
Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD
 41st ASEE/IEEE Frontiers in Education Conference
 T1A-1

Five Years with Kattis – Using an Automated
Assessment System in Teaching

Emma Enström, Gunnar Kreitz, Fredrik Niemelä, Pehr Söderman and Viggo Kann

KTH – Royal Institute of Technology, emmaen@kth.se, gkreitz@kth.se, niemela@kth.se, pehrs@kth.se, viggo@kth.se

Abstract – Automated assessment systems have been em-
ployed in computer science (CS) courses at a number of
different universities. Such systems are especially appli-
cable in teaching algorithmic problem solving since they
can automatically test if an algorithm has been correctly
implemented, i.e., that it performs its specified function
on a set of inputs. Being able to implement algorithms
that work correctly is a crucial skill for CS students in
their professional role, but it can be difficult to convey
the importance of this in a classroom situation.
Programming and problem solving education supported
by automated grading has been used since 2002 at our
department. We study, using action research methodo-
logy, different strategies for deploying automated assess-
ment systems in CS courses. Towards this end, we have
developed an automated assessment system and both
introduced it into existing courses and constructed new
courses structured around it. Our primary data sources
for evaluation consists of course evaluations, statistics on
students' submitted solutions, and experience teaching
the courses.
Authors of this paper have been participating in teaching
all of the courses mentioned here.

Index Terms - Computer Science Education, Algorithms,
Automated assessment, Programming.

RELATED WORK

The use of automated assessment systems worldwide is
described in various sources [1, 2, 3, 4, 5]. Many teachers
have tried ways of promoting scaffolded learning, or helping
the students with decompositions of a greater task into
subtasks [6, 7]. Rosenbloom has used contest-influenced
tasks in an introductory course in programming [8]. Gárcia-
Mateos and Fernández-Alemán describe the experience of
reworking assessment and grading towards continuous
examination and assessment combined with an automated
assessment system [9]. Not surprisingly, this increased stu-
dent activity and performance.

OUR CONTRIBUTION

Automated assessment systems clearly assist in reducing the
teacher's workload by removing the tedious work of manu-
ally verifying correctness. While this motivates their usage
in itself, we are interested in new possibilities arising in the
space of potential teaching strategies, as exemplified in our
discussion on reductions below. A final written exam is

generally not the best way of demonstrating knowledge or
skills in programming, or possibly in any subject [10]. Our
programming exercises can serve both to practice program-
ming and to illustrate theory [11], and to assess and grade,
during the course and in the end of a course. Since 2005, we
have used the automated tool Kattis, developed by us, to
assess programming exercises. Many other systems with
similar functionality exist [12, 13]. Kattis was developed
iteratively with requirements from courses and evaluations
from students as input. The system has shown to be flexible
enough to be used in different courses with different didactic
framings.
Kattis is also used for programming competitions, the most
well-known and prestigious being the ACM International
Collegiate Programming Contest (ICPC) World Finals. The
main use of Kattis is in our advanced programming and al-
gorithm courses for CS students, as tasks in these courses
can be complicated and therefore difficult to assess accu-
rately, objectively, and efficiently for teachers and teaching
assistants (TAs). We suggest that using the system allows
the teacher to take a new set of roles in the classroom, and
also creates a more consistent, non-negotiable, message to
the students about the requirements for the exercise.

PROGRAMMING EXERCISES AT OUR SCHOOL

Programming exercises are the core of the examination in
our courses focusing on programming, but they also consti-
tute an important part of other courses, such as algorithms or
cryptography courses. The main purpose of an exercise can
be either to practice implementing algorithms from speci-
fications or pseudo code, or solving some problem by con-
structing a program. Another purpose is to make the students
work continuously with the courses. The assessment criteria
may, aside from correctness, also include efficiency in the
form of time limits or other limitations of resources. The
students usually work in pairs during scheduled computer
lab hours and on their own time. During lab hours teachers
and TAs are available for questions and help, as well as for
assessing completed exercises. Many exercises are intro-
duced by some preparatory questions in order to support the
students in choosing appropriate data structures and algo-
rithms. For each exercise there is some kind of deadline,
often connected with bonus points for the exam. The ex-
ercises are often mandatory in order to get a passing grade,
and sometimes the grade is heavily based on these exercises.
In order to get an exercise accepted, the students have to pre-
sent their solution to a teacher. The traditional way of doing

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD
 41st ASEE/IEEE Frontiers in Education Conference
 T1A-2

this is that the students, at a scheduled computer lab hour,
show their program to the teacher/TA, who checks that the
code meets the standards relevant for the course, that the stu-
dents can explain what they have been doing and how their
program works and, last but not least, that the program
seems to work. This can be done for instance with a list of
suitable inputs for testing, that the teacher can sample from.
When time limits exist, the teacher must also check that the
program is fast enough.
The presentation not only constitutes an examination situ-
ation – the TAs try to challenge the students and give them
relevant feedback for future work as well as check that stu-
dents understand the problem they have solved and can
argue for their chosen solution. Both tasks are important, but
require the TA to function both as the barrier students have
to pass to finish the assignment and as a coach. Time used
by the TA to test and inspect the program for flaws or bugs,
is valuable teaching time lost. Additionally, if the program is
found not to function satisfactorily, the TA also has to disap-
point the students by failing them. Hence, less time is spent
on discussing more interesting aspects of problem solving or
programming for the exercise. If the teacher ends up only
testing correctness, failing students and arguing why this is
necessary, everyone will feel miserable afterwards.
To solve this problem, an automated assessment system was
constructed – Kattis.

SYSTEM DESIGN

Kattis is a client-server system accessed via web and e-mail
interfaces. The system is available to the students at all ti-
mes, and not just during lab hours. There are four fundamen-
tal objects in the Kattis system. These are the user, the prob-
lem, the submission and the assessment. A user is allowed to
create submissions on a problem. Once a submission has
been made the judge system will create a “judgement” for
the submission and report this back to the user. The design is
based on ACM ICPC style competition systems, and the ter-
minology used in the documentation also originates from
programming competitions. Hence Kattis is a “judge” and
“judges” solutions to problems. Originally the “verdicts” or
“judgements” were minimal, only reporting the outcome
(such as “Accepted,” “Wrong Answer,” or “Run Time
Error.”) As in ICPC style competitions, students' solutions
are tested using inputs which are kept secret from the
students.

I. Web interface, E-mail and Command-line Interface

The web interface is the main interface to Kattis, see Fig.1.
It provides historical data about all submissions and data ab-
out the current status of the Kattis system. All students have
usernames and passwords, which they use to access the sys-
tem and their private pages, which include the source code
for all of their submissions. They can submit the source code
of a program over the web. For each accepted submission,
Kattis measures the CPU time used. The results of
submissions are public, but a student can opt to hide her
name.

Alternatively, an e-mail interface can be used. This allows
students to e-mail the source code of a program directly to
the system, providing authentication information in the e-
mail. Kattis can also e-mail back the result of the submission
to the student, providing feedback, in addition to showing it
in the web interface. A command-line tool can also be used.

FIGURE 1

EXAMPLE OF WEB INTERFACE FOR STUDENTS.

II. Backend

The Kattis backend is built in Python, with minor parts
written in C and Java that are used in the security solution.
Data about users, submissions and assessments are stored in
a PostgreSQL database. Metadata about problems are also
stored in the database, while the input and output files for
the problems are kept in the file system. When a submission
is made, it is immediately stored in the database and the
backend is informed that it should judge the submission. The
backend then retrieves the submission from the database and
stores the source code in a temporary directory. After this
the backend compiles the source code, using any compiler
flags and options specified for the problem. A submission
can at this point fail with a “Compile error,” if compilation
fails. The next step is to run the submission. The program is
wrapped with a security layer, which prevents potentially
dangerous system calls, and then executed with the input file
on standard input. It writes its answer to standard output.

FIGURE 2

MOST COMMON PATHS OF PROBLEM FLOW IN KATTIS.
At this point the program can fail for one of several reasons,
such as “Runtime error,” “Time-limit exceeded,” or in
exceptional cases even “Illegal function.” If the program
completes the run successfully, the output is either compared
to the reference output for the problem, or processed by a

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD
 41st ASEE/IEEE Frontiers in Education Conference
 T1A-3

program that does something more complex such as verify-
ing properties of a graph. This allows several correct ans-
wers. If the student's program gave an incorrect answer the
submission is considered a “Wrong Answer,” otherwise the
judge checks if there are any more input files. If it is the last
input file the submission is judged “Accepted,” see Fig. 2.

METHODOLOGY FOR TEACHING WITH KATTIS

Kattis is designed to be used with what we call test-driven
education. The aim of introducing Kattis was to change the
process of getting a solution accepted to include more
opportunities of verification and hopefully no surprises at
presentation. Before presenting their program to the teacher,
students are required to submit it to Kattis in order to test for
correctness. They can submit solutions as often as they
prefer and whenever they want. In this way, Kattis takes the
role of an adversary, failing incorrect solutions. Working
against an adversary encourages a test-driven development
process for the student’s solution. If the exercise is
partitioned in appropriately sized pieces, this will provide
some scaffolding for the learning process. The work that
Kattis performs therefore has the character of formative
assessment, but as soon as the student is satisfied with the
result, the assessment becomes summative and sometimes
decides the student’s grade.
When presenting the program, students are asked to show
that Kattis accepted it, which means that both the teacher
and the students know that the program works at the
beginning of the presentation. The rest of the presentation is
as before; that is, students have to explain their code and
choice of strategy and the teacher asks questions like “what
does this parameter mean” or “what happens if you
change...” The combination of manual and automated ass-
essment has been previously studied and recommended [14].
By removing the tedious work of testing the program from
the teacher, the importance of the rest of the presentation is
emphasized. We claim that this is beneficial to all parties
involved: the student, teacher, and the university. We can
provide more exercises at a lower cost, and the quality of
teacher-student meeting time increases. For the student,
already knowing that the program works when signing up to
present the work, leads to a less stressful situation.
Kattis is guaranteed to treat all students equally, and chance
does not affect whether a submitted program is accepted or
not. All test cases are always used. Hence, Kattis assesses
the solutions’ correctness better that the teacher would.

EXPERIENCE

Kattis was first used in two courses in 2005 and 2006. After
the first course, interviews were conducted with two stu-
dents, and after the second all students got a few questions
about the system. From this, we learned that the major draw-
backs perceived by students were that it was frustrating
knowing that the program worked for most inputs, but not
exactly for what input it failed, and partly that for some ex-
ercises, the standard libraries for input and output handling
in Java and C++ were too slow, so that the students needed

to work not only on the algorithms they were supposed to
practice on, but also on reading and writing. This was later
remedied by providing example programs with methods that
were sufficiently efficient.
Regarding the secret test cases, it was never our intention to
guide the students with them. The solution should be based
on the problem statement, as should the test cases. If
provided with the exact test cases, students would face an
entirely different, and simpler, task. However, when a
program was failed by Kattis, a teacher interface with more
information about each submission (including the failing test
cases) was needed, and therefore built. The decision whether
to tell the students what the test case looked like then
belonged to the teachers. This makes it possible to help
students who are genuinely stuck trying everything they can
come up with, without rewarding non-reflective behavior
among the students as a group.
The feedback mechanisms were also improved so that each
test case can be run separately and a failure hence was asso-
ciated with a specific test case and feedback. Statistics of
solutions for the problems were also included, together with
a high score list for each problem. After this, Kattis was
tested on more courses.

CASE STUDIES

I. Algorithms, Data Structures, and Complexity

Algorithms, Data structures, and Complexity (ADK) is a
second (from now on third) year course of about 130 stu-
dents, mandatory for CS majors. Writing efficient programs
is among the goals of the course. Four programming
exercises constitute a third of the course. Since the course is
on fairly complicated algorithms and about solving problems
efficiently, the testing needs to be extensive and the teacher
might fail to spot errors such as corner cases that are not
handled correctly. There could also be an issue that certain
computers are faster than others, so checking time limits
could include running the program on some special machine.
As hints for the problems in the exercises, there are theory
questions that students can answer before they start prog-
ramming. These questions are marked in class by peer ass-
essment.
One of the exercises was split into several parts when Kattis
was introduced, and another exercise was added after Kattis’
first appearance in the course.

II. Programming and Problem Solving Under Pressure

Programming and Problem Solving Under Pressure (Popup)
is an elective advanced level course of about 30 students,
most of them CS majors. This course was the first course
where Kattis was used, and the course is designed around the
concept of test-driven education. Part of the examination is
for students to solve a very large set of problems; a total of
at least 26 solved problems over a semester are required for
a passing grade.
The problems used in the course are of the same style as
those used at algorithmic programming competitions, i.e.

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD
 41st ASEE/IEEE Frontiers in Education Conference
 T1A-4

small (a solution typically has 25-100 lines of code) and
well-defined. The formal input specification includes limits
on how large the test cases are. Another part of the examina-
tion for the course is that students are asked to produce a
programming library. By creating high-quality implementa-
tions of algorithms, and having them automatically tested for
correctness by the Kattis system, students can be confident
that they have implemented the algorithms correctly. This al-
lows them to confidently use their library as part of solutions
for other problems, both in this course, and in their future
work. Without an automated grading system, the workload
of grading literally thousands of student solutions would be
overwhelming.

III. Advanced Algorithms

The Advanced Algorithms course has used Kattis since fall
2006, and needed more advanced feedback features such as
detailed error messages and the ability to assign scores to
solutions based on their quality, as specified by the teacher.
The output is collected by a program that computes a score,
for instance based on the number of test cases a factoring
algorithm was able to finish within the time limit or the
length of a tour in the Traveling Salesperson problem (TSP).
This was essential, since students had begun competing for
the best solution, and unless otherwise specified, the high
score list will show the fastest solutions. The teacher then
needed to direct the competing students’ attention to the
quality criteria of interest for the problem at hand. There
were no changes in passing rate or grade when Kattis was
introduced, but students got more feedback earlier and many
of them continue to submit solutions long after their first one
is accepted by Kattis.
Although our hypothesis is that more students strive to get
further in terms of quality of their solutions, we cannot prove
this, since several external factors have changed during our
evaluation period. These include new grades that were intro-
duced, varying admission grades, and changes in exercises
over the years.

IV. IP routing in simple networks

IP routing is an advanced course in networking, given to
master level CS and Telecommunication students. The cour-
se is practical in nature, with a focus on configuration of net-
works and detailed understanding of protocols. The number
of students has been steadily increasing, from 16 in 2007 to
65 students in 2010.
A homework assignment to write a program that forwards IP
packets was introduced in 2007. The assignment is intended
to provide students with a deeper understanding of the prac-
tical issues of packet processing in a router, including the
handling of endianness of data, unaligned data structures and
lookups in large routing tables. This task was considered
hard: 31% of the students failed to complete it in 2007 and
50% in 2008. The low performance was primarily attributed
to lack of experience with the C programming language am-
ong the students. To improve student performance the as-
signment was converted to use the Kattis system in 2009. At

the same time the assignment was made easier, anticipating
increased difficulty from the more careful validation made
by Kattis. An option was also introduced to allow students
lacking experience with the C programming language to
complete a theoretical task instead. The result was a consi-
derable improvement in student performance (9% failed
2009 and 13% failed 2010). Around 12% of the students
choose to complete the theoretical task instead of the Kattis
assignment each year.

THE EFFECT OF CAREFULLY CHECKING STUDENT CODE

The first year Kattis was used in the ADK course, 2006,
fewer students actually were accepted on time for one of the
assignments. We have no reason to believe that students got
into unnecessary trouble because of having to use Kattis, to
the extent that they did not pass the examination. However,
it is likely that the phenomenon occurred since the code that
the students produced often was not correct or did not follow
the specifications, neither before nor after the introduction of
Kattis. Since all teachers cannot always run all test cases, it
was possible before Kattis to pass the presentation with an
almost correct program. With the Kattis system, a much
more careful, and standardized test of the students’ code is
made. Table I shows the results over time in the ADK co-
urse, where the fraction of students who passed the assign-
ment during the course is listed. Some differences in perfor-
mance can seemingly be explained by the students’ general
performance level – for instance in 2005 all results dropped
and 2007 the performance was better than before and after.
For this reason, the admission grade and performance level
of the students of their first year is listed for comparison.
The maximum admission grade is 20.0 and the grades in the
table are the lowest among the accepted students.

TABLE I
STUDENTS ACCEPTED WHEN PRESENTING EXERCISES IN ADK. E1 AND E2

WITH KATTIS FROM 2006 AND E3 WITH MANUAL ASSESSMENT ONLY.
year E1 E2 E3 Admission

grade (min.)
Done with ≥2/3 of
first year courses

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010

90 %
92 %
89 %
93 %
94 %
83 %
71 %
88 %
74 %
77 %
80 %

94 %
91 %
90 %
97 %
92 %
83 %
83 %
89 %
83 %
83 %
85 %

94 %
88 %
88 %
93 %
88 %
77 %
84 %
91 %
78 %
88 %
85 %

18.28
17.84
17.55
16.96
15.33
14.50
16.18
15.70
11.52
15.10
15.43

-- %
-- %
-- %
-- %
76 %
52 %
55 %
67 %
66 %
63 %
64 %

Exercises E1 and E2 became more difficult to finish on time
when Kattis was introduced. The three exercises listed have
been re-ordered through the years, but apart from adding
Kattis, no major changes have been made.

STUDENTS’ MOTIVATION AND KATTIS USAGE

Two things in the web interface seemingly have especially
interesting consequences: the fact that Kattis publishes the
CPU time a submission consumes and that Kattis for each

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD
 41st ASEE/IEEE Frontiers in Education Conference
 T1A-5

problem and programming language publishes a “high score
list” listing the best solutions, by speed or by score.
The possibility of using Kattis outside regular working hours
is not only a theoretical advantage – it is used extensively by
the students, see Fig. 3. For the exercises that are used in the
ADK course, students on average have between 2 and 4
accepted submissions, but the variation is large. The median
number of accepted submissions for each problem is one or
two, but more than 50 students have five or more, and some
students have more than 100 accepted solutions to the same
problem.

FIGURE 3

SUBMITTED AND ACCEPTED SOLUTIONS FOR DIFFERENT HOURS OF THE DAY.

COURSE EVALUATIONS

Each course is evaluated after the final exam, and some qu-
estions usually concern Kattis when Kattis has been used.
The first year Kattis was used on the ADK course, only half
of the students thought that Kattis was a good or a very good
service. This number has since increased to over 80 %. The
students are happy about the existence of Kattis, however,
each year some of them want to see more feedback and in-
formation when their solutions are not accepted by the sys-
tem. The actual test cases are also desired during debugging,
but not given since that would change the comprehensive
content of the exercises completely. The exercises would on-
ly be about programming according to a specification that
someone else is responsible for.

DISCUSSION

Sometimes students complain about Kattis being
unreasonable. Behind their reasoning, seemingly the idea
resides that it is a two-step process to finish an assignment –
first make it work, and then get it accepted by Kattis. This
could be due to sparse feedback [13], but we believe in
another explanation: while teachers believe that correct
handling of all legal input is crucial, students seem to con-
sider a program correct even if some corner cases are treated
incorrectly, as found by [15]. By using Kattis, the teachers’
view is enforced in the final programs. Students appear to
more easily accept an automated system being pedantic.

Considering Kattis “game-like” raises new issues to take
into account. When playing an educational game, it is not
necessarily the case that students see the task from an educa-
tional perspective. They might instead set out trying to out-
perform themselves or other students, learning the game in
detail – enter “Nintendo mode” [16]. In programming exer-
cises, generally one of the goals is learning to program bet-
ter, and hence merely working with the exercises is guaran-
teed to provide programming experience. For the majority of
the exercises in Kattis, the notion of “Nintendo mode” is not
a problem, since the “game” consists of tasks and requires
competences that we want the students to learn. Students
trying to write the fastest program are spending more time
on the task, which is one condition for learning [17].
The time limits are not only used by teachers to enforce ef-
ficient solutions. They also motivate students to improve and
to compete. Of course, students might do this without Kattis,
but having a solution on the list of fastest solutions or high-
est score for a problem seems to provide extra motivation.
This adds some artifacts of games to the tasks, but a more
detailed analysis is beyond the scope of this paper.

SPACE OF NEW POSSIBILITIES

Apart from the workload issue, the use of an automated sys-
tem allows the teacher to be, psychologically, more on the
students' side. Instead of grading, and sometimes failing, stu-
dents' solutions the teacher's or TA's role now becomes more
of a helper, assisting the student to get her program to be ac-
cepted by the assessment system.
Moving the testing of correctness and efficiency to an auto-
mated system is by itself a sufficient reason to use Kattis in a
course. But in fact several new options become available
through the use of Kattis, enabling the pedagogy of a course
to come closer to test-driven education. While there are
many interesting directions, we limit our discussion to two
types of improvements, which have been implemented.

I. Splitting an Existing Assignment

As an automated assessment system is always available to
test students' solutions, splitting an assignment into smaller
pieces becomes a possibility. A typical traditional CS assign-
ment may involve implementing a number of data structures
and algorithms, and then correctly applying these to solve
the problem. As manual grading is a time-consuming acti-
vity, typically only the complete solution is then graded by a
teacher. Such inspection of the finished work can often re-
veal bugs that can be very difficult to correctly diagnose, as
they may stem from bugs in many different parts of the solu-
tion. Apart from the grading scenario, it is a difficult and
time-consuming task for TAs to help students with subtle
bugs in a core algorithm causing a complex student solution
to crash, seemingly at random.
By splitting the problem into pieces, and in most program-
ming tasks there are natural pieces, the correctness and effi-
ciency of individual pieces can be established. In a way, this
is similar to unit testing, which is considered a best practice
in the software industry.

Session T1A

978-1-61284-469-5/11/$26.00 ©2011 IEEE October 12 - 15, 2011, Rapid City, SD
 41st ASEE/IEEE Frontiers in Education Conference
 T1A-6

II. Reductions

A core concept in computer science is the concept of reduc-
tions, both as tools for proofs and for constructing algo-
rithms. For many students this concept is difficult to grasp.
Through an automatic system, a student can be given black
box access to something that can solve instances of some
specific problem. The student is then asked to solve some
other problem through the use of the black box, thus getting
first-hand experience at discovering and implementing a re-
duction. The problem is set up in such a way that the student
cannot solve it within the specified time limits without using
the black box. This is important, as some students are other-
wise prone to misunderstand the concept of reductions [18,
19] and attempt to implement a solution from scratch.
We have created several lab assignments where the student's
solution interacts in a black-box fashion with a computer
program solving some different task. In the first type of re-
duction, the student is simply given a black-box implementa-
tion of an algorithm solving the maximum flow problem that
they interact with to solve bipartite matching, and in the
second one the students get input for a known NP complete
problem and the task to reduce it to another decision prob-
lem [11] with the same answer “yes” or “no.”

CONCLUSIONS

Using an automated assessment system for educational
purposes helps teachers to get time for essential teaching,
releases the burden of marking/assessing and determining
whether code is correct and makes students feel more
confident about their solutions. This improves the relati-
onship between students and teachers during oral exams, and
provides tools for the students to work more independently
of teachers. Not only mechanical work can be performed and
assessed within this type of teaching. Some tasks require a
large degree of creativity and high-level understanding of
the problem to solve. The system can either be “added” on
top of an existing course, introduce new types of
assignments, or be used as the basis for a completely new
course with a different teaching style and requirements than
most courses. The phenomenon that the system encourages
competition and makes students try hard has to be taken into
account when introducing new exercises. Since the students
make use of the information that they get, the resources that
the system measures ought to be important. Otherwise, the
students might still try to get a better number for the
measurements, forgetting other goals with the exercise.

REFERENCES

[1] Sant, J. A. “’Mailing it in’: email-centric automated assessment.”
ITiCSE	 '09:	 Proc.	 14th	 ann.	 SIGCSE	 conf.	 on	 Innovation	 and	
technology	 in	 Comp.	 Sci.	 education, ACM, 2009, pp. 308-312.

[2] Amelung, M., Forbrig, P. and Rösner, D. “Towards generic and
flexible web services for e-assessment.” ITiCSE	 '08:	 Proc.	 13th	 ann.	
SIGCSE	 conf.	 on	 Innovation	 and	 technology	 in	 Comp.Sci.	 education,
ACM, 2008, pp. 219-224.

[3] Higgins, C. A. and Bligh, B. “Formative computer based assessment
in diagram based domains.” ITiCSE	 '06:	 Proc,	 11th	 ann.	 SIGCSE	 conf.	
on	 Innovation	 and	 technology	 in	 Comp.	 Sci.	 education, ACM, 2006,
pp. 98-102.

[4] Suleman, H. “Automatic marking with Sakai.” SAICSIT	 '08:	 Proc.	
2008	 ann.	 research	 conf.	 of	 the	 South	 African	 Inst.	 of	 Comp.	 Sci.	 and	
Information	 Technologists	 on	 IT	 research	 in	 developing	 countries,
ACM, 2008, pp. 229-236.

[5] Thomas, P., Waugh, K. and Smith, N. “Generalised diagram revision
tools with automatic marking.” ITiCSE	 '09:	 Proc.14th	 ann.	 SIGCSE	
conf.	 on	 Innovation	 and	 technology	 in	 Comp.	 Sci.	 education, ACM,
2009, pp. 318-322.

[6] Sooriamurthi, R. “Introducing abstraction and decomposition to
novice programmers.” ITiCSE	 '09:	 Proc.14th	 ann.	 SIGCSE	 conf.	 on	
Innovation	 and	 technology	 in	 Comp.	 Sci.	 education, ACM, 2009, pp.
196-200.

[7] Ginat, D. “Interleaved pattern composition and scaffolded learning.”
ITiCSE	 '09:	 Proc.	 14th	 ann.	 SIGCSE	 conf.	 on	 Innovation	 and	
technology	 in	 Comp.	 Sci.	 education, ACM, 2009, pp. 109-113.

[8] Rosenbloom, A. “Running a programming contest in an introductory
computer science course.” ITiCSE	 '09:	 Proc.	 14th	 ann.	 SIGCSE	 conf.	
on	 Innovation	 and	 technology	 in	 Comp.	 Sci.	 	 education, ACM, 2009,
pp. 347-347.

[9] Gárcia-Mateos, G. and Fernández-Alemán, J. L. “A	 course on
algorithms and data structures using on-line judging.” ITiCSE	 '09:	
Proc.	 14th	 ann.	 SIGCSE	 conf.	 on	 Innovation	 and	 technology	 in	 Comp.	
Sci.	 education, ACM, 2009, pp. 45-49.

[10] Falchikov, N. Improving	 Assessment	 Through	 Student	 Involvement,
Routledge, New York, 2005, pp. 32-58.

[11] Enström, E. and Kann, V. “Computer lab work on theory.” ITiCSE	 '10:	
Proc.	 15th	 ann.	 Conf.	 on	 Innovation	 and	 technology	 in	 Comp.	 Sci.	
education, ACM, 2010, pp. 93-97.

[12] Leal, J. P. and Silva, F. “Mooshak: a web-based multi-site
programming contest system.” Softw.	 Pract.	 Exper., Vol. 33, No 6,
2003, pp. 567-581.

[13] Ihantola, P. et al. “Review of Recent Systems for Automatic
Assessment of Programming Assignments” Koli Calling 2010, Koli,
Finland

[14] Ahoniemi, T. and Karavirta, V. “Analyzing the use of a rubric-based
grading tool.” ITiCSE '09: Proc. 14th ann. SIGCSE conf. on
Innovation and technology in Comp. Sci. education, ACM, 2009, pp.
333-337.

[15] Kolikant and Ben-David, Y and Mussai, M. “So my program doesn't
run! Definition, origins, and practical expressions of students'
(mis)conceptions of correctness.” Computer Science Education,
Vol. 18, No. 2, 2008, pp. 135-151.

[16] Rieber, L. and Noah, D. “Games, simulations, and visual metaphors in
education: antagonism between enjoyment and learning.” Educational	
Media	 International, Vol. 45, No 2, June 2008, pp.77-92.

[17] Chickering, A.W. and Gamson, Z.F. "Seven principles for good
practice in undergraduate education" American Association of Higher
Education Bulletin, vol.39 no.7, 1987, pp.3-7.

[18] Armoni, M. “Reductive thinking in a quantitative perspective: the case
of the algorithm course.” ITiCSE '08: Proc.13th ann. conf. on
Innovation and technology in Comp. Sci. education, ACM, 2008, pp.
53-57.

[19] Armoni, M., Gal-Ezer, J. and Hazzan, O. “Reductive thinking in
undergraduate CS courses.” ITiCSE '06: Proc. 11th ann. SIGCSE
conf. on Innovation and technology in Comp. Sci. education, ACM,
2006 pp. 133-137.

