positive black top-hat
WTH: White top-hat
NWTH: Negative white top-hat
GCO&OC: Closing-opening and opening-closing gradient

operation
FEF: Feature energy factor
PE: Permutation entropy
ESS: Envelope spectrum sparsity
3thA: Amplitudes at the 3rd harmonics of the bearing

fault frequency
VMD: Variational mode decomposition
SK: Spectral kurtosis.
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