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Gyujin Oh There is no abelian scheme over Z

Introduction

In his 1962 ICM talk [Sh], Shafarevich suggested several conjectures regarding the finiteness
of isomorphism classes of arithmetic objects having good reduction almost everywhere. Such
problems can find their origins from basic finiteness theorems in algebraic number theory, es-
pecially the Hermite-Minkowski theorem: for any integer N > 0 and a number field K,
there are only finitely many number fields L such that the discriminant of L/K is at most N.
A more geometric re-statement of the theorem is as follows.

Theorem (Hermite-Minkowski). For any number field K, a finite set of primes S of K and an
integer N > 0, there are only finitely many isomorphism classes of zero-dimensional varieties
of degree at most N over K which possess a smooth model over Spec(Ok s), where Ok s is the
ring of S-integers in K.

In this regard, we can state the Shafarevich conjectures in the following form.

Conjecture (Shafarevich). Let K be a number field and S be a finite set of primes of K. Let
g > 2 be an integer.

(a) (Shafarevich conjecture for curves) There are only finitely many isomorphism classes of
smooth curves over Ok g of genus g. Equivalently, there are only finitely many isomorphism
classes of curves over K of genus g having good reduction outside S.

(b) (Shafarevich conjecture for abelian varieties) There are only finitely many isomorphism
classes of abelian schemes over Ok g of dimension g. Equivalently, there are only finitely many
isomorphism classes of abelian varieties over K of dimension g having good reduction outside

S.

In particular, Faltings [Fa] proved the Shafarevich conjectures in conjunction with various
other finiteness results, including the finiteness of isogeny classes and the Mordell’s conjecture.

On the other hand, there are some special cases where one can suspect whether the set of
isomorphism classes of arithmetic object is actually empty. This can be motivated from the
classic theorem of Minkowski that there is no nontrivial unramified extension of Q. We can as
well geometrically re-interpret the statement as follows.

Theorem (Minkowski). The only connected zero-dimensional variety over Q admitting a smooth
model over Spec(Z) is Spec(Q).

From this theorem, Shafarevich further conjectured that the sets of isomorphism classes
considered in the Shafarevich conjectures are empty if K = Q and S = (). In other words,

Conjecture (Shafarevich). There is no nontrivial abelian scheme over Z. Equivalently, there
is mo nontrivial abelian variety over Q with everywhere good reduction.

This conjecture is established independently by Fontaine [Fol] and Abrashkin [Abl], and
this is the direction we will mostly focus on amongst many Shafarevich conjectures.

The basic strategy behind the first proofs is to study ramification of finite flat group schemes
and p-divisible groups. Specifically, if there is an abelian scheme A over Z, then for a prime p,
the collection of p™-torsions {A[p"]}n>1 forms an object called a p-divisible group over Z. By
studying the ramification bounds on such objects, just like the proof of Minkowski’s theorem,
the proofs show that, for a small prime p, a p-divisible group over Z is of very simple form, so
simple that it cannot arise as a p-divisible group from p-power torsions of an abelian variety.

Somehow in a different flavor, Fontaine [Fo2] and Abrashkin [Ab2] later revisited the nonex-
istence of abelian scheme over Z. Instead of analyzing the ramification behavior of p-divisible
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groups and torsion subgroups, which are objects only available to group schemes, they instead
analyzed the ramification of p-adic étale cohomology as a Galois representation. This strategy
became possible via the development of p-adic Hodge theory and its integral counterpart. This
strategy enabled them to generalize the nonexistence results to certain smooth proper schemes
with no group structure. In particular, they proved the following.

Theorem (Fontaine, [Fo2, Théoreme 1], [Ab2, 7.6]). Let X be a smooth proper variety over Q
with everywhere good reduction. Then, H (X, Q%) =0 fori#j,i+j <3.

In particular, this implies the nonexistence of abelian scheme over Z as corollary.

In this essay, we review the both approaches towards the proof of nonexistence of abelian
variety over Q with everywhere good reduction. The first chapter will focus on the analysis of
finite flat group schemes and p-divisible groups. In the chapter, we will go through the details of
Fontaine’s original proof. In the chapter, we will also review some extensions of the result using
the same kind of technique, most notably the one by Schoof [Scl]; it gives the nonexistence
of abelian varieties over a small number field with semi-stable reduction at one small prime
and good reduction at everywhere else. We briefly examine the results due to Brumer-Kramer
[BK], who used a different approach more in conjunction with the Shafarevich conjecture (or,
Faltings’ Finiteness Theorem).

The second chapter will be aiming for p-adic Hodge theoretic proofs of nonexistence of
abelian schemes over Z. In particular, we will observe various classes of p-adic Galois represen-
tations, and examine how to classify those representations in a different way. In particular, we
will see p-adic Galois representations and their integral sublattices can be classified by mod-
ules with various (semi)linear structures attached. Such modules then will have a similar kind
of discriminant bound as p-divisible groups and finite flat group schemes have. In particu-
lar, using integral p-adic Hodge theoretic constructions, including Fontaine-Laffaille modules,
Breuil-Kisin modules and (¢, G\)—modules, we give discriminant bounds for torsion crystalline
and semi-stable representations. This generalization to semi-stable representations can yield
some other nonexistence results, and we in particular will review the result of Abrashkin [Ab4]
on the nonexistence of a smooth projective variety over Q with semi-stable reduction at 3 and
good reduction at everywhere else.

In the course, we will introduce the relevant preliminaries, including the theory of finite flat
group schemes, p-divisible groups, abelian varieties and their reduction types, étale cohomology
theory, p-adic Hodge theory and integral p-adic Hodge theory. A reader is assumed to have
good familiarity with homological algebra as in [La] (including spectral sequences), algebraic
geometry as in [Har] or [EGA] and algebraic number theory /class field theory as in [Se] and [CF].

Notations. G will mean the absolute Galois group of K. K, Ky and K™ will mean the al-
gebraic closure, the separable closure and the maximal unramified extension of K, respectively.
Ok, Ik and kg will mean the ring of integers, the inertia group and the residue field, respec-
tively. For a p-adic field K, Ky will mean the maximal unramified (over Q,) sub-extension of
K, ie. Ky=W(kg)[1/p]. The letters ©® and A will be reserved for different and discriminant
ideals, respectively. x will be the cyclotomic character, and both ¢ and o will be used for
the Frobenius. (, is the n-th root of unity. Frac R is the field of fractions of R. A subscript
attached to a scheme usually means the base change to the subscript scheme. I' usually means
the section functor. [n] is the multiplication-by-n map.



Chapter 1

Nonexistence of Certain Abelian
Varieties

1.1 Overview

The following theorem can be regarded as the main theorem of Fontaine’s first proof in [Fol].

Theorem 1.1.1 [Fol, Théoreme 1]. Let K be a finite extension of Qp, and let e = vi(p) be
the absolute ramification index. For an integer n > 1, suppose I' is a finite flat commutative
group scheme over Ok killed by p". Let L = K(I'(K)), and G = Gal(L/K). Then, G® =1
foru>e (n + Iﬁ), and v(Dp k) <e (n + Iﬁ), where Dy, is the different of L/ K.

In particular, if G is the restriction of some finite flat group scheme I'/ O for a number field
K, then it turns out that K(I'(K)) is unramified at primes outside p and is very mildly ramified
at p by the above theorem; this is the heart of nonexistence results in this vein. Combining with
the discriminant bounds of Odlyzko [Mar|, one can then give an upper bound of [L : K]. Case
analysis for L/K will give a severe restriction on the structure of I" as a finite flat group scheme.
In particular, the cases we will examine will only have a finite flat commutative group scheme
of p-power order as being an extension of a constant group scheme by a diagonalizable group
scheme. An abelian variety, however, cannot yield such group scheme, as such group scheme

has “too many points,” as we will see. The main nonexistence results are as follows.

Theorem 1.1.2 [Fol, Corollaire 2]. For E = Q,Q(v/—1),Q(v/=3),Q(V/5), there is no nontriv-
1al abelian variety over E with everywhere good reduction.

Theorem 1.1.3 [Scl, Theorem 1.1]. For the primes { = 2,3,5,7,13, there is no nontrivial
abelian variety over Q with good reduction outside £ and semi-stable reduction at £.

1.2 Preliminaries

1.2.1 Finite Flat Group Schemes
1.2.1.1 Affine Group Schemes

Let S be a base scheme. A group scheme over S is an S-scheme G equipped with S-morphisms
m: G xg G — G (multiplication), e : S — G (identity) and i : G — G (inverse) such that the
usual compatibility relations of groups are satisfied; namely, the associativity, identity, inverse
axioms are satisfied. One can define the same notion more cleanly via the functor of points
approach; a group scheme over S is a representable contravariant functor (Sch/S) — Grp
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from the category of S-schemes to the category of groups. In other words, an S-scheme G is
a group scheme when you can give compatible group structures on G(T')’s, for all S-schemes
T. In particular, one does not have to construct multiplication, inverse and identity by hand
because, for example, the multiplication m : G x G — G can be recovered as the addition of
two natural projections pry,pry : G X G — G using the group structure we have on G(G x G).
Also, a functor of points is determined by its restriction to affine schemes', so we only need to
construct compatible group structures of G(7)’s for affine 7"s.

From now on, we will mostly focus on the case of affine base scheme S = Spec R and affine S-
group scheme G = Spec A. Then, induced from multiplication, identity and inverse morphisms
of G, the R-algebra A will have corresponding R-algebra maps with everything dualized, namely
m:A— A®r A, e: A— Randi: A — A, called comultiplication, counit and coinverse,
respectively. An R-algebra with such extra structures is called a Hopf algebra.

Example 1.2.1. Let R be a ring.
1. The additive group G,. Let G, = Spec(R]t]). For an R-algebra T,
Go(T) = Homp_as(R[t],T) =T,
and the additive group structure of 7" given on G,(7") makes G, a group scheme.
2. The multiplicative group G,,. Let G,, = Spec(R][t,t!]). For an R-algebra T,
Gm(T) = Homp_ag(R[t, t1],T) = T%,
so the multiplicative group structure of 7> given on G,,(T) makes G,, a group scheme.

3. Roots of unity. For an integer n > 2, let u,, = Spec R[t]/(t" —1). Then, for an R-algebra
T,
pn(T) = Homp_a1s(R[t]/(t" — 1),T) = {n — th roots of unity in 7'}

So the multiplicative group structures make u, a group scheme.

4. Constant group schemes. For a finite group I, let R be a direct product of IT| copies
of R. We call Spec R" the constant group scheme associated with I', denoted also as I'
(or T'r). For an R-algebra T', SpecT is divided into connected components, so T = []; T;
where the only idempotents in T} are 0 and 1. So,

Homp_ag(R",T) = [ [ Homp_ag(R", T5),
i

and for each 4, an R-algebra homomorphism R — T} is completely determined by choos-
ing which direct factor R embeds into T'; if one is chosen, the other factors should collapse
in T. Thus, Homp_a,(R",T;) = I'. The natural group structure on Hompg_ne(R", T) =
[1; Homp_ag(RY, T;) = [1; I is that induced from T

5. Diagonalizable group schemes. For an abelian group I', let R[I'] = @,crR7y be the
group algebra of I over R. We call Spec R[I'] the diagonalizable group scheme associated
with T', denoted as D(T"). Note that, for an R-algebra T,

Homp_,1s(R[I],T) = Hom(I', T™),

the set of group homomorphisms from I' to T*. The multiplicative group structure of
T thus gives a natural group structure on (Spec R[I'])(T). Note that Spec R[Z] = G,
whereas Spec R[Z/nZ] = pn,.

!This is just another way of saying that every scheme is built up from affine schemes, e.g. [EH, Proposition
VI-2].
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The notions of a subgroup scheme and a group scheme homomorphism can be defined neatly

in the same way by using the functor of points approach. Moreover, given a homomorphism

¢ : G — G of S-group schemes, the functor H : T+ ker(G(T) @, G'(T)) is representable,

as it can be also thought as a fiber product of ¢ : G — G’ and the identity section eq :
S — G'. This defines the kernel of a homomorphism of group schemes. On the other hand,
given a homomorphism ¢ : G — G’ of S-group schemes, the functor T' — coker(p(T)) =
G'(T)/¢o(G(T)) is in general not representable. The formation of quotient in certain cases will
be discussed later.

1.2.1.2 Finite Flat Group Schemes

Over a locally noetherian base scheme S, an S-scheme G is finite and flat over S if and only if
Ox is locally free of finite rank as Og-module. For an affine noetherian base S = Spec R, a finite
flat R-scheme G is an affine scheme Spec A where A is locally free of finite rank as R-module.
A finite flat scheme is of rank n (or order n) if A is locally free of rank n as R-module. For a
general base, this can be also defined as the rank of Og as Og-module.

Remark 1.2.1. For a general base S, the category of finite flat group schemes over S is just
a pre-abelian category (i.e. an additive category with kernels and cokernels), not necessarily
an abelian category. This kind of problem is inherent in all kinds of categories of schemes;
recall that in a general category of schemes, there are no “quotient schemes.” On the other
hand, the whole yoga of topos says that you need to think an object as a representable sheaf
on a site. Thus, the “right way” to think of finite flat S-group schemes is to regard it as
a representable object in the category of sheaves over the (big) fppf (=finitely presented and
faithfully flat, “fidélement plate de présentation finie”) site of S. Such category of sheaves is an
abelian category with enough injectives, so we can perform homological algebra in this larger
category. One way to go back to the category of finite flat S-group schemes is via faithful flat
descent, which basically says that a sheaf is representable if and only if it is locally representable.
The meaning of this remark will be a bit clearer as we will introduce the notion of sites in the
preliminaries section of the second chapter.

For a finite flat commutative group scheme G = SpecA over S = SpecR, let AP =
Hompg(A, R). This is also an R-module. Then, by dualizing everything, A” becomes an R-
Hopf algebra, which is also finite and flat over R. The finite flat group scheme G = Spec AP is
called the (Cartier) dual group scheme. It is the dual of G in the sense that, for any R-algebra
T,

GD(T) = HOIHT(GT, Gm,T),

where G is the base change of G to T, and G,, 7 is defined over T'. This is called the Cartier
duality (cf. [Tatl, (3.8)]). The most basic examples are the duality between constant group
schemes and diagonalizable group schemes; if I' is a commutative group, the Cartier dual of I'g
is D(I")g, and vice versa.

The Cartier duality is crucial in proving that, for a finite flat commutative group scheme,
the order kills the group.

Theorem 1.2.1 (Deligne). If G = Spec A is a finite flat commutative group scheme over R of
rank n, then repeating the group law n times gives a zero map, i.e. the multiplication by n map?
[n] : G — G factors through the identity map Spec R — G.

2This is a group homomorphism as G is commutative. This map, especially its kernel, plays a crucial role.
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Proof. As A is flat over R, we can verify the annihilation over the localizations of R. Thus, we
can assume that R is local, so that A becomes free over R.

We can identify the subgroup G(R) = Homp_a1g(A, R) C Homp_moa(4, R) = AP as the
group of group-like elements of AP, that is, the group of elements A € (AP)* such that the
comultiplication of A” (which is the dual of the multiplicative structure of A) sends \ to
A ® X. Namely, an element A € AP is group-like if and only if it is invertible in A” and
the corresponding map A : A — R is multiplicative. Note that the formation of dual Hopf
algebra and the identifiaction of group-like elements are compatible with base change. Thus it
is sufficient to show that A" = 1 for all A € G(R) C AP.

Let 7y : A — A be the transpose of right multiplication by A, which is an R-automorphism
of A. Let 7 = idyp @7y : AP ®p A — AP @ A be an A-automorphism of AP @ A. As AP® A
is a free A-module, for an A-automorphism of AP ®pr A, we can think of the determinant
det : Auto(AP @ A) — A. As 7, is originally an R-automorphism of A, 7 does not change the
determinant. Thus, det(id4) = det(7(id4)). However, as 7(id4) = Aid4, we have det(id4) =
det(\) det(idyg) = A" det(id4). As det(idy) is invertible, A" = 1, as desired. O

1.2.1.3 Kahler Differentials on Affine Group Schemes

For an affine R-group scheme GG = Spec A, the kernel of the counit € : A — R is called the
augmentation ideal. As the canonical map R — A splits the counit, we have A = R @ I as an
R-module. Therefore, for f e I, m(f) — f®1-1®@ felI®]I.

In terms of the augmentation ideal, we can describe the module of Kdhler differentials
and a universal derivation. Recall that, for an A-module M, a derivation is an R-linear map
D : A — M such that it satisfies the Leibniz rule, i.e. D(ab) = aD(b) + bD(a). The set of all
derivations A — M is denoted as Derg(A, M). Then, there exists a univeral object Qh IR the
module of Kdhler differentials, such that Derg(A, M) = HomA(leél/R, M) for all A-modules M
[Mat, §26]. A wuniversal derivation is a derivation A — 9}4 /R corresponding to the identity map
of 9}4/3- Note that, as A = R® I, we have a map A — I/I? which first kills R C A and then

mods out by I2.

Proposition 1.2.1 [Tatl, (2.11)]. Let M be an A-module, and ¢ : M @r A — M be the map
giving the action of A on M. The map X\ — Yo ((Aom) ®id4) o m is an isomorphisim from
Homp_mod(I/1%, M) to Derg(A, M). In particular, Qh/R ~ (I/1?) ®p A, and (moidy) om :
A — (I/I?) ®p A is a universal R-linear derivation for A.

Proof. We will only prove the case when A is finitely generated. However, the same proof can be
justified to work for general A. Note that, if we denote J = ker(m : A®@r A — A), the kernel of
multiplication, then A ®p (I/1?) =2 J/J? as A-modules. So it is sufficient to prove that QA/R =
J/J? as A-modules. Suppose A = R[x1,---,x,]/(fi(z));. Then, the multiplication map can

be seen as R[$17 s Iny Y1, ;yn]/<fz(l‘)7fz(y)>l - R[tlﬂ e atn]/<f2(t)>l> sending @, y; — ;.
Thus, ker m is generated by €; := y;—x;’s. Then AQrA = k[x1, - ,xn, €1, , €]/ (fi(2), fi(z+
€))i, s0 J/J? = @ Aei/ (X}, ngie;Qj, which is isomorphic to Qh/R. O

1.2.1.4 Finite Etale Group Schemes

A finite flat S-group scheme G is étale if the structure map G — S is étale. There are several
equivalent ways of defining étaleness for a finite flat S-group scheme G.

o (G is étale if QIG/S =0.
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e (G is étale if for each point s € S, the fiber G5 is the spectrum of a finite product of
separable extensions of the residue field (s).

e (G is étale if for each point s € S, the fiber G is geometrically reduced.

It turns out that, at least over a connected noetherian affine base S = Spec R, the category of
finite étale R-group schemes is an abelian full subcategory of the category of finite flat R-group
schemes. This is achieved via the equivalence of categories

{finite étale R-group schemes} — {finite groups with continuous m ¢ (S, s)-action}

([SGA1, Exposé V], [Dem, I1.2]), where 7 (S, s) is the étale fundamental group of S for a
choice of a geometric point s € S. Note that the category of finite flat R-group schemes is not
in general abelian as quotients may fail to exist.

Example 1.2.2. 1. Over a field k, a finite étale k-algebra is a finite product of finite sepa-
rable extensions of k.

2. Over a characteristic zero complete discrete valuation ring R with residue field k, it turns
out that the reduction to the special fiber X — X}, is an equivalence of categories from the
category of finite étale R-schemes to the category of finite étale k-schemes. A quasi-inverse
is constructed via Witt vectors.

It is worth noting that étaleness comes free over a field of characteristic zero:

Theorem 1.2.2 (Cartier). If G is a finite (flat) group scheme over a field k of characteristic
zero, then G is étale.

Proof. Let G = Spec A, and I be the augmentation ideal of A. Let x1,- - ,z, be a k-basis for
I/I2. Let J = N,I" As a field is Artinian, A = []; A; for local algebras A;’s, and maximal
ideals m;’s are nilpotent. Thus, taking high powers of an ideal in each component will either
vanish or remain to be the unit ideal. Thus, J is a direct factor of A as an k-algebra, which
means that A/J is a direct factor of A, implying that Q% AJI)k is a direct factor of (2114 Ik As
Qh/k ~ A® /1% =2 @Adz;, it follows that Q%A/J)/k > d(A/J)dx;, as A/J is a direct factor of
A. Note however that we have A/J = klx1,--- ,zn]/(f1,- , fm), as A/J = @A/I”. Thus,
Q%A/J)/k = ©(A/J)dxi /(3 (0 f1/0x;)dxj, - - 3 ;(0fm/O0x;)dx;). This means that ng; =0 for
all i,7. As chark = 0, this implies that f;’s are zero. Thus, A/J = k[z1,--- ,z,]. As A/J
is finite over k, it follows that n = 0, or I/I? = 0. This implies that Qh/k = 0, or that A is
étale. O

1.2.1.5 Quotients, Cokernels and Exact Sequences

A right group action of an S-group scheme G on an S-scheme X is a morphism a : X xgG — X
which, as a functor of points, defines a group action of G(T') on X (T') for every S-scheme 7'
With a right G-action on X, an S-morphism f : X — Y is called to be constant on orbits if
foa= fopry,ie. f(xg) = f(x) for all x € X(T'),g € G(T) for all S-schemes T'. We define the
quotient of X by G to be the initial object (if exists) of the category of S-morphisms X — Z
which are constant on orbits. We denote the quotient as u : X — X/H, if exists.

A group action is strictly free if the morphism

(id,a):XXSG%XXSX

is a closed immersion.
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Theorem 1.2.3 (Grothendieck, [Tatl, Theorem 3.4]). Suppose that S is a locally noetherian
base scheme, G is a finite flat group scheme over S and X is a finite type S-scheme with a
strictly free G-action. Suppose further that every G-orbit of a closed point is contained in an
affine open set. Then the quotient u: X — X /G exists, and has the following properties.

(i) u: X — X/G is finite flat, and its degree is the order of G.

(ii) For every S-scheme T, the map X(T)/G(T) — (X/G)(T) is injective.

(iii) If S = Spec R, G = Spec A, X = Spec B are affine, then X/G = Spec By, where By is
the equalizer of the two homomorphisms pry,a: B — B ®gr A.

Remark 1.2.2. The condition that every G-orbit is contained in an affine open set is satisfied
if, for example, S = Spec k is the spectrum of an infinite field and X is a quasiprojective variety.
This is because, for any finite set of closed points in P}, there is a hyperplane that does not
pass through any of them. This will later apply to the case when X is an abelian variety over
a local/global field k.

Remark 1.2.3. It is not the group action but rather the equivalence relation R C X Xz X that
makes the quotient work. An equivalence relation is a subscheme of X x g X which satisfies
the reflexivity, symmetry and transitivity conditions. A finite flat equivalence relation is an
equivalence relation R C X xpr X such that the projection maps pr; : R — X are finite flat.
Then, what is rather proved in [SGA3-1, Exposé V] is that, for a noetherian ring R and an
affine finite type R-scheme X, if R is a finite flat equivalence relation, then the sheafification of
the presheaf T — (X(T') x X(T))/R(T) on the fppf topology of R is representable. The heart
of the proof is the faithfully flat descent.

Now consider the case when S = Spec R is noetherian, G is an affine R-group scheme and H
is a finite flat closed normal R-subgroup scheme of G. Then, Theorem 1.2.3 tells us that G/H
exists as an affine R-group scheme, and G — G/H s finite and faithfully flat; if G is finite
(resp. finite flat) over R, then G/H is finite (resp. finite flat) over R3. In particular, using the
Cartier duality, we obtain the following.

Theorem 1.2.4 [Dem, 11.6]. The category of finite flat commutative group schemes over a field
k is an abelian category.

Proof. Let ¢ : G — H be a group homomorphism of finite flat commutative group schemes
over k. As every k-module is flat, a closed subgroup of a finite flat group scheme over k
is automatically finite flat. Thus we know that kernels and cokernels of ¢ exist. Also, the
natural map coim(y) — im(p) is injective and surjective. Thus, it is sufficient to show that
a bijective homomorphism of finite flat commutative k-group schemes ¢ : Spec A — Spec B is
an isomorphism. As the order of Spec B is equal to the order of ¢(Spec A), we have dimy, B =
dimy, ¢*B. Thus ¢* : B — A is injective. This means that the Cartier dual ¢” : Spec BP —
Spec AP is a closed immersion with a cokernel Q. Applying the Cartier duality again, the
composition QP — Spec A — Spec B is zero. Thus, QP — Spec A, thereby Spec AP — Q,
is zero. Thus, Q = 1, which means that ¢”* : AP — BP is injective. Thus, ¢ is a bijective
k-algebra homomorphism, thus an isomorphism. O

Now that we have defined cokernels, we would like to define what it means to be an exact
sequence of group schemes. We define a complex of group schemes over a base to be exact if it

is exact as a complex of sheaves on the fppf topology of the base. Over a noetherian ring R, a
i

sequence 1 = G’ 5 G 5 G” — 1 of affine R-group schemes is exact if and only if 7 is faithfully

3A morphism is faithfully flat if it is flat and surjective.
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flat and i : G’ — G is the kernel of 7. It is also equivalent to that i is a closed immersion with
i(G") a normal subgroup of G, and 7 : G — G” is identified with the cokernel of i : G’ — G.
We end this discussion with the following proposition.

Proposition 1.2.2. Over a noetherian ring R, the Cartier dual of a short exact sequence of
finite flat commutative group schemes is again exact.

Proof. Let 1 — G' 5 G = G" — 1 be the short exact sequence of finite flat commutative
R-group schemes. Note that the short exact sequence remains exact after an arbitrary base
change. Thus, for each R-algebra T, the natural map

ker(GP = G'PY(T) = ker(Hom(Gr, Grn) > Hom(Gly, Gra)) =5 (G2, Gn) = G"P(T))

is an isomorphism because of the universal property of quotient. Therefore, the Cartier dual of
a cokernel is a kernel.

It is thus sufficient to show that i : GP — G'P is the cokernel of 7P : G"P — GP. A priori
we know that there is a finite flat cokernel GP/G"P, and the universal property of quotient
gives a map GP/G"P — G'P. We have already observed that the Cartier dual of a cokernel is
a kernel. Thus, the map GP/G"P — G'P is the Cartier dual of the map G’ — ker(G — G"),
which is an isomorphism. Thus, GP/G"P — G'P is an isomorphism, so i is the cokernel of
7P as desired. ]

1.2.1.6 Classification of Finite Flat Group Schemes

For a group scheme G, we define G° be the open and closed subscheme of G corresponding to the
connected component of G containing the unit section. This in general may not be a subgroup
scheme of G. However, over a henselian local ring, i.e. a ring that satisfies Hensel’s lemma, G°
is indeed a subgroup scheme, and, even more, the quotient also has a nice description.

Proposition 1.2.3 [Tatl, (3.7)]. Let (R, m) be a henselian local ring (e.g. a field or a complete
discrete valuation ring). Let G be a finite flat R-group scheme. Then the following are true.
(i) GO is the spectrum of a henselian local R-algebra with the same residue field as R, and
is a flat closed normal subgroup scheme of G.
(ii) The quotient G := G/G° is a finite étale R-group scheme. The exact sequence

05G'>G -G >0,

called the connected-étale sequence for G, is characterized by that every group homomorphism
¢ : G — H to a finite étale R-group scheme H factors uniquely through G — G.

(iii) The functors G +— G°, G +— G on the category of finite flat R-group schemes are
exact.

(iv) If R is a perfect field, the composition Greq — G — G is an isomorphism, so the
connected-étale sequence splits canonically.

Proof. Note that, if G = Spec A, then as R is henselian, A = [];—; A; with each A; a local
henselian ring, and each Spec A; corresponds to a connected component of G. Without loss of
generality, suppose G = Spec A1. As it contains the image of the unit section, the residue field
of A1 must be k = R/m. Thus G x g Spec 4; is connected. This implies that the multiplication
and the inverse morphisms send G° to GV. Also, each A; is flat over R, so this implies (i).

As G is finite flat, the quotient G is automatically finite flat. Also, the image of the identity
section is Spec R = G°/GP, and this is open as G° C G is open. Let G = Spec A%, and let I
be the augmentation ideal of A®®. Then, this means that the complement of Spec(A® /I¢) is
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closed, which implies that I is a direct factor of A, or I®* = (I®*)2, so G is étale. As the identity
component of an étale R-group scheme is just Spec R, any homomorphism from a connected

R-group scheme to an étale R-group scheme is trivial. This finishes (ii).

For (iii), note that, given an exact sequence 1 — G’ % G > G” — 1, the restriction

7lqo : GO — G'° is faithfully flat, as it is the pullback of faithfully flat 7 by G"° — G”. Also,
it is evident that ker(m|qo) = G, as it is connected. Thus, G + G is an exact functor. Fron
this, abstract nonsense gives the exactness of G — G¢.

For (iv), as the residue fields are perfect, taking the reduced subscheme is compatible with
products. Note also that a scheme over a field is étale iff it is geometrically reduced. Thus,
Gred — G is an isomorphism after a base change to k, which implies that Greq — G is an
isomorphism, via faithfully flat descent. O

Recall that a characteristic p > 0 scheme G has the relative Frobenius F : G — G®) | where
G®) is the pullback of G by the absolute Frobenius of the base scheme. Using Frobenius, we
can classify finite flat group schemes over a perfect field of characteristic p.

Theorem 1.2.5 (e.g. [Sc2|). If k is a perfect field of characteristic p > 0, and if G = Spec A
is a connected finite flat k-group scheme, then

A klzy, -]/ 2T,

for some r € N and ey, -+ ,e, € N. These are well-defined invariants of G up to permutation
of e;’s.

Proof sketch. Note that G has a finite Frobenius height, which means that the composition
G = GP — GP*) — ... -5 G@") of relative Forbenii is zero for some finite n > 0. We can
then use an induction on Frobenius heights. The base case n = 1 and the induction step both
proceed as the proof of Cartier’s theorem, with a bit more careful look at coefficients of formal
derivatives. O

This has a number of consequences.

Proposition 1.2.4. (i) The order of a connected finite flat group scheme over a field of char-
acteristic p is a power of p.

(ii) A finite flat group scheme of order invertible in the base is étale.

(iii) Let (R, m) be a complete discrete valuation ring with a perfect residue field k of char-
acteristic p. Then a finite flat connected group scheme G = Spec A over R satisfies

A= R[[l‘l,"‘ 71'n]]/(f17 7fn)a

so that for each 1 < i < n, there exists e; € N such that f; — xfei € mR[xy, - ,xy] is a
polynomial of degree < p® with respect to x;.

Proof. (i) A connected group scheme over a field is geometrically connected via faithfully flat
descent, so it follows from Theorem 1.2.5.

(ii) As we can check étaleness fiber by fiber, we can assume that the base is a field. Cartier’s
theorem (Theorem 1.2.2) deals with the case when the base is of characteristic 0. If the base is
of characteristic p > 0, by (i), the order being invertible implies that the connected component
is actually trivial. By the connected-étale exact sequence, the group is étale.

(iii) As A is a complete local finite flat R-algebra, by Theorem 1.2.5,

AQrk=k[z1, -, zn)/( ", 22,

10
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By Nakayama, the lifts of x;’s will generate A as an R-algebra. Thus, A = R][x1, - ,z]]/J
for some ideal J. As A is R-free, we know that J is a direct factor of R[[xy,--- ,xy]]. Thus,
J@pk= (a2, 22™) is a direct factor of k[[z1,--- ,z,]]. We can therefore lift 2¥ s to .J
to get generators f;’s of J. As the monomials {z{" - - 2% }g<4,<pei generate A as an R-module,

o
VAR

so we can pick f;’s so that f; —x; ’s are polynomials of z;-degree less than p®. O

We record some results about classifying finite flat group schemes over a Dedekind domain,
which is our main case of interest. In particular, these imply that we can see things locally.

Proposition 1.2.5. For a finite flat group scheme G over a Dedekind domain R, the corre-
spondence H — Hp is a one-to-one correspondence between the set of closed flat R-subgroup
schemes of G and the set of closed flat K -subgroup schemes of G .

Proof. Let G = Spec A. The inverse is given as follows. Suppose we are given a closed flat
K-subgroup scheme of Gx = Spec Ag, which just corresponds to a flat Hopf ideal J C Ak, i.e.
c(J) C Ak®@J+J® Ak, where c is the comultiplication. Then the inverse of this correspondence
is given by Spec Ax/J — Spec A/(J N A), using that A < Ag. This is a flat ideal as flatness
over R is the same as being torsion-free over R. O

Theorem 1.2.6 [Sc2, §5]. Let R be a noetherian domain, and p € R. Let R be the completion
of R with respect to the p-adic topology. Then, a finite flat R-group scheme G is completely
determined by G, Gy and the isomorphism of these after base change to R[1/p]. To be
more precise, the functor

G = (G Grpyp) e /)

is an equivalence of categories from the category of finite flat group schemes over R to the
category of triples (G1,Ga, ), where G1,G2 are finite flat group schemes over R, R[1/p], re-
spectively, and ¢ : (Gl)ﬁ[l/p] — (GQ)E[l/p]‘

Proof sketch. It follows from the fact that R and R[1/p] are faithfully flat over R, and the
functor

M — (M QR E,M@)R R[l/p]’ldM(@I/%\[l/p})

is an equivalence of categories from the category of finitely genreated R-modules to the category
of triples (M1, M2, ¢), where My, My are finitely generated R, R[1/p]-module, respectively, and
¢: M ®p R[1/p] & M3 ®pgj1/p) R[1/p], which is an easy algebra. O

We now know quite well what finite étale group schemes and finite flat connected group
schemes look like. We thus record some results about extensions of some finite flat group
scheme by another finite flat group scheme. This will be useful since, given a finite flat group
scheme, we proceed by first figuring out what simple objects in the given category are, and see
how Jordan-Hoélder composition series comes up with to form the full group via repeated group
extensionos.

Proposition 1.2.6. Let R be a henselian local ring.

(i) An extension of a connected finite flat R-group scheme by a connected finite flat R-group
scheme is connected.

(ii) An extension of a finite étale R-group scheme by a finite étale R-group scheme is étale.

(iii) An extension of a connected finite flat R-group scheme by a finite étale R-group scheme
is a trivial extension, i.e. the extension is a product of the two groups.

11
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Proof. (i) is immediate by taking an exact functor G +— G to the connected-étale sequence
to observe that the étale component is trivial, so the given group is connected. (ii) is also
immediate by using G — GV instead. By the same reason, if G is an extension of a connected
H by an étale H', then H = GY, H' = G**. Thus a splitting and a retraction are given by the
connected-étale sequence of G. O

It will be very nice if we can classify extensions via an analogue of Ext functor in homological
algebra. Even though the category of finite flat group schemes is not very nice, we know that
it embeds into a very nice abelian category, the category of fppf sheaves. On that category, we
can certainly define the Ext’(-, Jppt functor, but we do not know yet if the functor Ext! really
parametrizes extensions as finite flat group schemes, not as fppf sheaves.

Proposition 1.2.7. In the category of fppf sheaves over a base scheme S, an extension of a
representable sheaf by a representable sheaf is representable.

Proof. We only need to show that the extension is locally representable [SGA1, Exposé VI]; it is
another way of describing faithfully flat descent. However, an extension is split locally, so locally
the extension is a product of the two representable sheaves, which is obviously representable. [

Thus, Exts(G, H )ippe for finite flat S-group schemes G, H really parametrizes extensions
as finite flat S-group schemes. We can use the usual long exact sequences for Ext. We also
have a local-global compatibility exact sequence, which is an analogue of Mayer-Vietoris exact
sequence. From now on we drop the subscript fppf.

Theorem 1.2.7 (Mayer-Vietoris Exact Sequence, [Sc2, §5]). Let G, H be p-power order finite
flat group schemes over a noetherian ring R. Then,

0 — HOmR(G, H) — Homﬁ(G, H) X HOmR[l/p](G, H) — Homﬁ[l/p](G, H)

% Exth(G, H) — Exth(G, H) x Exthy (G, H) — Extgy, (G, H)

[l/p}(

is exact, where § is defined by
da = ((G x H)ﬁa (G x H)R[l/,p],idg idg +a)

for a € Homﬁ[l/p} (G,H).

1.2.1.7 Prolongations of Commutative p-Group Schemes

We are interested in how much the generic fiber of a finite flat group scheme determines the
original group. The results of Raynaud ([R], [Tatl, §4], [Fol, 3.1]) give us some control when
the base ring is mildly ramified. Throughout this section, let R be a discrete valuation ring
of mixed characteristic, K be its fraction field, m a uniformizer, k the residue field, p the
residue characteristic, v the normalized valuation (so that v(7) = 1), and e = v(p) the absolute
ramification index.

Let Gy = Spec(Ap) be a finite (flat) commutative K-group scheme. A finite flat R-group
scheme G whose generic fiber G is isomorphic to Gy is called a prolongation of Gg. In terms
of R-algebras, a prolongation G = Spec A comes from a finite R-subalgebra A of Ay, which
contains R and spans Ay over K, such that the comultiplication ¢ : Ag — Ay ® Ay sends
c(A) C A®pr A. By taking the Cartier dual, this is equivalent to that A” > AP AP,

For two prolongations G = Spec A and G’ = Spec A’ of Gy, we write G > G' if A D A’.
Even though this is a partial order, any two prolongation has a least upper bound and a greatest

12



Gyujin Oh There is no abelian scheme over Z

lower bound [Tatl, Proposition 4.1.1]. This is because, for two prolongations G = Spec A and
G’ = Spec A’, Spec AA’ is also a prolongation, which is obviously a least upper bound, and a
greatest lower bound is achieved via Cartier duality. This means that, if Gy has a prolongation,
it has a mazximal prolongation G and a minimal prolongation G~ .

The maximal and minimal prolongations G*, G~ are somewhat more understandable than
a general prolongation G. In particular, for certain cases, both will become Raynaud F'-module
schemes, which can be completely classified. Recall that, given a finite field F', a Raynaud F'-
module scheme is a finite flat F-module R-scheme?of the same order as F. We then specifically
have the following.

Proposition 1.2.8 [Tatl, Proposition 4.3.2]. Suppose that Gy is a simple commutative K-

group scheme of p-power order which admits a prolongation. Suppose further that R is strictly

henselian (i.e. a henselian ring with separably closed residue field). Then, End(Gy) = End(G™) =
End(G™) =: F is a finite field, and Go,G*,G~ are Raynaud F-module schemes.

Proof sketch. As Gal(K/K) acts on Go(K) through an abelian quotient group [Tatl, Lemma
4.3.1], Go(K) is a 1-dimensional vector space over the residue field of Z[Gal(K /K)], which we
call F. This F has the same number of elements as Go(K), so it is necessarily finite, and
F = End(Go(K)) = End(Gyp). Thus Gy is a Raynaud F-module scheme. Note also that an
automorphism of G extends to GT and G~ as they are unique up to isomorphism. As we can
also construct the inverse by taking the generic fiber, we deduce that End(Gy) = End(G") =
End(G™). Thus, Gt and G~ are F-module schemes over R. As the R-orders of G* and G~ are
equal to the K-order of Gy, it follows that G, G~ are also Raynaud F-module schemes. O

If R has enough roots of unity, we can completely classify Raynaud F-module schemes over
R, see for example [Tatl, Theorem 4.4.1]. Using this, we can partially answer the question we
originally asked.

Theorem 1.2.8 ([R, 3.3|, [Fol, Théoreme 2|). Let R be a discrete valuation ring of mized
characteristic (0,p), and let K be its fraction field. Suppose that e < p — 1.

(i) A finite flat commutative K-group scheme killed by a power of p admits at most one
finite flat prolongation over R. In other words, for a finite flat commutative R-group scheme G
killed by a power of p, G is the unique prolongation of G .

(i) The generic fiber functor from the category of finite flat commutative R-groups killed
by a p-power to the category of finite flat commutative K-groups killed by a p-power is fully
faithful, and its image is stable under taking sub-objects and quotients.

For a proof, a reader is advised to consult with [Tatl, §4] and [R, Paragraphe 3].

1.2.2 p-divisible Groups
1.2.2.1 Basic Definitions and Properties

Motivated from the construction of Tate modules of abelian varieties, we define the notion of
p-divisible groups.

Definition 1.2.1 (p-divisible Group). For a prime p, an integer h > 0 and a scheme S, a
p-divisible group of height h over S is a directed system G = {G,} of finite flat commutative
group schemes over S such that each G, is p"-torsion of order p™*, and each transition map
in : G = Gpyq is the kernel of [p"] : Gpy1 — Gy, for alln > 1.

4F-module R-schemes are similarly defined as group schemes, via functor of points approach, i.e. R-schemes
with compatible F-actions on functors of points.

13
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A homomorphism f : G — H of p-divisible groups is a compatible collection of S-group
scheme homomorphisms fn, : G, — H,.

Example 1.2.3. 1. The simplest example is the constant group Q,/Z, = (Z/p"Z), with
standard inclusions.

2. The next simplest example is the diagonalizable group pipeo = (ppn )y with standard inclu-
sions. This can also be constructed by taking p™-torsions of the group scheme G,y; it is
therefore sometimes denoted as G, (p).

3. A basic yet rich and important example is (A[p"])n>1 for an abelian scheme A over S. This
is denoted as A(p). We will study this construction in detail with applications towards
the theory of abelian varieties/schemes in Section 1.2.3.7.

Even though many applications of theory of p-divisible groups are geared towards to the
theory of abelian varieties, we will only focus on algebraic preliminaries in this section. In
particular, some are immediate from the theory of finite flat group schemes.

e In particular, for a p-divisible group G = (Gy, i), the sequence

0= G, = Gpim ﬂ Gnim

is exact. This factors through the p™-torsion of G, ., which is G,,. Therefore, we have
a short exact sequence
0—>Gn—>Gn+mM>Gm—>O.

e Connected-Etale Sequence. Let R be a henselian local ring. Then the connected-
étale sequence of finite flat group scheme over R extends to p-divisible groups. Namely, if
G = (Gp,in) is a p-divisible group over R, then G° := (GY,i,) as well as G := (G<',i,,)
forms a p-divisible group over R so that we have an exact sequence

005G =G — G —o.

This is true as the functors G, — G¢' and G,, — GY are exact. Using this notation, we
say a p-divisible group G is connected (étale, resp.) if G = G° (G = G¢*, resp.).

e Cartier Duality. For a p-divisible group G = (G, i,) over a noetherian ring R, we can
define the Cartier dual GP = (G2, [p]P). It is indeed a p-divisible group as

n]D

)" [
0—GP =& G - Gl

is a dual of an exact sequence

Gon 2 Boa, So.

e Relative Frobenius. As for the scheme case, given a p-divisible group G, there is a
relative Frobenius F : G — G®) with a p-divisible group GP). Note that [p] : G — G

factors through F via G Law Y, G, and V : G®) — G is called the Verschiebung.

e Tate module. Inspired from the theory of abelian varieties, we can try to define the Tate
module of a p-divisible group over a field. Let G be a p-divisible group over a field K of

14
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characteristic different from p. Fix an algebraic closure K of K. The Tate module of G,
T(G), is a Gal(K /K)-module defined as

T(G) = l&n Gn (F),

n

where the limit is taken with respect to transition maps [p] : Gny1 — Gn. As (Gp)k
is étale by Proposition 1.2.4(ii), T(G) is a Zy-module isomorphic to ZZ, where h is the
height of G.

More generally, over a connected base scheme S, with a choice of geometric point 5 € .5,
for a p-divisible group G over S, we can define the Tate module T'(G) as

T(G) = m OGn,§7

where the sheaves are over the étale topology of S. The Tate module is a continuous
714t (5, 5)-module, and its definition agrees with the above one when S = Spec K. More-
over, if G is finite étale over S, then by the same reason T'(G) is a finite free Zy-module,
with the rank equal to the height of G.

1.2.2.2 Formal Lie Groups

Let R be a complete noetherian local ring with residue field k of characteristic p > 0. We can
classify connected p-divisible groups over R in terms of formal Lie groups.

Definition 1.2.2 (Formal Lie Group). An n-dimensional formal Lie group I' over R is a
homomorphism m : o — A Rr, where o = R[[x1,--- ,x,]] and @ is the completed tensor
product with respect to the obuvious adic topology, making </ a Hopf algebra. More concretely,
f satisfies the following axioms, for x,y,z € <.

(i) v = f(z,0) = f(0,z).

(i) f(z, f(y,2)) = f(f(2,9),2).

(iii) f(z,y) = f(y, ).

We denote zxy for f(z,y), and [p](z) = x*---*x, x multiplied with itself p times. A formal
Lie group T is said to be divisible if [p] : o — < is finite free.

For a divisible formal Lie group I', we can obtain a p-divisible group I'(p) = (I'[p™]), where
[[p™] is the kernel of [p™] : T' — T'; more concretely,

'[p™] = Spec Ay, := Spec  /([p""|x1,- -+, [p"]xn),

and the transition maps are natural inclusions. Note that, as A, is local, I'(p) is a connected
p-divisible group.
It turns out that this functor is an equivalence of categories.

Theorem 1.2.9 [Tat2, Proposition 1]. Let R be a complete noetherian local ring with perfect
residue field of characteristic p > 0. Then I' — T'(p) is an equivalence of categories from the
category of divisible formal Lie groups over R to the category of connected p-divisible groups
over R.

Proof. Let mp be the maximal ideal of R, and let I = (x1,--- ,x,) be the augmentation ideal
of @ = R[[x1, - ,zy]]. Then the maximal ideal of & is M = mpre/ + . Let [p] also denote
the corresponding R-algebra map 7 — <. Note that, as [p](x;) = pz;(mod I?), it follows that
[pl(I) C pI +1I? C MI, or [p")(I) C M™I. As each ideal m%.o/ + [p]"(I) is open, it follows that
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they form a fundamental system of neighborhoods of 0 in the M-adic topology of o7. As 7 is
M-adically complete, &/ = l&n&/ /[p"](I). Thus, a formal Lie group I' can be recovered from
I'(p), which means that the functor is fully faithful.

Let k be the residue field of R. Let I' = (I",, = Spec(A,,)) be our connected p-divisible group.
As A,’s form a projective system, letting A = l'&lAm the group laws of A,’s induce a group
law on A, i.e. a homomorphisim A — A®prA. Thus, it remains to show that A is isomorphic to

R[[x1,- -+ ,zp]]. We will show that the general case will follow from the case of R = k. Assuming
the case R = k, we have a topological isomorphism A = @Tn & k[[z1, -+ ,zm]]. Choose
liftings R[[x1," - ,2m]] — Ay, of the quotients k[[z1,- - ,zm,]] = A, so that they are compatible
to each other. This is possible because A,’s are finite free R-modules and transition maps
are surjective. Nakayama’s lemma implies that the maps R[[z1, -, xm]] — Ay is surjective.
Thus, the natural map R[[z1, -, zn]] ENyRT surjective as well. This is also split as A,’s

are finite free R-modules with surjective transition maps, A is also a free R-module. Thus,
ker(f) ® k = ker(f ® k) = 0, which by Nakayama again implies that ker(f) = 0. Therefore, A
is isomorphic to R[[x1,- -, Zm]].

Now it remains to prove the case R = k. Using the same notation as the above paragraph,
we have H,, = ker(I’ SN I'®")) = Spec B,,, the kernel of n-th repeated applications of (relative)
Frobenius. It is a finite flat commutative group scheme over k with p-power torsion. Thus,
H, cT,,and ', C Hlog“pn‘ by Deligne’s theorem, Theorem 1.2.1. Therefore, A = @An =
@Bn, and its maximal ideal is I = @In, where I,, C B,, is the maximal ideal.

Let z1, -+ ,x,, be elements of I whose images form a k-basis of I1/112. Note that as H; =
ker(F : H, — Hép)), we have I,,/I2> = I /I?. Thus, 21, -+ , 2y, will also form a k-basis of I,,/I>
for all n > 1. Consider the map

Uy k[zy, - Tm] — By,
sending x; to x;. This is surjective by Nakayama, and the kernel contains (:cﬁ’n, o2l as F™
kills H,, = Spec B,,. Thus, we get a surjective homomorphism

Up - k[l’l,’ c 7113‘777/]/(:’6217 P 7$pn
On the other hand, from the exact sequence

0—H — Hy41 — H, — 0,

by induction, it follows that |H,| = |H1|", where |H,| denotes the order of H,, over k. The
upshot is that H; is a connected finite flat k-group scheme over a perfect field of characteristic
p > 0, with Frobenius height 1. Therefore, by Theorem 1.2.5, it follows that

By = k[xh'” ,l‘m]/(iﬁ‘i), 7'7}721)

Therefore, by considering the k-dimensions, we deduce that w,’s are isomorphisms. Passing to
the limit, we get an isomorphism k[[z1,--- ,zn]] — A, as desired. O

With this equivalence in hand, we can define the dimension of a p-divisible group G over

a complete noetherian local ring to be the dimension of the formal Lie group corresponding to
GO,

Proposition 1.2.9 [Tat2, Proposition 3]. Let G be a p-divisible group over a complete noethe-
rian local ring of height h. Then h = dim G 4 dim GP.
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Proof. As [p] =V o F, we have a short exact sequence

0 — ker F' — ker[p] L ker V= 0.

Note that ker F C G?, so ker I coincides with the analogous map on a smooth formal group,

which is a map k[[z1, - , Tdimc]] = k[[z1,"* , Zdim ¢]] sending z; — 2¥. Thus, | ker F| = pdm¢,
By Cartier duality, |ker V| = p™G”  Finally, we know |ker[p]| = p". Thus, h = dim G +
dim GP. O

1.2.2.3 Passage to Special Fibers, Generic Fibers and Tate Modules

Recall that the most important examples of p-divisible groups are those coming from abelian
varieties. Thus, one is naturally interested in a classification and deformation of p-divisible
groups. By the equivalence of categories we have seen in Section 1.2.1.4, we first note that étale
p-divisible groups are classified by their Tate modules.

Proposition 1.2.10. Over a connected scheme S, the functor G — T(G) is an equivalence
of categories from the category of étale p-divisible groups over S to the category of finite free
Zyp-modules with a continuous Zy-linear Galois action of m 4 (S,35), wheres is a fived geometric
point of S. In particular, if p is invertible on S, then G — T(QG) is an equivalence of categories
from the category of p-divisible groups.

Proof. All finite flat group schemes with p-power torsion over a field of characteristic # p are
étale by Proposition 1.2.4(ii), and étaleness is checked fiberwise, so the second assertion follows
from the first assertion. The first statement is immediate via the equivalence of categories
between the category of étale K-group schemes and the category of finite continuous my ¢ (S, 5)-
modules (Section 1.2.1.4). O

This gives a nice connection to abelian varieties in terms of their p-divisible groups, which
are purely algebraic. They are crucial in the deformation theory of abelian varieties and p-
divisible groups. For example, a theorem of Serre-Tate [I, Corollaire A.1.3] says that liftings
of abelian schemes over a nilpotent thickening are completely classified by the liftings of the
corresponding p-divisible groups.

Also, this itself is a very useful tool in studying p-divisible groups algebraically, which is
often complemented with the connected-étale sequence and the classification of connected p-
divisible groups in terms of formal Lie groups. For example, as with the abelian schemes, we
have the following property.

Proposition 1.2.11. For a local noetherian ring (R, m) with residue field k of characteristic
p > 0, the special fiber functor G — Gy, from the category of p-divisible groups over R to the
category of p-divisible groups over k is faithful. Moreover, if R is henselian and k is a perfect
field, then this functor is an equivalence of categories.

Proof. We first deduce the second statement from the first statement. As we only need to show
the essential surjectivity of the special fiber functor G — Gy, it is enough to show that, given
a p-divisible group Gy over k, there is a lift G over R. As k is perfect, by Proposition 1.2.3(iv),
the connected-étale sequence is split, so that Gy = G x GSt. Recall that, for a henselian local
ring R with residue field k, the functor X +— X ®pg k is an equivalence of categories from the
category of finite étale R-schemes to the category of finite étale k-schemes. Thus, G§' has a
(unique) lift to R, which is an étale p-divisible group over R. Thus, we can assume that Gg
is connected. On the other hand, by Theorem 1.2.9, we know that Gg comes from a formal
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Lie group 'y over k. As R is henselian, one can lift the group law of the formal Lie group T'g
coefficient-wise to a formal Lie group I' over R. Thus, Gy = T'g(p) = (I'(p) )k, as desired.

We now prove the first statement. Suppose G, H are p-divisible groups over R, and f : G —
H is a morphism where f; : G, — Hj is a zero map. By the equivalence of categories for étale
and connected p-divisible groups, Proposition 1.2.10 and Theorem 1.2.9, the proposition follows
when GG, H are both étale or when they are both connected. Thus, we only need to prove the
two cases, when G is étale and H is connected, and when G is connected and H is étale. As
there is only a trivial map from a connected finite flat group scheme to a finite étale group
scheme, we can therefore assume that G is étale and H is connected.

We will inductively prove that f®@gR/mF = 0 for all k > 1. We already know f®rR/m = 0.
For the induction step, it is sufficient to prove the following: for an artin local ring (R, m) with
an ideal I C R withmI =0, if f®r R/I =0, then f = 0. As the property of a map being zero
can be checked over the strict henselization of R, we can assume that R is strictly henselian, so
that G, an étale R-scheme, is constant. Thus, we can assume that G = Q,/Z,. Then, a map
f corresponds to a sequence of p-power compatible elements in ker(H,(R) — H,(R/I)). Let
H, = SpecB,,. As H is connected, we can think of B,, as the quotient of the formal power
series ring B = lim B,,. As Im = 0, it follows that the kernel of each map H,(R) — H,(R/I)
is killed by [p]. Thus, f o [p] = 0. As [p] is an isogeny, it follows that f = 0. O

As the problem of integral models of abelian varieties is of great interest, we can also think
of the analogous problem for p-divisible groups. The Tate’s theorem in [Tat2] states that the
generic fiber functor is fully faithful.

Theorem 1.2.10 (Tate, [Tat2, Theorem 4]). Let R be a noetherian normal domain whose field
of fractions K is of characteristic 0. Then, the generic fiber functor G — Gg from the category
of p-divisible groups over R to the category of p-divisible groups over K is fully faithful. In other
words, for p-divisible groups G, H over R, the map

Hompg (G, H) — Homg (G ®r K, H ®r K)
1s bijective.

Proof sketch. One first proves that, given a p-divisible group I' over R, any Z,-direct sum-
mand of T'(T") arises from a p-divisible subgroup of I". Then, given f € Homg (G, Hx) =
Homg,, %) (T(G), T(H)), we construct the extension in Hompg(G, H) via considering the
graph of f in T(G) x T(H). The corresponding p-divisible group in G x H then in fact is
the graph of an R-morphism G — H. O

It is regarded as a starting point of p-adic Hodge theory; for example, one can deduce a
Hodge-Tate decomposition for p-divisible groups [Tat2, Theorem 3] from this. The Hodge-Tate
decomposition, and more generally p-adic Hodge theory, will be discussed in detail in the later
sections.

We state the de Jong’s generalization of the Tate’s theorem over any base.

Theorem 1.2.11 (de Jong, [dJ, Corollary 1.2]). Let R be a discrete valuation ring, and G, H
be p-divisible groups over R. Let K = Frac(R). Then,

Homp(G, H) - Homg (G ®r K, H ®r K)

1s bijective.
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1.2.2.4 Deformation of p-divisible Groups

Grothendieck developed a theory of deformations of (truncated) p-divisible groups, which in-
volves with the obstruction and classification of infinitesimal liftings of (truncated) p-divisible
groups.

Remark 1.2.4. In a discussion of this kind of flavor, p-divisible groups are more often called
Barsotti- Tate groups, following Grothendieck’s terminology.

Definition 1.2.3 (n-Truncated p-divisible Group). An n-truncated p-divisible group (or n-
truncated Barsotti-Tate groups) G over a base scheme S is an abelian sheaf on Sgpe which
satisfies the following.

1. G is annihilated by p™.
G is flat over the constant sheaf Z/p"7Z.

G(1) := ker[p|g is finite locally free over S.

e

If n = 1, then ker Vg, = im Fg,, where V, F are the Verschiebung and the Frobenius
morphisms respectively, and Gg is the reduction of G modulo p (i.e. the closed subscheme

defined by pOg ).

The deformation theory of finite flat group schemes of n-torsion is particularly nice.® Using
it, Grothendieck gives the following result on infinitesimal lifting of (truncated) p-divisible
groups.

Theorem 1.2.12 (Grothendieck, [I, Théoreme 4.4]). Let n > 1, p be a prime number and
i:S — S be a closed immersion defined by a nilpotent ideal. Suppose that S’ is affine.

(i) If G is an n-truncated p-divisible group over S, then there exists an n-truncated p-divisible
group G' over S extending G.

(i) If H is a p-divisible group over S, then there exists a p-divisible group H' over S’
extending G.

(iii) Let H be a p-divisible group over S, then every n-truncated p-divisible group G' over S’
extending H,, comes from a p-divisible group H' over S’ extending H, i.e. G' = H]. This lift
is unique if pY Og =0 for some N > 1 and S C S’ is defined by a nilpotent ideal of level < N

(iv) If S is the spectrum of a complete noetherian ring with perfect residue field, then for
any n-truncated p-divisible group G over S, there exists a p-divisible group H over S such that

G=H,.

1.2.2.5 Classification of p-divisible Groups

We have observed that p-divisible groups are more or less classified by their Tate modules, over a
base on which p is invertible. We will look at several cases where there is a very good alternative,
which all started from the case when the base is Speck for a perfect field k£ of characteristic
p. This is due to Dieudonné, so the theory is sometimes called the Dieudonné theory. This
line of thought is continued in Fontaine’s study of filtered (¢, NV)-modules and their relations to
crystalline and semi-stable representations, which will be discussed in the next chapter.

For this section, we let k be a perfect field of characteristic p > 0, and let W (k) be the ring
of Witt vectors over k (see for example [Se, I1.6] for the definition). Let ¢ : W (k) — W (k) be
the absolute Frobenius, i.e. the automorphism lifting the p-power map on k.

SFor a general statement on the obstruction of infinitesimal lifting of finite flat group schemes, see [I, Propo-
sition 3.1].
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Definition 1.2.4 (Dieudonné Ring). The Dieudonné ring of k is the associative ring Dy =
W (k)[F, V] subject to the relations FV =V F =p, Fc= p(c)F for c € W(k) and ¢V = V(c)
for c e W(k).

Obvious from the definitions, F' and V are defined to be analogous to the Frobenius and the
Verschiebung maps, respectively. Note that a left Z,-module is just a W (k)-module D with a ¢-
semilinear map F : D — D and a ¢~ '-semilinear map V : D — D such that FV =V F = [p|p.
A left Zx-module is called a Dieudonné module. 1t is the Dieudonné module that replaces the
role of the Tate module. The main result in this case, applied for both finite flat commutative
group schemes of p-power order and p-divisible groups, is summarized as follows.

Theorem 1.2.13 [BC, Theorem 7.2.4]. There is an additive anti-equivalence of categories
G — D(G) from the category of finite flat commutative k-group schemes of p-power order to
the category of Dieudonné modules of finite W (k)-length, with the following properties.

1. The order of G is p"w® PG yhere by ) (D(G)) is the W (k)-length of D(G).
2. If K'/k is an extension of perfect fields , then W (k') @w ) D(G) = D(Gy) naturally as

~

left Dyr-modules. In particular, for the absolute Frobenius map ¢ : k — k, ¢*(D(G)) =
D(G®)) as W (k)-modules.

3. The action of F' on D(G) is described by the W (k)-linear map

D(Fgyk)
—

»*(D(@)) = D(G) D(G),

wherer Fg .+ G — G®) is the relative Frobenius. Moreover, G is connected if and only if
F is nilpotent on D(QG).

4. The k-vector space D(G)/F D(G) is canonically identified with the k-linear dual ¢, :=
Homy(tg, k) of the tangent space tg := ker(G(kle]/(€?)) — G(k)). In particular, G is
étale if and only if F is bijective on D(G).

Theorem 1.2.14 [BC, Proposition 7.2.6]. The functor G — D(QG) = @D(Gn) is an anti-
equivalence of categories from the category of p-divisible groups over k and the category of finite
free W (k)-modules D equipped with a p-semilinear map F : D — D such that pD C F(D), with
the following properties.

1. The height of G is the W (k)-rank of D(G).

2. The equivalence is compatible with any extension k'/k of perfect fields, in the sense of
Theorem 1.2.18.

3. Forn>1, D(G,) =2 D(G)/(p"), and this isomorphism is compatible with change in n.

Similarly, on W (k), a p-divisible group is classified by its Dieudonné module of the special
fiber, plus some lifting data.

Definition 1.2.5 (Honda System). A Honda system over W (k) is a pair (M, L) of a finite
free W(k)-module M and a W (k)-submodule L equipped with a @-semilinear map F : M — M
satisfying that pM C F(M) and that L/pL — M/F (M) is an isomorphism. If F is topologically
nilpotent, the Honda system is called connected.

A finite Honda system over W (k) is a pair (M, L) consisting of a Dieudonné module M of
finite W (k)-length and a W (k)-submodule L such that V|1, : L — M is injective and L/pL —
M/F(M) is an isomorphism. If F' is nilpotent, the finite Honda system is called connected.
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It turns out that it is the category of Honda systems that classifies the p-divisible groups
over W (k), which is due to Fontaine.

Theorem 1.2.15 [BC, Theorem 7.2.10]. Let p > 2.

(i) There is a natural anti-equivalence of categories G — (D(Gy), L(G)) from the category
of p-divisible groups over W (k) to the category of Honda systems.

(ii) There is a natural anti-equivalence of categories H — (D(Hy), L(H)) from the category
of finite flat commutative group schemes of p-power order over W (k) to the category of finite
Honda systems.

(iii) The two anti-equivalences are compatible with a perfect residue field extension. Also, the
two anti-equivalences are compatible to each other, in the sense that if G is a p-divisible group
over W(k), then (D((Gn)k), L(Gy)) is naturally identified with (D(Gy)/(p"), L(G)/(p™))-

Moreover, the above results are true for p = 2 when we restrict ourselves to connected objects
on both sides.

This can be subsequently generalized to the case of a perfect discrete valuation ring; in that
case, p-divisible groups are classified by the crystalline Dieudonné functor (cf. [BBM, 3.3]). We
will be subsequently observing that other p-adic Hodge theoretic objects (e.g. crystalline/semi-
stable representations) can also be classified by (semi-)linear algebraic data. The development
of crystalline Dieudonné theory in [BBM] relies crucially on the following beautiful theorem by
Raynaud; we record it here as we will need the theorem for other purpose. The meaning of the
theorem should be clear after we define the notion of abelian schemes.

Theorem 1.2.16 (Raynaud, [BBM, Théoreme 3.1.1)). Let G be a finite flat commutative group
scheme over any base S. For every x € S, there is a (Zariski) open neighborhood U C S such
that there is a closed U-immersion of Gy into some abelian scheme Ay over U.

1.2.3 Abelian Varieties and Abelian Schemes
1.2.3.1 Rigidity and Commutativity

Over a base scheme S, an abelian scheme over S is an S-group scheme A — S which is smooth®,
proper with (geometrically) connected fibers”. If the base scheme S = Speck is the spectrum
of a field, we instead use the term abelian variety. Namely, we define an abelian variety over
a field k to be a smooth, connected, proper k-group scheme, which is the usual definition of an
abelian variety.

There are many basic results for abelian varieties that follow from only the definition of
abelian varieties, including rigidity, commutativity, existence of the dual. We postpone the
discussion of the dual abelian variety to the next section, as we will need to invoke some general
facts about existence of Picard schemes.

Proposition 1.2.12 (Rigidity Lemma). Let X, Y be geometrically integral schemes of finite type
over a field k, and Z be a separated k-scheme. Suppose that X is proper. Let f : X X3, Y — Z be
a k-morphism such that f evaluated at some geometric point yo € Y (k) is a constant morphism.
Then, f is independent of X, i.e. there is a unique k-morphism g :' Y — Z such that f = gopr,,

where pry : X X Y s the projection.

Proof. Uniqueness is immediate, as X X Y — Y is surjective and Y is reduced. By Galois
descent, we can pass the problem to the separable closure kg, or assume that k = ks;. An

SWe differ the notion of smoothness from formal smoothness, i.e. we require a smooth morphism to be locally
of finite presentation.
"There is a parenthesis since a geometrically connected group scheme over a field is automatically connected.
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advantage here is that X is guaranteed to have a k-rational point, since, for example, X has
a dense open (in particular, nonempty) smooth locus, a locally finite type scheme over a field
has a very dense subset of closed points, and a smooth point over a field has a finite separable
residue field extension (cf. [Stacks, Tag 04QM]). Pick zp € X (k), and let g(y) = f(zo,y). It is
sufficient to show that f = g o pry. By faithfully flat descent, we can extend the base field to
k. Suppose that f(X x {yo}) = {20}, which was the assumption. Pick an affine open U C Z of
20, then W := X x;, Y — f~1(U) is closed. As X is proper, pry(W) is closed in Y, which does
not contain yo. Thus, V =Y — pry (W) is a nonempty open neighborhood of y5. We know that
f maps X X V into U. Since X is proper and U is affine, for any point vg € V', X xj {vg} is
a point, which means that f|xx,v = g o pry|xx,v, namely they are identified on a dense open
subset. As these two are maps from a reduced scheme to a separated scheme, f = gopr,. [

Corollary 1.2.1. Let A, A’ be abelian varieties over a field k.

(i) Any morphism of pointed k-varieties f : (A,e) — (A’,€') is a homomorphism, where e, e
are the identity sections of A, A, respectively.

(i) A is commutative.

Proof. (i) Consider the map h : A x A — A’ defined by (a1,a2) — f(a1,az2)f(az)™'f(a1)™ .
By Proposition 1.2.12, this is a constant map to €’.
(ii) Apply (i) to the inverse map of A. O

As we are also interested in the problem of reduction of abelian varieties, we will recall those
basic properties in a more general setting of abelian schemes.

Proposition 1.2.13 (Rigidity Lemma, [MFK, Proposition 6.1]). Given an S-morphism f :

X =Y, i.e. a commutative diagram
x— 71 iy
N
S

suppose S is connected, p is flat, proper and H°(Xs,Ox,) = k(s) for all s € S. For a point
s €8, if f(Xs) is consisted of one point, then there is a section n : S — Y of q such that

f=mnop.
Proof sketch. As p is faithfully flat, we can extend the base to X and use the faithfully flat

descent. On this base, X — S has a section, so we proceed like the proof of rigidity lemma over
a field. 0

Corollary 1.2.2. Let A be an abelian scheme over a base scheme S.

(i) For any S-group scheme G, an S-morphism f : A — G taking the identity to the identity
1s @ homomorphism.

(ii) A is commutative.

Proof. (i) Apply the Rigidity Lemma, Proposition 1.2.13, to
(f oma,pry) - (fomao (ida,eacp),ida) ™ : Axg A= G xs A,

where my : Axg A — A, eq : S - Aand p: A — S are the multiplication map, the
identity section and the structure map of A, respectively, and (—) - (=), (—)~! are from the
group structure of the A-group scheme G xg A.

(ii) Apply (i) to the inverse map of A. O
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1.2.3.2 Picard Schemes and Existence of Dual Abelian Schemes

Recall that the Picard group Pic(X) of a scheme X is the group of isomorphism classes of
invertible sheaves on X. Its rigidified variant is often representable by a scheme or an algebraic
space, and it is called the Picard scheme.

Definition 1.2.6 (Relative Picard Functor). For a separated finitely presented morphism f :
X — S, the relative Picard functor Picy/g, from the category of locally Noetherian S-schemes
to the category of abelian groups, is defined by

Picy,s(T) := Pic(Xr)/ Pic(T).

The open subfunctor Picg{/s of Picx/g is the subgroup of invertible sheaves having degree 0
on all geometric fibers. Equivalently, it is the subset of fiberwise algebraically trivial® invertible
sheaves.

This is the rigidified variant of the Picard group by the following.

Lemma 1.2.1 [FGA, Lemma 9.2.9]. Suppose that f : X — S has a section g. For an S-scheme
T,

isomorphism classes of (L,u) where L is an s Picy/s(T)
invertible sheaf on Xt and u : O = gL is an isomorphism X/S\E D
(Lyu) — L

is an isomorphism. Along this isomorphism, Picg(/s corresponds to the pairs (L,u) with L
having degree 0 on all (geometric) fibers.

It is shown that, if f: X — S is proper and flat, Picx,g is representable.

Theorem 1.2.17. Let f : X — S be a flat, proper and finitely presented map.

(i) (Grothendieck/Oort-Murre, [FGA, Corollary 9.4.18.3]) If S = Speck is the spectrum of
a field k, and X is geometrically reduced, geometrically connected and X (k) # 0, then Picy y is
represented by a locally finite type k-scheme, which is a disjoint union of quasiprojective open
S-subschemes.

(ii) (Artin, [FGA, Theorem 9.4.18.6]) Assume that the formation of f.Ox commutes with
changing S; namely, for every S" — S, we have f.Ox = Og ®og4 f+Ox, where X' = X xg 8’
and f': X' — S is the pullback of f. Then Picx/g is represented by an algebraic space locally
of finite presentation over S.

(iii) [BLR, Theorem 8.4.3] If the formation of f,Ox commutes with changing S and f has
integral geometric fibers, then Picx /g is separated over S.

We will not recall the precise definition of an algebraic space. Rather, we will just regard it
as some kind of a generalized scheme. We define an abelian algebraic space over a base scheme S
to be a smooth, proper algebraic space over S with geometrically connected fibers. Even though
we don’t really know what an algebraic space is, we can make this definition rigorous by using
the functor of points approach, given that we already know that an algebraic space is locally of
finite presentation. Namely, an algebraic space, locally of finite presentation over S, representing
the functor F' : (Sch /S) — Sets is an abelian algebraic space if,

8Two line bundles £1, L2 on a scheme X are algebraically equivalent if there exists a connected scheme T, two
closed points t1,t2 € T and a line bundle £ on X x T such that EXX{ti} =~ [, for ¢ = 1,2. An invertible sheaf is
algebraically trivial if it is algebraically equivalent to the structure sheaf.
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F' is a group algebraic space, in the sense that F' comes from a functor F’ : (Sch /S) —
Grp by composing a forgetful functor Grp — Sets.

e F' is proper, by using the valuative criterion of properness. Namely, for any affine S-
scheme Y = Spec A with A being a (discrete) valuation ring, if we let K = Frac(A), then
the natural map F(Y') — F(Spec K) induced from the inclusion A < K is bijective.

e F'is formally smooth, by using the infinitesimal lifting criterion for smoothness. Namely,
for s € §, A an artin local ring which is a finite Og s-algebra, I C A an ideal such that
myl =0, F(Spec A) — F(Spec A/I) is bijective.

e I has geometrically connected fibers, by using the following fact, proven by Artin [Ar,
Lemma 4.2]: a group algebraic space which is locally of finite type over a field is a group
scheme.

For an abelian scheme A over S, the conditions of Theorem 1.2.17(ii) are satisfied. Thus,
Picy /g always exists as an algebraic space, locally of finite presentation over S. Also, both
Picy s and Pic% /g are naturally group objects in the category of algebraic spaces. If Pic?4 /s is
represented by an abelian scheme, we will call it the dual abelian scheme of A, often denoted
as A. Our objective is to show that the dual abelian scheme always exists. We want to deduce
this by using the following theorem of Raynaud and Deligne.

Theorem 1.2.18 (Raynaud-Deligne, [FC, Theorem 1.9]). Let S be a scheme, and A be an
abelian algebraic space over S. Then A is a scheme, hence an abelian scheme over S.

Note that we already know that Pic?4 /S is locally of finite presentation over S. By the above
discussion, we now know how to prove that Pic% /g 1s an abelian algebraic space, by only using
the functorial description of Pic?4 /s

By Theorem 1.2.17(i), if S = Speck is the spectrum of a field, Pic,/; (and therefore Pic%/k)
is a locally finite type k-group scheme. Note that a group scheme G over a field k is automatically

separated, as the diagonal Ag : G — G X G is a base change of the identity section e :

-1
Speck — G via the map G x, G (@y)ay G, which is a closed immersion. We can thus

apply the Rigidity Lemma with Picy/; as a target, whenever it exists as a scheme, and prove
the following important theorem.

Theorem 1.2.19 (Theorem of the Cube). Let Z be a separated finite type scheme over a
field k, and X,Y be proper k-schemes. Suppose that X,Z are geometrically integral and Y
is geometrically reduced and geometrically connected. Let o € X(k),yo € Y (k),z0 € Z(k).
Suppose L is a line bundle on X X Y Xy Z such that Ly, = £|{x0}kaka = Oyx,z and
simialarly Ly, , L., are trivial. Then L= Oxx,vx,z-

Proof. As L, is trivial, £ € Picy (X X3 Z). We want to show that £ = 0 inside Picy /(X x},Z).
Note that as Y is proper, geometrically reduced, geometrically connected and Y (k) # 0, Picy i
exists as a separated k-scheme, by Theorem 1.2.17(i) and the above discussion. Now we can
apply the Rigidity Lemma, Proposition 1.2.12, to the corresponding map X xj Z — Picyy,
since L, = Oxx,y implies that X X {20} — 0. As L, is trivial on Y x; Z, this means that
the morphism X xj Z — Picy;, is identically zero. O

Theorem 1.2.20 (Cubical Structure Theorem). Let A/S be an abelian scheme, and L be an
invertible sheaf on A. For an S-scheme T and ay,a2,as € A(T), the line bundle on S,

(a1 + a2+ a3)* L & (a1 + a2)* L7 @ (a1 + a3)* L7 @ (a2 + az)* L™
®a}L ® a3l ® ail © (e*L)7",
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is canoncially trivial, where e € A(S) is the identity section.

Proof. It is sufficient to do the universal case, I'= A xg A xg A and a; = pr; : T'— A. By the
Theorem of the Cube, Theorem 1.2.19, and by symmetry, we only need to show that the line
bundle is trivial on {0} xg A xg A. As one can check, the eight factors formally cancel out. [

Using the Cubical Structure Theorem, one can prove the following.

Proposition 1.2.14 [MFK, Proposition 6.7]. For an abelian scheme A/S, Pic%/s is formally
smooth over S.

Proof. Let s € S, R be an artin local ring, finite over Og s, I C R be an ideal of R satisfying
mpl = 0. Let £ be an element of Pic%/S(R/I), which is an invertible sheaf on A x g Spec(R/I).
The obstruction on extending this to an invertible sheaf on A xg Spec R is an element of
H?(Ag,04,) @k I/mpl, where k = R/mp and A, = A ®g Spec(R/mp). Note that by the
Cubical Structure Theorem, Theorem 1.2.20, if m : A xg A — A is the multiplication map,
we have that m*L @ pri £L7! @ prj £~ is trivial, as it comes from a degree zero line bundle
over Spec R/I, which is trivial as Spec R/I is a point scheme. On the other hand, by Kiinneth
formula,

m*_pr*_pr*
HQ(Xk,OXk) Qp I — 1 -2 HQ(Xk X XkHOXkXXk);

is injective. As the obstruction of extending (m* —prf — pr3)L to Ax g A x gSpec R is trivial, the
obstruction of extending £ to A x g Spec R is trivial, as well. This shows the formal smoothness
of Pic?4 /s O

Proposition 1.2.15. For an abelian variety A over a field k, A is projective.

Proof. We first reduce the problem to the case of k = k. Suppose Az is projective. Then, there
is a very ample divisor D on Az, which is meant to be defined over a finite extension &’/k. Let
k" be the separable closure of k in k. As k'/k" is purely inseparable, k"?" C k' for some large
enough m. Then, p™D arises from a divisor on Ag», and is very ample. Thus we can assume
that k’/k is finite separable. Extending to the Galois closure of k', we can assume that k'/k is
finite Galois. Then, D’ = > oeGal(k//k) oD arises from a divisor over k. As it is a sum of ample
divisors, it is ample. Therefore, D’ defines an ample divisor on A, which makes A projective.
Suppose k = k. As k is infinite, it is quite clear that we can choose finite set of codimension
1 integral subschemes {Z1,--- , Z,} such that N, Z; = {e} and, for any ¢t € T, A, there exists
1 <i < n such that t ¢ T.Z;; we first add Z;’s to reduce the dimension of N;T.Z;, and after
making it zero, we add Z;’s to reduce the dimension of N;Z;. Let D = ", Z;. We will show that
3D is very ample, which will suffice to show that A is projective. To show that 3D is very ample,
it is sufficient to show that the linear system |3D| separates points and tangent vectors. Note
that for any choice of closed points a;, b; € A(k) for 1 <i <n, Y ;(t;. Zi+t;, Zi"‘t*—ai—bizi) ~ 3D.
Now, for any distinct points a,b € A(k), there is j such that Z; does not contain b — a. Choose

a; = —a, then tzj Zj passes through a but not b. Now we can choose all other a;, b;’s so that all
other &3, Z;, ¢y ,t* .., Z; miss b. Then this shows that |3D| separates points. The same proof
shows that |3D| separates tangent vectors, as desired. O

We now prove the existence of dual abelian schemes, with no other assumptions.

Theorem 1.2.21. For an abelian scheme A over S, there exists the dual abelian scheme A of
A. In other words, A := PiCOA/S is represented by an abelian scheme over S.
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Proof. We first prove the case when S = Spec k is the spectrum of a field, namely when A/k is
an abelian variety. We already know PicOA Jk is a smooth k-group scheme, by Proposition 1.2.14.
As every k-scheme is faithfully flat, the valuative criterion for properness clearly holds, so Pic?4 Ik
is proper. We thus only need to show that it is connected. By passage to the algebraic closure,
we can assume that k = k. Let Pic%‘:/,C be the connected component of the identity section of
Picy /. Then, a line bundle corresponding to a point in Pic%k is algebraically trivial via the
universal line bundle P € PicA/k(Pic?f/k) on A Xy PicOAC/k. On the other hand, for a connected
k-scheme T, closed points t1,t2 € T(k) and a line bundle £ on X x T, both Ly, ) and
L x x{t,} lie inside the image of the corresponding map 7" — Picy ;. As T' is connected, both
line bundles lie in the same connected component. This means that any algebraically trivial
line bundle should lie in Pic?f/k. Thus, Pic%k = Pic% Ik which is connected. Thus, we deduced
that Pic% Jk is an abelian variety.

Suppose now that A/S is an abelian scheme. By the discussion around Theorem 1.2.18,
it is sufficient to show that the algebraic space Pic% /s is proper, formally smooth and has
geometrically connected fibers. By Proposition 1.2.14, we again know Picg1 /8 is formally smooth.
As geometric fibers of PicOA /g are PicOAS Ji(s) for geometric points s of S, we know it is connected.
We also know Pic?4 /s is separated, by Theorem 1.2.17(iii). Note that the proof of [EGA, IV-3,
Corollaire 15.7.11] can be verbatim adapted to algebraic spaces to deduce the following: let X be
an algebraic space, separated and of finite presentation over S, with a section S — X ; suppose
that, for any point s € S, X is geometrically connected and proper over k(s); then, X is proper
over S. If we know that PicOA /s is of finite presentation over S, or, that it is quasicompact over
S, we can use this and we are done. On the other hand, by [SGA6, Exposé XIII, Théoréme
4.7], we know that, if S is quasicompact, Pic% /5 Picy/s is representable and quasicompact.

This in particular implies that Picg( /8 is quasicompact over S whenever S is affine. Thus, for
any base scheme S and an affine open U C S, Picg( /8 xgU = Picg(U U is quasicompact over U.
Therefore, Picg( /s is quasicompact over S. This finishes the proof of the theorem. O

For an abelian variety A over k, we often refer to the restriction of the universal line bundle
to A x Pic(j1 /i 88 the Poincaré bundle P4. In particular, it gives rise to a canonical isomorphism
of an abelian variety to its double dual.

1.2.3.3 Isogenies and Polarizations

Let S be a base scheme. A homomorphism f : G — G’ of S-group schemes is called an isogeny
if f is surjective and its kernel ker(f) is a flat finite group scheme over S; recall that the kernel
always exists as a group scheme, unlike cokernels. Note that the quotient by a finite flat group
scheme is an isogeny, if exists. Conversely, as an isogeny f : G — G’ is flat, so f is identified
with the quotient G — G/ ker f.

Over a connected base scheme S, an isogeny f is of degree n if ker f is a finite flat group
scheme of order n. Over a general base, the degree is a locally constant function over S. This
degree is the same as the degree as a finite map.

Perhaps the most important isogeny for abelian schemes is the multiplication by n map.

Proposition 1.2.16. Let A be an abelian scheme over S, and let n # 0 be an integer. Then
the multiplication by n map, [n] : A — A, is an isogeny of degree n?9, where g is the relative
dimension of A over S.

Proof. From the definition of isogeny, it is clear that we can check isogeny fiberwise. Thus, we
can assume that S = Speck is the spectrum of a field, and A is an abelian variety over k. By
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induction and the Cubical Structure Theorem, Theorem 1.2.20, we can show that, for any line
’)’l2 n
bundle £ over A, [n]*L = L® >

n?—n
2 ® ([-1]*£)® 2 . Let £ be an ample line bundle over A,
which is possible as we know A is projective over k, and consider the restriction to A[n] = ker[n].
We have

OA[n] = LA[n]Q ® ([71]*[')14[71}2 )
where both L4, and ([—1]*L) g = [=1]"(Lajn)) are ample on A[n]. As n # 0, at least one

of the powers are positive, so it implies that Oy, is ample. As Aln] is projective over k, by
using Serre’s vanishing, every coherent sheaf over A[n] has vanishing higher cohomology after
twisting sufficiently high power of O4p,, which does nothing. Thus, by Serre’s criterion of
affineness, A[n] is affine over k. An affine proper scheme over k must be finite, so A[n] is a finite
flat k-group scheme. Now notice that as [n] is a morphism between smooth proper irreducible
schemes of the same dimension with O-dimensional kernel, so it has a closed dense image, or it
is surjective. Thus [n] is an isogeny.

Replacing £ with £ ® [~1]*£, we have an ample line bundle £ which satisfies [n]*£ = £
Note that deg L # 0, and deg([n]*L) = deg[n| - deg L whereas deg L7 = n2deg L. Thus
deg[n] = n?9. O

Proposition 1.2.17. Let A, A’ be abelian schemes of dimension g over S. Let f : A — A’ be

an isogeny of constant degree n. Then, there exists an isogeny [ : A — A of constant degree n
such that f o f' = [n?9) 4 and f' o f = [n?9] 4.

Proof. By Deligne’s theorem, Theorem 1.2.1, ker f is killed by [n29]4. Then the proposition is
immediate from the universal property of quotients. O

This is important, as this shows that an isogeny is in fact an equivalence relation. We can
thus safely call two abelian schemes A, A’ over S isogenous if there exists an isogeny f: A — A'.
Another important example of isogeny is an isogeny between an abelian variety and its dual.
Given an invertible sheaf £ on A, define A\(£) : A — Atobea morphism corresponding to the
line bundle
m*L ® pr] L1 pra L1te (€°L)axgAs

on A Xs A.
Proposition 1.2.18. If L is relatively ample over S, then A(L) : A — Ais an isogeny.

Proof. For each s € S, A(L)s = A(Ls), so we can assume that S = Speck is the spectrum of
a field. Let A’ = ker(\(£))?. Note that m*L|a @ pri(L]a) ™t @ pri(Lla) L @ (e*Llar) arx,ar
is trivial on A’ x; A’. The pullback of this sheaf by the map A’ KindU Ny xp Al s Lo ®
[—1]*(L| ar), which is again ample and trivial. Thus, dim A’ = 0, or A(£) is finite.

To show the surjectivity, it is sufficient to show that dim A = dim A. Note that Te;l\ =
ker(Pic 4y, (k[e] /%) = Picask(k)) = H' (A, O4). It is dim A-dimensional, as dimy, HP(A,04) =
(dh;lA), e.g. [Mum, 13, Corollary 2].

(I

This kind of isogeny is called a polarization.

Definition 1.2.7 (Polarization). Let A be an abelian scheme over S. A polarization of A is
a homomorphism A : A — A such that, for each geometric point s of S, A\s = XN(Lz) for some
ample invertible sheaf L5 on Asz. A polarization is principal if it is an isomorphism, i.e. when
s of degree 1.

The construction A(L) has nice properties, and is often a better object to study that the
line bundle £ itself.
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Proposition 1.2.19. Let \: A — A be a polarization of an abelian scheme A over S.
(i) Through the canomnical isomorphism i: A = AM Xoi=\.
(ii) For L € Pic) 4(S), A(£) = 0.
(i4i) N(L7Y) = A(L) o [-1]4.
(1) MLy ® L2) = AN(L1) + A(L2).
(v) For z € A(S), A(t:L) = A(L).
(vi) If S = Speck is the spectrum of a field, A\(L) = 0 implies that L € Pic%/k(k:).

Proof. All except (vi) follow from the Cubical Structure Theorem, Theorem 1.2.20, and identi-
fication of maps into A via their pullback of the Poincaré bundle. For (vi), we use the fact that
deg A\(£) = x(L)? (cf. [Mum, 16]), where x(L) is the Euler characteristic of L. O

Define the isogeny category of abelian varieties over a field k to be the localization of the
category of abelian varieties over a field £ where k-isogenies are considered as isomorphisms.
The isogeny category is very nice, in fact is semi-simple.

Theorem 1.2.22 (Poincaré Complete Reducibility Theorem). Let A be an abelian variety over
a field k. For A’ — A an abelian subvariety over k, there is an abelian subvariety A” — A over
k such that A" xp A” — A is an isogeny.

Proof. Choose an ample line bundle £ on A. Then we have a commutative diagram

At A

Let A” = ker(i o A(£))%,. Tt is a projective smooth connected k-group scheme, so it is an
abelian subvariety of A over k. Note that A” N A’ C ker A\(4*L), so it is finite. Therefore, to
show that A’ x A” — A is an isogeny, we only need to show that the dimensions are right, i.e.
dim A” = dim A — dim A’. One way is easy, the other way we have dim A” = dimker as \(£)
is finite surjective, so dim A” = dimkeri > dim A — dim A’ = dim A — dim A’ O

The isogeny category is “the category of abelian varieties modulo torsion.”

Proposition 1.2.20. Let A, B be abelian varieties over a field K. Then, Hom% (A, B) :=
Homg _isogeny (A, B) = Homg (A, B) ®z Q. In other words, the group of homomorphisms from
the isogeny class of A to the isogeny class to B is naturally identified with Homg (A, B) ®7z Q.

Proof. Obviously Homg (A, B) C Homg isogeny (A, B), and as [n] maps are isogeny, we can
compose it and its “inverse” inside the isogeny category, so that we have a natural inclusion
Homg (A, B)®7zQ C Homg _isogeny (A, B). On the other hand, an element of Hom g _isogeny (4, B)
is of form

A:Ao%AlﬁAg%---—)A]‘_l(—Aj—>Bk<—Bk,1—)-~-%BQ—>Bl<—B():B,

where the arrows between A;’s and the arrows between B;’s are isogenies. On the other hand,
given an isogeny i : A’ < A" there is n € Z\{0} and an isogeny i’ : A" — A", so that ioj = [n].
Thus, the “inverse” i~' € Hom isogeny (A, A”) is identified as “j o [n]~!,” which up to torsion

the same as j. Thus, an element of Homg _isogeny (4, B) is in Homg (A, B)®7Q in this sense. [
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1.2.3.4 Duality and the Weil Pairing

GivenAa map oAf abelian schemes f : A — B, the pullback of invertible sheaves induces the dual
map f: B — A.

Proposition 1.2.21. Let A, B be abelian schemes over S.

(i) If f,g : A = B be two morphisms of abelian schemes. Then (f + g)" = ]?—i- g. In
particular, @ = [n] 3.

(ii) The dual of an isogeny is an isogeny.

Proof. (i) We would like to show that, for any S-scheme T and £ € Pic%/S(T)7 (fr+gr)*L=
(fr)*L®(gr)*L. We can check whether a given line bundle is trivial fiberwise, so we can assume
S = Speck is the spectrum of a field. Checking if two morphisms are equal can be done after a
faithfully flat base change, so we can assume k = k. Then as £ € Pic%/k(k), ML) =0, so the
Cubical Structure Theorem, Theorem 1.2.20, gives us the identity.

(ii) It follows from (i) and the fact that an isogeny factors through [n] for some nonzero
integer n. O

Let A be an abelian scheme over S of dimension g. As we know [n] : A — A is an isogeny,
it follows that A[n] = ker[n] is a finite flat commutative group scheme over S of order n?9. As
forseen before, it is then immediate that, for any prime p, A(p) := (A[p"]) forms a p-divisible
group over S of height 2g. A natural question to ask is that, what is the relation between A[n]
and A[n]?

Proposition 1.2.22. For abelian schemes A, B over S and f : A — B an isogeny, naturally
ker f 2 (ker f)P. To be more precise, for any S-scheme T,

~

(er F)(T) = Homy_gep((ker )7, Grur),

-~

The pairing (ker f) xg (ker f) — Gy, g induced from this is called the Weil pairing.

Proof. As our setup is compatible with base change, we can just treat the case S = T. Note

~

that ker f(S) = ker(Pic(B) EAN Pic(A)), and by descent theory, it is equal to the group of
isomorphisms prj O4 = prj O4 satisfying cocycle condition as O4x z4-modules. As f: A — B

is the quotient of A by ker f, the action map (ker f) xg A M AxpgAis an isomorphism.
Along this isomorphism, the data of prj O 4 = prj O4 becomes m*O4 = prs O 4 on (ker f) x g A.
This is the same as the data of a unit u in I'((ker f) X5 A, Oxer f)xga)™- It is the collection of
u(g) € T(A,04)* for g € (ker f)(S). The cocycle condition is exactly demanding g — u(g),
as a morphism ker f — G,, g, to be a homomorphism. On the other hand, coboundaries
vanish because p,O4 = Og, where p : A — S is the structure morphism, and its formation is
compatible with base change. O

Remark 1.2.5. In particular, the Weil pairing shows that the dual isogeny is of the same degree
as the original isogeny.

1.2.3.5 Néron Models and Reductions

We now define what it means for an abelian variety over a field to have a good or semi-stable
reduction. It need a procedure to pass to an integral model, and it is the integral model that
decides the reduction. On the other hand, it is questionable about how canonical is the passage
to integral model. For example, is there always an integral model which is an abelian scheme?
This cannot be the case, as there is an abelian variety over Q but no nontrivial abelian scheme
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over Z as we will see shortly. However, there is some kind of a “canonical” integral model which
is not necessarily proper, which is called a Néron model.

Definition 1.2.8 (Néron Model). Let R be a Dedekind domain and K = Frac(R). For a
smooth separated finite type K-scheme X, a Néron model of X is a smooth separated finite type
R-scheme Y such that Y =2 X and it satisfies the following Néron mapping property.

For each smooth R-sheme Y’ and each K-morphisms ug : Y}, — Y = X, there is a unique
R-morphism extending ug .

The Néron mapping property is a kind of universal property to make sure that a Néron
model, if exists, is a canonical object. It is easy to see the following.

Proposition 1.2.23 [BLR, 1.2]. (i) A Néron model is uniquely determined by its generic fiber,
up to canonical isomorphism.

(ii) The formation of Néron models commutes with étale base change.

(iii) A Néron model can be computed locally on the base.

(iv) A Néron model can be checked at closed points. Namely, an R-scheme X is a Néron
model of its generic fiber if, for all closed points s € Spec R, an Rs-scheme X, is a Néron model
of its generic fiber.

(v) If the generic fiber has a group structure, it extends uniquely to a group structure of a
Néron model.

(vi) An abelian scheme is a Néron model of its generic fiber.

A nontrivial theorem is that an abelian variety admits a Néron model.

Theorem 1.2.23 [BLR, Corollary 1.3.2, Theorem 1.4.2]. Let R be either a Dedekind domain
or a discrete valuation ring. Let K = Frac(R). For an abelian variety A over K, A admits a
Néron model over R, which is quasi-projective over R.

The remaining problem is whether this Néron model is an abelian scheme over R or not.
In fact, it is not necessarily an abelian scheme, due to the lack of properness. We thus say an
abelian variety has a good reduction if its Néron model is an abelian scheme.

Definition 1.2.9 (Reduction Types). Let K be either a global field or a local field of mized
characteristic. Let A be an abelian variety over K.

(i) If K is a local field, A is called to have a good reduction if its Néron model over Ok is
an abelian scheme.

(ii) If K is a global field, A is called to have a good reduction at a prime p C Ok if its
Néron model over (Ok), is an abelian scheme.

If an abelian variety does not have good reduction (at a closed point), then it is called to have
a bad reduction (at the point). We now can easily see the equivalence of different formulations
of Shafarevich conjecture. Namely, for a number field K and a finite set of primes S of K,
an abelian scheme over Ok g really is the same thing as an abelian variety over K with good
reduction outside S.

There are multiple ways of seeing good reduction, all in a similar vein.

Proposition 1.2.24. Let A be an abelian variety over a field K.

(i) If K is a global field, A has good reduction at a prime p C O if and only if Ak, has
good reduction.

(ii) Let R be either a Dedekind domain or a discrete valuation ring such that K = Frac(R).
For a closed point s € Spec R, A has good reduction at s if and only if As = A ®pr k(s) is an
abelian variety over k(s).
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Proof. (i) is immediate. For (ii), one direction is also immediate, as properness is preserved by
base change. The really nontrivial result we need to use here is that, for a Néron model A over
Ospec R,s» that its reduction A, is x(s)-proper implies that A is Ogpec rs- This follows from
the following fact [EGA, IV-3, Corollaire 15.7.10]: for a separated, finite type, faithfully flat
morhpsim f: X — Y, if Y is locally noetherian and each fiber X, fory € Y is geometrically
connected and proper over k(y), then f is proper. O

We now know that the property of having good reduction at a prime is solely dependent
on the reduction modulo the prime. We know that the reduction is a smooth finite type
commutative group scheme over the residue field. As we are only interested in the cases of
number fields or local fields of mixed characteristic, the residue field is a finite field. In this
case, we can apply the Chevalley Structure Theorem to analyze the structure of the reduction.

Theorem 1.2.24 (Chevalley Structure Theorem, cf. [BLR, Theorem 9.2.1]). Let G be a smooth
connected group scheme over a perfect field k. Then, there is a unique exact sequence

1—-—H—-G—-B—1

where H is a connected smooth affine k-group scheme and B is an abelian variety over k. If
furthermore G is commutative, H uniquely splits as H = T X, U, where T is a k-torus (i.e.
T = GZE for some N ) and U is a smooth connected unipotent k-group (i.e. has a filtration

over k with successive subquotients isomorphic to G,).

Borrowed from the terminology of describing group schemes in terms of the Chevalley Struc-
ture Theorem, we define the following mildly bad reductions.

Definition 1.2.10 (Reduction Types). Let G be a smooth connected group scheme of finite
type over a Dedekind scheme S. Let s € S be a closed point.

(i) We say G has abelian reduction at s if GY is an abelian variety, i.e. the corresponding
H in the Chevalley Structure Theorem is trivial.

(ii) We say G has semi-abelian reduction (or semi-stable reduction) at s if GO is an extension
of an abelian variety by an affine torus (“semi-abelian variety”), i.e. the corresponding U in
the Chevalley Structure Theorem is trivial.

(iii) We say G has potentially good (abelian, semi-abelian/semi-stable, respectively) reduc-
tion if there is a finite Galois extension L of K = K(S) such that, over the normalization S’ of
S in L, Gg has good (abelian, semi-abelian/semi-stable, respectively) reduction at every point
lying over s.

Note that, for abelian varieties and schemes, an abelian reduction is just a good reduction.
These reduction types are reluctant to isogeny.

Proposition 1.2.25. (i) An abelian variety isogenous to an abelian variety with semi-stable
(good, respectively) reduction has semi-stable (good, respectively) reduction.

(ii) A semi-abelian integral model of an abelian variety is identified with an open subscheme
of the Néron model via the morphism from the Néron mapping property.

Proof. (i) By the Néron mapping property, it is sufficient to show the following: if f: A — A’
is an isogeny of abelian varieties over K, and if A has semi-stable reduction (at a prime), then
f extends to an isogeny of Néron models. Note that, on a semi-abelian group scheme, the
multiplication by n map is finite and flat, as they are on both abelian varieties and torii, for
any n # 0. Thus, we can lift multiplication by n maps to an isogeny of Néron models. Then
the general case follows as f factors through [deg f].
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(ii) Suppose that the semi-abelian integral model is connected. We can pass to the strict
henselization, as the formation of Néron models is compatible with the passage to strict henseliza-
tion. Let n be a positive integer not divisible by the characteristic of residue field k. Then, for
a semi-abelian integral model G over R and Néron model A over R, both extending Ax over
K = Frac(R), we have G[n](K) = A[n|(K), as both are extending Ax. As A[n](K) = A[n|(R)
by Néron mapping property and G[n|(R) C G[n](K) by valuative criterion for separatedness,
we deduce that G[n](R) C A[n|(R). Reducing to k, we have G[n|(k) C A[n](k). As k = k°,
the points of finite order not divisible by chark form a dense subset of Gi(k), so it follows
that G, — A) has finite kernel. It is surjective as the dimensions match. By Zariski’s Main
Theorem, it is an isomorphism. O

Proposition 1.2.26 (cf. [BLR, 7.4, 7.5]). Let R be either a Dedekind domain or a discrete
valuation ring of mized characteristic, and K = Frac(R). If R is Dedekind, choose a prime p
in Ok. Let k be the residue field (at p).

Suppose that we are given an exact sequence 0 — A" — A — A” — 0 of abelian varieties over
K, and consider the corresponding complex of Néron models over R, 0 — X' — X — X" — 0.
Using the Poincaré Complete Reducibility Theorem, Theorem 1.2.22, we can find an abelian
K -subvariety B C A such that A — A" induces an isogeny u : B — A”. Let n = degu.

(i) A has semi-stable reduction (at p) if and only if A’; A” have semi-stable reductions (at p).

(i1) If char k does not divide n, then X' — X is a closed immersion, X — X" is smooth with
kernel X', and the cokernel of Ay — A} is killed by multiplication with n. If furthermore
A has good reduction (at p), then 0 — X' — X — X" — 0 is ezact.

(11i) If A has semi-stable reduction (atp), then 0 — X' — X — X" — 0 is exact up to isogeny.

(iv) Suppose R is a discrete valuation ring with e < p — 1, where e is the absolute ramification
index. Then the following assertions hold.

(a) If A" has semi-stable reduction, X' — X is a closed immersion.
(b) If A has semi-stable reduction, 0 — X' — X — X" is exact.

(c¢) If A has good reduction, A, A" also have good reductions, and 0 — X' — X — X" —
0 is exact.

Proof. (i) It is an immediate consequence that A is isogenous to A’ x A”.

(ii) In the proof of Proposition 1.2.25(i), it is also clear that, if m is not divisible by char k,
[m] is an étale isogeny on the level of Néron models. Thus, the isogeny A’ x B — A induced
from u : B — A” lifts to an étale isogeny, factoring through [n]. The statements follow easily
from this observation.

(iii) From the proof of Proposition 1.2.25(i), we know we can lift u and A’ x B — A to
isogenies. This gives a split exact sequence isogenous to 0 —+ X' — X — X" — 0.

(iv) See the proof of [BLR, Theorem 7.5.4]. The condition e < p — 1 is required precisely
because the proof utilizes Raynaud’s theorem on prolongations, Theorem 1.2.8. O

1.2.3.6 Jacobians of Relative Curves

In this section, we will discuss about the Shafarevich conjecture for curves mentioned in the
introduction. First of all, we define a curve over a field to be a proper, geometrically connected
1-dimensional scheme, and a (relative) curve over a base scheme S to be a proper flat S-scheme
whose fibers are curves. For a smooth curve C' over a number field K, we define C' to have
good reduction at a prime p if there is a smooth proper curve C over (Ok), extending C. It is
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equivalent to saying that the reduction C over x(p) is a smooth proper curve; smoothness is a
local condition, and properness can be checked at the special fiber by the lemma [EGA, IV-3,
Corollaire 15.7.10] we used.

The first thing to ask is the following: why does C' having good reduction outside a finite set
of primes S in K admit a smooth proper curve C over Ok g extending C'¢? We cannot directly
use the argument we used for abelian varieties, since the theory of Néron models is not very
nice in this case. On the other hand, a viewpoint from birational geometry gives us a different
kind of model for curves.

Definition 1.2.11 (Regular Proper R-model). Let R be a Dedekind domain, K = Frac(R), and
C be a smooth K-curve. A regular proper R-model of C is a regular (proper) R-curve whose
generic fiber is isomorphic to C. A minimal regular proper R-model of C' is a regular proper
R-model C such that any dominant morphism C — C' of another reqular proper R-model of C
18 an isomorphism.

Theorem 1.2.25 (Minimal Models Theorem, [Li, Q, Theorem 9.3.21]). For a smooth K -curve
C of positive genus, there exists a unique minimal regular proper R-model C™5.

Now the situation is clear; if a smooth K-curve has good reduction outside a finite set
of primes S, then the minimal regular proper Ok s-model C™® is necessarily smooth, as it is
fiberwise smooth.

Now we will see how the Shafarevich conjecture for curves follows from the Shafarevich
conjecture for abelian varieties. Given a smooth curve C over a Dedekind domain R, consider
Picoc IR It turns out that this is also representable by a scheme.

Proposition 1.2.27 [BLR, Proposition 9.4.4]. Let f : X — S be a proper smooth morphism
of schemes whose geometric fibers are connected curves. Then, Picg(/s is an abelian S-scheme,

and there is a canonical S-ample rigidified line bundle L(X/S) on Picg(/s.

We call J(C) := Pic%, /i the Jacobian of C'. As the formation of Picard scheme is compatible
with completion, it follows that the generic fiber of J(C') is just J(Ck). Therefore, for a number
field K and a finite set of primes S, a K-curve having good reduction outside S is associated
with a principally polarized® abelian variety over K having good reduction outside S. Thus,
the Shafarevich conjecture for curves is deduced from the Shafarevich conjecture for abelian
varieties if we show that the functor C' +— J(C) is a finite-to-one map. This is established by
the following theorems.

Theorem 1.2.26 (Torelli’s Theorem, [CS, VII, Corollary 12.2]). Over a perfect field K, let
C,C" be smooth K-curves of genus g > 2. If (J(C),NL(C/K))) = (J(C"),\L(C'/K))) as

principally polarized abelian varieties, then C = C' as smooth K -curves.

Theorem 1.2.27 [NN, Theorem 1.1]. An abelian variety admits only finitely many principal
polarizations.

Now it is clear that the Shafarevich conjecture for curves follows from the Shafarevich
conjecture for abelian varieties; the Jacobian of a curve over K with good reduction outside S
is an abelian variety over K with good reduction outside S, and this correspondence is finite-
to-one (up to isomorphism).

“Recall that an ample line bundle £ gives a polarization A(£). As the construction of £(X/S) is canonical, it
turns out that the associated polarization is principal in this case, cf. [CS, VII, 6.11].
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1.2.3.7 Reduction Types Via p-divisible Groups

We now describe how a p-divisible group can describe the reduction behavior of an abelian
variety. Recall that we have a famous Néron-Ogg-Shafarevich criterion, treated in many basic
courses on, say, elliptic curves.

Theorem 1.2.28 (Néron-Ogg-Shafarevich Criterion, [BLR, Theorem 7.4.5]). Let A be an
abelian variety over a local field K with residue characteristic p. Let £ # p be a prime. Then A
has good reduction if and only if the £-adic Tate module Ty(A) := @A[ﬁ”} (K) is unramified as
a Galois representation of the absolute Galois group Gi of K.

That we need £ # p is reasonable, as generally p-adic Tate modules are badly behaved. We
know that ¢-adic Tate modules secretly come from ¢-divisible groups (Proposition 1.2.10), and it
turns out that, if one instead consider ¢-divisible groups, one does not need the condition £ # p.
This philosophy is extensively explored in [SGAT7-1, Exposé IX], with one extra condition that
the base field K is of characteristic 0. This condition could not be removed precisely because
the Tate’s theorem, Theorem 1.2.10, is only valid over characteristic 0. Therefore, de Jong’s
results, in particular Theorem 1.2.11, can remove this extra hypothesis and prove the results in
full generality.

Theorem 1.2.29 ([SGAT7-1, Exposé IX, Corollaire 5.10], [dJ, 2.5]). Let R be a henselian discrete
valuation ring with fraction field K. Let ¢ be any prime. Let A be an abelian variety over K.
Then, A has good reduction if and only if “A({) has good reduction,” i.e. A({) extends to an
£-divisible group over R.

The Néron-Ogg-Shafarevich criterion is immediate from this. Note that, if ¢ # p, an /-
divisible group over R is always étale, so by Theorem 1.2.10 A has good reduction if and only
if T(A(0)) = T;(A), a m ¢ (K, o)-module, factors through a 7y ¢ (R, o)-module, where « is a
geometric point of Spec K. Now the Néron-Ogg-Shafarevich Criterion follows as 71 ¢ (K, o) =
Gk, whereas 7 ¢ (R, o) = I, the inertia group.

One can also distinguish semi-stable reduction in terms of p-divisible groups.

Theorem 1.2.30 ([SGAT7-1, Exposé IX, Proposition 5.13], [dJ, 2.5]). Let R be a henselian
discrete valuation ring with fraction field K. Let ¢ be any prime. Let A be an abelian variety
over K. Then, the following are equivalent.

1. A has semi-stable reduction.

2. For all g € Ik in the inertia group, (g — 1)* acts trivially on A(f). In other words, the
inertia group acts “unipotently of echelon two”.

3. For all g € Ik in the inertia group, g acts unipotently on A({).

4. There is a filtration'® of (-divisible groups A(¢)t C A(£)) € A(€) such that both A(f)* and
AT A0 eatend to (-divisible groups Fy, Fy over R (i.e. good reduction) such that Fy
and FP are étale (-divisible groups over R.

There is also another criterion for semi-stable reduction, called the Raynaud’s Criterion.

Theorem 1.2.31 (Raynaud’s Criterion for Semi-stable Reduction, [SGAT7-1, Exposé IX, Théoreme
4.7)). Let R be a henselian discrete valuation ring with fraction field K. Let n be a positive in-
teger mot divisible by the residue characteristic of R. Suppose that an abelian variety A over

10+ stands for “toric part”, and f stands for “finite part.”
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K satisfies that K(A[n](K)) is unramified over K (i.e. the inertia group I acts trivially on
Afn)(K)).

(i) If n > 2, then A has semi-stable reduction.

(i) If n = 2, then A acquires semi-stable reduction after a finite Galois extension K'/K
where Gal(K'/K) is of form (Z/2Z)".

These results give the celebrated Semi-stable Reduction Theorem.

Theorem 1.2.32 (Semi-stable Reduction Theorem, [SGAT7-1, Exposé IX, Théoreme 3.6]). Let
S be a noetherian regular connnected scheme of dimension 1. Let K = K(S). For an abelian
variety A over K, there is a finite Galois extension K'/K such that Ax: has semi-stable reduc-
tion over 8" = Sx K'. In other words, every abelian variety over K has potentially semi-stable
reduction.

The extension K' can be explicitly given by the splitting field of A[l], where £ can be any odd
prime different from the residue characteristic. Alternatively, one can choose the splitting field
of Al4] instead.

Note that these results can be easily globalized.

Theorem 1.2.33. Let A be an abelian variety over a number field F. Let S be a finite set of
primes in F', and £ be any (rational) prime.

(i) A has good reduction outside primes in S if and only if A({) extends to an (-divisible
group over OFg.

(ii) A has semi-stable reduction at primes in S if and only if the inertia groups of primes
in S acts unipotently of echelon two on A({).

Proof. There is nothing new on the statement of (ii). For (i), we need to construct a global
extension of A(¢) over O . Even thought we do not yet know if such thing exists, we know
what it should be. Namely, let A be a Néron model over Opg. Then, A(¢) := (A[("]) may
not be an ¢-divisible group, but it is not precisely because it may not be finite (or rather more
precisely, proper). We already observed that properness of such thing can be checked fiberwise
by the lemma [EGA, IV-3, Corollaire 15.7.10], and each fiber is proper as A(¢)s extends to an
¢-divisible group, which is nothing but A(¢)s. O

We end this section by recording similar results on seeing semi-stable reduction based on
Galois actions on torsion subgroups and ¢-adic cohomology groups for later purposes.

Proposition 1.2.28 [SZ, §4]. Let R be a henselian discrete valuation ring, K = Frac(R), and
A an abelian variety of dimension g over K. Let p be the residue characteristic of R, and let
I be the inertia group.

(i) Let n be an integer not divisible by p. If A has semi-stable reduction, then the inertia
group I acts unipotently of echelon two on Aln]. If n > 5, the converse is true.

(ii) Let k be an integer between 0 < k < 2g, and £ # p be a prime number. If A has
semi-stable reduction, then the inertia group Ik acts unipotently of echelon (k+1) on the (-adic
cohomology Héjt(Xf, Zy). If k is odd, the converse is true.

1.2.3.8 Tate Modules and Faltings’ Finiteness Theorems

As with p-divisible groups, we would like to see how much ¢-adic Tate modules can tell about
abelian varieties. Recall that, given an abelian variety A over a field K, the ¢-adic Tate module
is Ty(A) = l'glnA[fn] (K). One then define Vy(A) := Ty(A)[1/£] to make a representation. It
is a free Zs-module, and in particular, if ¢ # char K, A[¢"]’s are étale over K, so Ty(A) = Z?g
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as Zg-modules. How much information does the functor A +— Ty(A) preserve? Certainly, for
abelian varieties A, B over K, we have a map

Zy ¥z, Homg (A, B) — Homg, ¢, (Ty(A), Te(B)).
Theorem 1.2.34 [CS, Theorem V.12.5]. The above map is injective, for £ # char K.

Proof sketch. As Endg (A xx B) = Endg(A) @ Homg (A, B) @ Homg (B, A) ® Endg(B), it
is suffficient to show when A = B. Also, as Endg(A) < End%(A) := Endg(A) ®z Q, one
only needs to work on the isogeny category to show that End% (A4) ®g Qp — Endg, (g, (Ve(4))
is injective. By Poincaré Complete Reducibility Theorem, Theorem 1.2.22, one can assume
that A is simple. Then one shows that a degree function deg : Endg A — Z extends uniquely
to deg : End(}{(A) — Q, and it becomes a “polynomial function,” i.e. a polynomial function
whenever restricted to a finite dimensional subspace. One shows by using this fact that Endx (A)
is Z-finite. Then one can explicitly show that an element in the kernel of Z; ®7 Endg(A4) —
Endy, (TyA) is zero by using finite generation of Endg (A). O

In particular, using the fact that the degree function is a polynomial, we can define a charac-
teristic polynomial of an element ¢ € Endg (A) as the polynomial n — deg(¢ —n). It is a monic
polynomial of degree 2dim A with integer coefficients. If K is a finite field, G is topologically
generated by the Frobenius map x — x9, and one can think of the characteristic polynomial
fa of the Frobenius endomorphism on V;(A). It turns out that f4, a monic polynomial with
integer coefficients, classifies the isogeny class of A.

It is a very nontrivial theorem of Tate, Zahrin and Faltings that this map is an isomorphism
for many cases of K, and this is an important piece in Faltings’ proof of Mordell Conjecture.
That it is an isomorphism is called the Isogeny Theorem.

Theorem 1.2.35 (Isogeny Theorems). For abelian varieties A, B over a field K and ¢ # char K,
the map Homg (A, B) ®z Z¢ — Endg,(q,(Ty(A), T;(B)) is an isomorphism, when

(i) (Tate, [CS, 1.§86]) if K is a finite field,

(ii) (Zahrin, [CS, 1.§7]) if K is a global function field, or

(iii) (Faltings, [CS, Theorem I1.5.4]) if K is a number field.

This is accompanied with the following another nontrivial theorems, usually referred as the
Semi-simplicity Theorem.

Theorem 1.2.36 (Semi-simplicity Theorems). For an abelian variety A over a field K and
£ # char K, the rational £-adic Tate module is a semisimple G i -representation, when

(i) (Tate, [CS, 1.56]) if K is a finite field, or

(ii) (Falting, [CS, Theorem I1.5.3]) if K is a number field.

These are very strong results. For example, one deduces the following criterion on deter-
mining isogenous abelian varieties.

Theorem 1.2.37. Let k be a finite field. For abelian varieties A, B over k, the following are
equivalent.
(i) A and B are k-isogenous.
(ii) Ve(A) and Vy(B) are isomorphic as {-adic representations of Gy, for some ¢ # char k.
(iii) fa = fB.
(iv) For each finite extension k'/k, #A(k") = #B(K').
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Proof. That (i) implies (ii) implies (iii) is obvious. (iii) implies (ii) as semisimple G-representations
are determined by eigenvalues of Frobenius. To show that (ii) implies (i), suppose Hom{ (4, B)®¢q
Q¢ = Homg,(i,1(VeA, Vi B) contains an isomorphism. We can approximate the isomorphism by
elements of Homg(A, B). As being an isogeny is determined by degree, any homomorphism
sufficiently close to an isomorphism is an isomorphism. Therefore, there is an isomorphism in
Homg (A, B), which means that A, B are isogenous to each other.

Note also that, if k¥'/k is of degree h, then as #A(k) is the number of fixed points of the
map z — ¥ #A(K') = [[(1 — af), where a;’s are eigenvalues of the Frobenius. Thus, (iv)
holds if and only if the eigenvalues of the Frobenius are the same if and only if (iii) holds. [

The Isogeny and Semi-simplicity Theorems eventually enable us to prove various finiteness
results.

Theorem 1.2.38 (Faltings’ Finiteness Theorems, [CS, 11.§6]). Over a number field K, the
following are true.

(i) The Shafarevich conjecture for curves is true.

(ii) The Shafarevich conjecture for abelian varieties is true.

(iii) Given an abelian variety A over K, there are only finitely many K -abelian varieties,
up to isomorphism, isogenous to A.

(iv) The Mordell conjecture is true; namely, a K-curve of genus > 2 has only finitely many
K -rational points.

1.3 Nonexistence of Abelian Scheme over 7Z

We are ready to prove the nonexistence of abelian variety over Q with everywhere good re-
duction. Although the spirit of the proof comes from [Fol], there are several ways to proceed
from the main ramification bound (Theorem 1.1.1). In particular, we will give several different
results that p-divisible groups and finite flat commutative p-group over the ring of integer of
a small number field are of certain simple forms. These results will imply the nonexistence of
abelian variety over a small number field with everywhere good reduction. The following proofs
are originated from [Fol] and [Sc2].

1.3.1 Fontaine’s Ramification Bound

Our objective of this section is to prove the aforementioned following theorem about the rami-
fication number of field of definition of a finite flat group scheme.

Theorem 1.1.1. Let K be a finite extension of Qp, and let e = vi(p) be the absolute ramifica-
tion index. For an integer n > 1, suppose I' is a finite flat commutative group scheme over Ok

killed by p". Let L = K(I'(K)), and G = Gal(L/K). Then, G =1 for u > e (n+ 55), and
v(Dp k) <e (n—l— ﬁ), where D1 is the different of L/ K.

First, we fix the notations. Let K be a complete discrete valuation ring with mixed char-
acteristic (0,p) and L/K be a finite extension. Let 7 € O be a uniformizer, vk a val-
uation normalized such that vk (7mx) = 1. Choose 71 to be a uniformizer of Oy, such that
Or = Ok|rr]. Let vy, be the extended valuation of vk such that vy (7y) = 1/ep /k, where e, /i
is the ramification index of L/K. For 0 € G = Gal(L/K), we define iy, /i (o) = vp(o(m) — 7).
We can then define a piecewise linear continuous increasing function ¢, : R>o — Rxg
by ¢r/x(i) = Yeegmin(i,if x(0)). Let ¥r/x be the inverse function of ¢ k. Define
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ur/(0) = ¢r/rin/r(0)). Let ip/x = supgyif K (0), ur/x = SuPsz; ur k(o). Finally,
we define the lower/upper ramification groups as follows.

Giy={0€G |igg(o) > i, G ={seq| up k(o) > u}.

This upper/lower numbering of ramification groups is slightly different from the usual conven-
tion, e.g. [Se, Chapter IV]. If G;, G* are the usual notations in [Se, Chapter IV], then our
notations are related as

Gy=G G =gt

eL/Ki_:L’

1.3.1.1 Ramification of Complete Intersection Algebra
Using the basic ramification theory, we will prove the following.

Proposition 1.3.1 [Fol, Proposition 1.7]. Let A be a finite flat Ok-algebra of form A =
Oxl[z1, - sxm]]/{f1, -, fm). Suppose there exists an element 0 # a € Ok annihilating
QIl4/©K’ so that Qi‘/OK is a flat AJ/aA-module.
(i) Suppose S is a finite flat Ok -algebra and I is a topologically nilpotent divided power
tdeal. Then,
Homp, (A, S) = im(Homp, (A, S/al) — Homp, (A, S/I)).
(ii) If L is the field over K generated by the K-points of Y = Spec A (notationally L =

K(Y(K))), then urx < vkl(a)+ ;fl.

Before proving the theorem, we define some terms. For a finite flat Ox-scheme X = Spec B,
K(X(K)), the field generated by K-valued points of X, is defined as follows: as Bx = BQo, K
is finite over K and le_sz/K = 9}3/(9;{ ®o, K =0, Bk is a finite étale algebra over K; thus, Bx
is a finite product of finite separable extensions L1, - - , L, of K. We can then define K (X (K))
to be the compositum of L;’s in a fixed algebraic closure K.

For a finite flat Og-algebra S, an ideal I C S is a divided power ideal if, for all x € I and
n € N, the element v, (z) = 2" /n! is also an element of I. We define II™ to be the ideal of S
generated by the products v, (1) -+ - Vn, (z,) for all 1, -+ ,z, € I and Y. n; > m. A divided
power ideal I is topologically nilpotent if ﬂj’,‘l’zlﬂm} = 0.

Proof of Proposition 1.3.1(i). (i) Let my be the maximal ideal of A (A is locall) and J =
(fi,-- s fm) C Okllx1,-- ,xm]]. As QL/OK is a free A/aA-module (A is locall), we have

g:{? = ap;; for some p;; € A. Also, as a - dr; should be expressed as a linear combination of
J

df;’s, the coefficient matrices will form an inverse matrix of the matrix (p;;). In particular, the
matrix (p;;) is invertible.

The statement of (i) will follow if, given an Ox-homomorphism ¢ : A — S/al, we can
uniquely lift ¢ to an Og-homomorphism ¢ : A — S. Note that Il = I and NI = 0. We will

inductively lift ¢ : A — S/aIl™ to ¢ : A — S/aIl"*1. To be more precise, given uy, - - -,y € S
such that fi(ug, -, um) € aI™, we want to find ¢ € I, unique modulo I+ such that
fur + €1, um + €m) € aIl™1. The unique lifting will then follow and the proof of (i) will
be finished.
Using the Taylor expansion, we have
o Ofi
fi(u1+615"'7um+€m) — fi(ula"')um)+ a (U]_,"‘ 7um)€j
j=19%
a" fi €
+ Z a fl(ulv"' ;um)ﬁv

xr
[r|>2 ~"
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where € = [[; €. The series converges as I is a topologically nilpotent divided power ideal.

Lift p;;’s to A, and we have g:{; = ap;j + ryj where 755 € J. As fi(ur, -+ ,um) € aI[”], we have
of:
85; (Ul, T ,Um)Ej = ap’ij(ula U 7um)€j + Tij(Ul, s 7um)6j~

Note that, as rj; € J, r4j(ut, -, um)ej € alM gl qrintil, Similarly, for v + -+ + 7, > 2,

. e gritetrmg
the higher derivatives R

*,Um,) is a multiple of a. An important point is the following.

are a sum of a polynomial in J and a multiple of a. Therefore,

87‘1+"'+7"mf.
81:’“1...817# (’U,l, o
1 m

Claim. For |r| > 2, & is in I ie. (1M ¢ rl+1,

r!

To show this, it is sufficient to show that = € I™ implies 22/2 € I+, We can further

ay at
assume that x = T a fora;+---+a; >n, x1,--- ,x, € I. Note however that
2 2a1 2a¢
xf _ xl “ e xt
2 20112 - a,!?

R 1(2a; 2ay
N (20,1)! ce (2(%)! 2 aj Q¢
2 2
_oo e (2a0 =1 (2a2) (266 _ ) o gl
(2a1)!- -+ (2a4)! ap — 1 as a
Appplying this to the Taylor expansion, we have

filur + €1, um +em) = filur, - um) +ay pi(ug, - tm)e; (mod aI" 1),
J

Thus it is sufficient to show that there are unique €1, , €, € I [ such that

Zsz(lﬂ,-.. ,Um)ﬁj = —filur, - um) (mOdI["‘H]).
J

As (pij) € GL(A4), (pij(ur, -+ ,um)) € GLy(S), which means that the solution is unique.
Finally, the unique solution is in I as —fi(uy, - ,upm) € I, ]

1.3.1.2 Converse to Krasner’s Lemma
To prove Proposition 1.3.1(ii), we first need a lemma.

Lemma 1.3.1 [Fol, Proposition 1.5]. For any finite Galois extension E/K and a positive real
number t, denote mi, = {x € Og | v(x) > t}, where v is the unique extended valuation of vk .
(i) If t > up i, then for any finite Galois extension E/K, every Ok -algebra homomorphism
O — (’)E/m% lifts to an Og-algebra homomorphism O — Og.
(ii) Given a finite Galois extension E/K and a positive real number t, if every Ok -algebra
homomorphism Op — (’)E/m% lifts to an Og-algebra homomorphism Op — Opg, then t >

Proof. (i) Let f(x) € Ok[z] be the minimal polynomial of 77,. An Og-algebra homomorphism
O, — Op/ml; is determined by its image 8 € Op of 71, where 8 must satisfy v(f(8)) >t >
ur/k- On the other hand, we claim that v(f(8)) = ér/k(sup,eqv(8 — grr)), where v is the
unique valuation of an algebraic closure containing both L and E. Suppose gy € G achieves
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the maximum of v(5 — grr). For all g € G, vk (B — grr) = min{vg (8 — gomr), v (go(mL —

90 "97L))} = min{vk (8 — gomr),ir/k (95 '9)}- As f(B) = [Tgec(B — gmL), the claim follows.
By the claim, we get v(8 — go7L) = supgeq (8 — g7L) > ip Kk = SUP1Lgeq v(9nL — 7L), for

some go € G. By Krasner’s lemma, K(gory) = L C K(f8) C E, which induces a lift Oy — Op.

(ii) It is sufficient to prove that, for t = up /x — L there is an Og-algebra map O —

Op/mt, which does not lift to an O-algebra map O, — Op. Let L/K’'/K be the maximal
unramified extension. As a base change of an étale morphism is étale, F @ K' = [[F; is
unramified over F, where F;/E’s are finite unramified extensions of E. Taking any E;, any Og-
algebra map O, — Op/m%, extends to an Ok-algebra map O, — (’)Ei/mtEi. Asup g =up K
and ey /g = er ks, we can therefore assume that L/K is totally ramified. Also, we can assume
that L # K.

Suppose L/K is tamely ramified, then vy, (g, — ) > eLl/K

. Therefore, ur /g = 1, and t = 1 — IK. Take E/K

€r

implies g = 1. Thus, iy, /k(g) =

1 ; _
o forall 1 #g € G, s0 i)k = T
be any totally ramified extension of degree d < e, /k. There is no O-algebra map O, — Op,

as they have different ramification indices. On the other hand, define f : O — Og/7%OF as

sending 77, to a uniformizer 7 of E. As vr([Tgeq(97L —7E)) = % = 1, this is a well-defined

map. This proves the case when L/K is tamely ramified.

If L/K is wildly ramified, then for all g € G with g # 1, ey /kir/x(9) > 1, and as p | [L : K],
p—1of g € G— {1} satisfies er iy k(g) > 2. Therefore, t > 1. As ep /it is an integer, let
er/k = er/gT+s wherer,s € Nwith s <ep g. Let f[z] € Ok|r] be the minimal polynomial of
mr, and let g(z) = f(x) —mga®. Aser g > s, this polynomial is monic, and 7 > 1, so 7 divides
all coefficients of g other than the top coefficient. As f is Eisenstein, if s > 0, g is automatically
Eisenstein; if s = 0, r > 2, so again ¢ is Eisenstein. Let 8 be a root of g(x), and let £ = K(3).
As g is Eisenstein, F/K is totally ramified. We claim that the map O — Og/m!; sending
71, to B is a well-defined Og-algebra map. This is because v(5) = eLl/K’ and f(B) = 7% 3%, so
v(f(B)) = v(mgB*) =1t.

Now it remains to show that there is no Og-algebra map Op — Op. If not, this implies
L C E. As both extensions L/K and E/K have the same degree, L = E. Thus, v(gr; — 8) €
ﬁZ for all g € G. On the other hand, vk ([Tjec(97L — B)) = vk (f(B)) = vk (T B°) = t.
Thus,

er/Supv(gms = B) = e r(f(8)) = er/d ()
g

is an integer. Let d be the slope of the left segment of ¢k at iy x. This is precisely the

cardinality of G(iL/K)' Then, eL/K(bZ/lK(t) =er/k(iL/Kk —
that d = 1. However, as G

1 o . 1 .. .
W)—eL/KzL/K 4+ This implies

inK) 2 1, this is a contradiction. O
This is certainly not a difficult conclusion. In particular, one can kill the error term 62/1;(
by taking an arbitrarily large tamely ramified base change. We record this for later use.

Theorem 1.3.1 [Y, Proposition 3.3]. With the same notation as Lemma 1.3.1, one can improve
(i) by t > up i instead of t > up g —

er/K’
1.3.1.3 Ramification Bound
Now we can finish the proof of Proposition 1.3.1.

Proof of Proposition 1.5.1(i1i). If L/K is tamely ramified, then uy,;x <1 < vg(a) < vg(a) +
p—fl, so we can assume that L/K is wildly ramified. Here we use Lemma 1.3.1. Specifically, we
will show the following.
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Claim. For t > vg(a) + % and a finite Galois extension E/K, any Og-algebra homo-

morphism O, — Og/m; lifts to an Ok-algebra homomorphism Oy — Op.

If this is true, then vi(a) + 55 > up ke — o S0 UL/K < vg(a) + 755 + eLl/K' As

er/kirn/Kk(g) is an integer for all g € G — {1} and |G(; | is divisible by p for all i < iy /x, it
follows that er xur,/k is an integer divisible by p. On the other hand, by the claim,

er/k(p—Vupx <erx(p—vi(a) +epgex +p—1.

As ek is divisible by p, er /i (p — 1)vi (a) + ep/kex is divisible by p. As e/ (p — Vug i is
divisible by p, It turns out that

er/k(p— Vupyr <epyr(p—1vk(a) +ep/kex,
or ur g < vi(a)+ pefl, as desired.
Thus, it remains to prove the claim. As Y (Or,) realizes all geometric points of Y as L-rational

points (by the definition of L), for any finite Galois E/K, #Y (Og) < #Y (K) = #Y(OL) with

equality if and only if L C F if and only if there is an Og-algebra map O — Opg.

Note that m%, = amgv(a). Ast—v(a) > 75, mgv(a) is a divided power ideal'!. Also, it is
obviously topologically nilpotent. Given a map O — Og/ml;, the kernel of the composition
Op — Og/my, — Of /mtE_U(a), which is just th_U(a), is also a topologically nilpotent divided

power ideal by the same reason. We apply (i) of Proposition 1.3.1 to get
Homo, (4, 0p) = im(Homo, (4, O /amly ") — Homo, (4, 0p/m}; "))

and
HOH].OK (A7 OL) = im(HOmoK (A’ OL/ath*U(a)) — HOmOK (A, OL/thf’U(a)))'

As we are given a map O — Op/mi, composing this map with an element in Y (Op) =
Homop, (A4, OL), which is an element in Homp, (4,Or/m!). gives an element in Y(Og) =
Homp, (A4, Og), which is an element in Home, (A, Og/mt). This is necessarily injective by
the definition of L being the field of definition of Y = Spec A. Thus, #Y (Og) = #Y(Op), so
L C F, and the claim follows. O

Proposition 1.3.1 proves the main ramification bound, Theorem 1.1.1.

Theorem 1.1.1. Let K be a finite extension of Qp, and let e = vk (p) be the absolute ramifica-
tion index. For an integer n > 1, suppose I' is a finite flat commutative group scheme over Ok
Killed by p". Let L = K(I'(K)), and G = Gal(L/K). Then, G =1 foru>e(n+5L7), and

v(Dp k) <e (n + p%l), where D, /¢ is the different of L/K.

Proof. We just need to prove that uy,x < e <n + Iﬁ); the statement about the valuation of
different follows from the general fact that v(Dp/x) = up/x —ir k. This is because v(Dp /i) =
v([Titgea(9mL — 7L)). As up k= ¢ K (ir k), we have

upyg = Y min(ig/x,in K (9))
geG

= ik + Z ir/k(9)
1#£9g€G

= g +o( I (970 —71))
1#g€eG
= ipx Tv(®r/k),

"This follows by looking at the valuations of factorials.
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which implies that v(Dp k) <wup/x <e (n + 1%)
Let I' = Spec A. Suppose first that 9114/(9;( is a free A/p™A-module. As k is perfect, by

Proposition 1.2.3(iv), I'y = Spec A ®p,, k is a direct product Fe,;t X Fg. By the classification
result, Theorem 1.2.5, in particular we deduce that A ®p, k, thus A, is locally of complete
intersection. Thus, A = []; A; with each A; of form A; = Ok, [[z1, - ,xm]]/(fi1, -, fim) for
some unramified extensions K;/K. This enables us to apply Proposition 1.3.1(ii).

Now it only remains to reduce the problem to the case when Qh 0K is a free A/p" A-module.
For a general case, note that, by Theorem 1.2.16, we can embed I into an abelian scheme X

over Of, as O is local. As X[p"](K) contains I'(K), it is sufficient to prove the theorem for
X[p"]. On the other hand, the exact sequence of étale group schemes

0—>X[p”]—>Xﬁ>X—>O

gives us
[p"]
0= /0, — Wxjo, = VWxpnijox = 0-

As Q}(/OK isa (.locally) f"ree (QK—mo.dule7 Q%([p"]/OK is a free Ok /p"Ox-module and we can use
the argument discussed in the previous paragraph. O

Remark 1.3.1. In [Fol], Fontaine conjectured that a similar ramification bound holds for
étale cohomologies of a proper smooth scheme over a ring of Witt vectors. It is indeed a
generalization of Theorem 1.1.1, as what we are really analyzing is the first étale cohomology
group of an abelian variety. It is proved in [Ab3], which will be discussed in the next chapter.

We record the global consequences, which we will be really using in proving nonexistence
results.

Theorem 1.3.2 [Fol, Théoréme 3, Corollaire 3.3.2]. Let E be a number field, and fix an
algebraic clousre E. Let T' be a finite flat commutative Og-group scheme killed by p™, and let
F = E(T(E)). For all prime ideal p C O, let e, be the absolute ramification index of p and ry
be the exponent of p inside the discriminant Ap/p. Then we have the following.

(1) If p does not divide p, ry = 0. In other words, F/E is unramified outside p.

(ii) If p divides p,

1
e < | lep (n+ p—
(iii) If dg,dp are the (absolute) discriminants of E,| F, respectively, then

|dp| P < |dp|F0p o,

Proof. (i) Let I' = Spec A. As A is killed by p", it annihilates I /12, where I is the augmentation
ideal of A. Thus, p™ annihilates Q%“/OE = A®p, I/I%. As p™ is a unit in k(p), Q%ﬂ(p)/n(p), killed
by p", is zero. Thus, I is étale. By Proposition 1.2.11, I‘@Ep is étale. Thus, A ®o, Op, is
the product of unramified extensions Opr O Op,. Thus A ®o,, £y is the product of unramified
extensions of Ej,, which implies that any direct factor of A ®p, F is a field extension of F
unramified at p. Thus, F//E, which is the compositum of those direct factors, is unramified at
p.

(ii) Let B1, - - - ,*B, be prime ideals of F' dividing p. Let m = U(@le/Ep). By Theorem 1.1.1,

we know that m < ee, (n + 7%) As F/FE is Galois, we know that 93;’s are Galois conjugate
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to each other. Thus, the contribution of p in Ap/p is Np/p((P1---Bg)™) = p™f9 where f is
the degree of the residue field extension of Fy, /E,. Thus,

) (v 53)
= = — | =|F:E — .
r, =mfg efgep<n+p_1 [ lep n—i—p_l
(iii) Let the prime factorization of (p) in E be denoted as (p) = [[, p{*. By (i) and (ii),
Ap/p = 1A, p?, where r; < [F : Ele; (n + p%l) Recall that
F:E
Arjg = Agg Nejo(Bw).

Let f; be the degree of the residue field extension of Ej,/Q,. Then, Ng,o(Ap/g) = (p"), where
r =S, fir;. Therefore, taking the [F : Q]-th roots on both sides, we now know that

T

Then, the following proves the statement.

r s fim L \s~fielFE) (1 \[E:Q_ 1
[F:Q]_;[F:Q]<<n+p—l>.:1 [F: Q] —<+p_1) o -1

)

1.3.2 Constraints on p-groups and p-divisible Groups
1.3.2.1 Results of Fontaine

The ramification bounds we proved in the previous section give severe restrictions on the field
F generated by geometric points of a p-group over the ring of integers of a small number field.
In particular, it gives an upper bound on the absolute discriminant dp. Combined with the
Odlyzko discriminant bound [Mar], we can bound the degree [F' : Q], and this reduces us to
consider only finitely many cases. The low-degree cases have very simple structures, thanks to
the following.

Proposition 1.3.2 [Fol, Proposition 3.2.1]. Let k be an algebraically closed field of character-
istic p, which is an odd prime, W = W (k), K = FracW, and K an algebmicfclosure of K. Let

I be a finite flat commutative W -group scheme killed by p, and let L = K(T'(K)). Suppose that
I' contains a subgroup isomorphic to p,. Then L satisfies one of the following.

1. L/K is cyclic of degree p — 1, and there exists integers r,s such that I' = (Z/pZ)" @ .

2. [L : K] = p(p—1), and there exists integers r,s and a short non-split exact sequence
0— py— T — (Z/pZ)" — 0.

3. L/K is cyclic of degree p* — 1.
4. [L:K]>p*(p—1).

Proof. Note that as e =1 < p—1, so we can use the results of Section 1.2.1.7. In particular, by
embedding the category of finite flat commutative W-group schemes of p-power order inside the
category of finite flat commutative K-group schemes of p-power order, we see that the category of
finite flat commuatitve W-group schemes of p-power order is an abelian category. In particular,
any such group scheme has a Jordan-Holder composition series. Note also that, by Cartier’s
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theorem, Theorem 1.2.2, and the equivalence of categories in Section 1.2.1.4, G +— G(K) is an
equivalence of categories from the category of finite flat commutative K-group schemes killed
by p to the category of finite F,[G g]|-modules, where « is a geometric point in Spec W. The
classification of Raynaud F-schemes in [R] can be translated into the language of F,[Gk]-
modules in this case as follows.

e A simple I, [G k]-module M of dimension h is a 1-dimensional [F,»-vector space, with the

. . . h_l .
G k-action given by X;?erzﬁ P for integers 0 < dg, - - ,ip—1 < p — 1, not all equal

to p — 1, where x, : Gg — F;h is a character sending g — gmp/m, and m, € K is a
(p* — 1)-st root of p.

e Endg (g, (M) = F,, and a conjugation by an element in Endg (¢,1(M) shifts (ig, - - ,ip—1)
circularly, so that M being simple implies that (ig,--- ,i,-1), as a function from Z/hZ to
Z, has period exactly h.

Let I'y,--- ,I'y be Jordan-Holder factors of I, and let hy, = dimp, I'y,(K). Let " : Z/hy,Z — Z

be the map of period exactly h,, corresponding to I';,(K). By [R, Corollaire 3.4.4], we can
suppose that i"(j) < e =1 for all j. Let L, be the compositum of K(¢,) and K (T, (K)). It
is clear that L,,/K is tamely ramified, thus cyclic. Let d,,, = [L,, : K]. If there is h,,, > 3, then

we are automatically directed to the fourth case by the following claim.
Claim. If h,, > 3, then d,, > p*(p — 1).

Note that d,, is the smallest multiple of p — 1 such that p"m — 1 divides d,,(i™(0) 4+ pi™(1) +
oo 4 phm=lim(h,, — 1)). If there are consecutive j,j + 1 (modulo h,,) such that i™(j) =
i™(j + 1) = 0, then we can shift so that we can assume " (hy, — 2) = i"(hy, — 1) = 0. Then

dy > phm1 p?(p—1). If not, as hy, > 3 and (i™(0),- -+ ,i™(hy, — 1)) is of period hyy, there

- Ph,m72,1

=1
exist consecutive J,7+1 (modulo hy,) such that i™(j) =™ (j +1) = 0. We can shift so that we
can assume i (hy, —2) = i"(hy — 1) = 0. By considering that d,,((1 —i™(0)) +p(1 —i™(1)) +
oo phm=(1 — i™(h,y, — 1))) is divisible by p"™ — 1 as well, we get the same bound, namely
h’TVL_
dp > B > pAp— 1).
p—1

Now we can assume that h,, < 2 for all m. If h,, = 1 (2, respectively), then d,, = p — 1
(p? — 1, respectively), because of the simplicity assumption on Jordan-Holder factors. If T is
semi-simple (i.e. a direct sum of Jordan-Holder factors), then we can conclude that L is cyclic
of degree either p — 1 or p? — 1. If it is not semisimple, then [L : K] cannot be tamely ramified
(as it cannot be cyclic), so p divides [L : K]. Therefore, if there exists some h,, = 2, then p? — 1
divides [L : K], so that [L : K] > p(p? — 1) and it is in the fourth case.

Therefore, we are left with the case of non-semi-simple I' with h,, = 1 for all 1 < m < ¢.
Over K, any extension of j, by u, or Z/pZ is trivial, and the same is for an extension of Z/pZ
by Z/pZ. Thus, the only way I'x can be non-semi-simple (which is true by the full faithfulness
of generic fiber functor) is that I'k is an extension of (Z/pZ)" by w, for some r, s > 0. In that
case, [L : K| = p*(p — 1) for some u > 1; if u = 1, we are in the second case, and if u > 2, we
are in the fourth case. So we have checked that all are divided into the four cases, when p is
odd. O

Combined with the above proposition, it can be shown that the field generated by geometric
points of a p-group is of certain form. The following is an example of the consequence of this
philosophy, which is proved in [Fol].
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Lemma 1.3.2 [Fol, 3.4.2]. Let E be a number field and T' be a finite flat commutative Og-group

scheme. Suppose that T is killed by p and F = E(I'(FE)). Then we have the following.

(i) If E = Q (resp. Q(v/—1), Q(+/=3)) and p € {3,5,7,11,13,17} (resp. p € {3,5,7},
p € {5,7}), then FF C E((p).

(ii) If E = Q(\/5) and p =3, F C E((3, /0), where 1 is a fundamental unit of E.

Proof. By taking I' x p, instead of I', we can assume that there is a closed subscheme of I
isomorphic to p,. Let Fy = E((p), so that Fy C F. If E # Q, let i : E — E be the nontrivial
element of Gal(E/Q). The, replacing I' with I @ ¢(T"), we can also assume that F'/Q is Galois.

Let n = [F :Q], no = [F : E], nyg = [F : Fo|, a = [E : Q]. Then, we have n = ang and
no = (p—1)ny. Let dg and dp be the absolute discriminant of E and F. By Theorem 1.3.2(iii),
we have |dp|'/™ < |dg|/® - pP/(=1) Thus, for each E, we have a bound on dp. By using the
Odlyzko discriminant bound [Mar|, for each case, we deduce bounds on n = [F : QJ, thereby
ng.

o For E=Q,ifp=3,57,11,13,17, thenn < 6,12, 18,50, 88, 574, so that n}, < 3,3,3,5,7, 35.
e For £ =Q(/-1), if p=3,5,7, then n < 22,64,316, so that nj, < 5,8, 26.

e For E = Q(v/-3), if p=5,7, then n < 38,108, so that n{, < 4,9.

e For £ = Q(V/5), if p = 3, then n < 28, so that n) < 7.

To show that F' = Fj, note that we know from Theorem 1.3.2 that F'/F} is unramified outside
p. Also, we can check from [Mas| that Fj has class number 1 in all cases we are considering.
Thus, the Hilbert class field of Fy is Fy itself. Therefore, to show that F' = Fj, we only need to
show that F'/Fy is unramified at primes over p.

Let e be the absolute ramification index of a place of F' over p, which is independent of the
choice of place as F' is Galois over Q. As the absolute ramification index of Fjy at a place over
pisp—1,e=(p—1)¢. What we want to show for all cases except E = Q(+/5) and p = 3 is
that ¢/ = 1. For all cases we are considering, F/Q is unramified at p. Thus, e divides ng, and
e’ divides n{,. By Proposition 1.3.2, it follows that either ¢’ € {1,p,p + 1} or ¢’ > p?. For all
cases we are considering, nfy < p?. Therefore, if ¢’ # 1, then either ¢/ = p or p+ 1. This is even
impossible if n{, < p. Thus, we are left to deal with cases

(E,p) = (Q,3),(Q,17), (Q(vV~1),3), (Q(V=1),5), (Q(V~1),7), (Q(V=3),7), (Q(V5), 3).

The case ¢/ = p+ 1 is when e = p? — 1, so F/E is tamely ramified. In that case, we observed
in the proof of Theorem 1.1.1 that v(®p/g) < up/g = 1, so that actually a sharper bound
|dp|V/™ < |dg|"*p holds. After recalculation, we get n < 2,116,8, 20,50, 32,78 so that ny <
1,7,2,2,4,2,6, respectively, which is < p + 1 for all cases. Thus, ¢’ = p + 1 is impossible.

For the case ¢/ = p, let’s first show that nf{, = p. If p < n{, < p?, then by Sylow theorems,
there is only one Sylow p-group of Gal(F/Fp), which is of order n{ (as the number of Sylow
p-groups is 1 modulo p). Therefore, for a prime P of F' lying over p, the inertia group Iz is the
unique Sylow p-group of Gal(F/F,). Then F!s is an everywhere unramified extension of Fp,
which is a contradiction as Fy has class number 1. Note however that nj, < p? for all cases we
have. Therefore, necessarily we have nj = ¢ = p, and ng = e = p(p — 1).

Let p be a prime of E over p. Let k be the residue field of OF,, and let W = W (k); it is an
extension of Op, as E is unramified at p. By Proposition 1.3.2, I'yy is a nontrivial extension
of (Z/pZ)" by ps, for some nonnegative integers r, s. We will eventually show that T' itself is
a nontrivial extension of (Z/pZ)" by p,,. First we show Log, is so. As both FracW and E,
have absolute ramification index e = 1 < p — 1, the generic fiber functor on the category of
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finite flat commutative group schemes over W (Op,, respectively) killed by p-power is fully
faithful respecting sub-objects and quotients, by Theorem 1.2.8. As every finite flat group
scheme over E, or Frac W is étale, we can think of finite flat group schemes over those fields as
Galois modules, and here we can finally use Galois descent. Therefore, that I'y, is a nontrivial
extension of (Z/pZ)" by py is also true for T'o,, . Here we went through the process

generic fiber Galois descent T generic fiber

CFracw Ep o Bp*

I'w

Now we proceed to I'. By Theorem 1.2.6, we can think of I" as a triple (], Log,  Togi/p):idrg, ).
First, the extensions FOE,, are compatible with Galois conjugates, as the extension exact se-
quences are just connected-étale sequences in this case. As I' is of p-power order, I'p 1/ is
étale by Proposition 1.2.4(ii). What is more is that we know F'/E is unramified outside p. Thus,
Tog1/p) 1s an étale group scheme with a trivial my ¢-action, so it is a constant group scheme.
Thus, we can identify p; inside I' as a triple

H(M;)OE;: G, (ide\p L', ) |Hn|p(uls’)EP ’

plp

where G is the collection of points in I'p (1, which lifts to a point in [Ty, (1) 5, C [Tpp 5y
this is the only choice we can make as I'o,[1/,] 18 a constant group scheme. Thus, p,, exists as
a closed Og-subgroup scheme of I', and its quotient is an étale Og-group scheme whose base
change to O, is (Z/pZ)". As it has trivial Galois action outside p, again by Theorem 1.2.6, it
is a constant group scheme as a Og-group scheme, and it is thus necessarily (Z/pZ)".

Now F/Fy is generated by /uy,- -, 3/u, upon the choice of elements uy,--- ,u, € E, cor-
responding to generators of (Z/pZ)". However, as we know [F' : Fy| = p, only one unit will
be sufficient to generate F. Thus, F' = E((,, ¢/u) for some v € E which is not a p-th power.
By rescaling, we can suppose that v is an algebraic number not divisible by a p-th power of a
prime. To show that u is a unit, it is sufficient to prove so for an extension of Z/pZ by p,, as the
field generated by geometric points of such extension is certainly contained in F', which should
be just equal to F' by degree reasons. Note however that as O is a PID, we can completely
classify such extensions.

Claim. Over Og, if a finite flat commutative Og-group scheme satisfies 0 — p, — G —
Z/pZ — 0, then G is a Katz-Mazur group scheme; namely, there exists n € O}, such that, for
an Opg-algebra S,

G(S) = {(z,i) | x € 8%, 2P = n' for all 0 < i < n}.

Equivalently, G = Spec H?:_ol Oglx]/(zP — nY).

If the claim is true, then F' = E((,, ¢/1), as desired. On the other hand, except £ = Q(V5),
there is no nontrivial fundamental unit of Og. Therefore, proving the claim will finish the proof.
We actually prove the claim by calculating the order of Ext}gE (Z/pZ, ), which will be a finite
group in this case. First of all, there are |0}/ (’)Ep | many different Katz-Mazur groups, as F
does not contain a primitive p-th root of unity (recall that p # 2), you have to first choose a
unit 7, and any other 1’ off by a p-th power will give the same group. On the other hand, we
have exact sequences

0— HUp,Op — GmpE £> GmpE — 0

and

0= (Z)o, & (Z)o, — (Z/pL)o, — 0.

E
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Therefore, the following are also exact, as they are long exact sequences of Ext functor.

p
HOIH@E ((Z)0E7 Gm,OE) ﬂ) HomOE ((Z)OE7 vaoE)

- EXt%QE((Z)OEHU’p:OE) - EXt%QE((Z)OE7Gm70E)7

P
HOHI(/)E ((Z)OE7 Mp,OE) $'—>—$> HOHI(QE((Z)OE, /-LP,OE) - EXt%QE((Z/pZ)OJw NP,OE)
P
- EXt}QE((Z)OE7Mp:OE) ST EXt}DE((Z)OE’“P@E)'
Now we know some of these entries. First of all, the functor Homo, ((Z)o,,—) is just the global
section functor. Therefore, for any fppf sheaf .7, Exto ((Z)oy,-#) = H'((Spec R)gppt, F).
Thus, Homo, ((Z)o,, Gm,0,) = Of, and Exth((Z)oE,Gm,@E) = Hflppf(Spec Ok, Gn.,04)-
Note however that, by faithfully flat descent, an invertible sheaf on fppf topology is the same
as just an invertible sheaf on Zariski topology, so it is just Pic(Og) (cf. [Stacks, Tag 03P8]).
As Op is a PID, the Picard group vanishes. Thus, the first exact sequence gives us

EXt%QE((Z)OEvHP@E) = OE/OE‘I)'

On the other hand, the second exact sequence gives us

EXt}QE ((Z/pZ)OEHupaOE) = EXt%’)E((Z)OE’ MILOE) = OE/OEP'
Thus, the orders match, and the claim is proved. ]

Finally, now we can prove the structural restrictions on finite flat commutative group schemes
over the ring of integer of a small number field.

Theorem 1.3.3 [Fol, Théoreme 4]. Let E be a number field, and T' be a finite flat commutative
group scheme over Og of p-power order.

(i) If E = Q (resp. Q(v/—1), Q(+/=3)) and p € {3,5,7,11,13,17} (resp. p € {3,5,7},
p € {5,7}), then T is a direct sum of a constant group and a diagonalizable group.

(ii) If E = Q(v/5) and p = 3, T is an extension of a constant group by a diagonalizable
group.

Proof. Let F = E(I'(E)). As F/E is unramified outside p, by Theorem 1.2.6, the category of
finite flat commutative Og-group schemes of p-power order can be fully faithfully embedded
in the category of finite flat commutative Op,-group schemes of p-power order, for a prime p|p
in E. By Proposition 1.2.6, any extension of Z/pZ (i, jp, respectively) by Z/pZ (Z]pZ, .
respectively) is étale (trivial, connected, respectively). Also, except the case of E = Q(v/5) and
p = 3, any extension of p, by Z/pZ is trivial, by the proof of Lemma 1.3.2. Also as in the proof
of Lemma 1.3.2, using that £/Q is unramified at p, we can use, via Theorem 1.2.8, Raynaud’s
classification utilized in the proof of Proposition 1.3.2 to see that the only simple objects of the
category of finite flat commutative Og-group schemes of p-power order are y, and Z/pZ, and
the category is abelian.

We now show that, using Jordan-Holder composition series, for all cases, I' is an extension
of a constant group by a diagonalizable group. Let 0 =TgCc Iy C --- C I'),_1 C 'y, =T be
a composition series. Suppose that there is some 0 < @ < m such that I';/T";_q is p, whereas
41/ is Z/pZ. As the extension

0— HUp — Fi+1/1“2-_1 — Z/pZ — 0

is trivial by the remark in the above paragraph, we can in particular find a subgroup I'; C T';1;
such that I /Ty = p, and Ty /T = Z/pZ. We then replace I'; with I'; in the composition.
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After repeating this process finitely many times, we get a composition series where there is some
0 < j < msuch that for all 0 < i < j, I';/Ti—1 = pp, whereas forall j <i <m, I';/T';_y = Z/pZ.
The discussion in the above paragraph says that, an extension of a constant (diagonalizable, re-
spectively) group by a constant (diagonalizable, respectively) group is constant (diagonalizable,
respectively). Thus, we deduce that I'/T'; is constant whereas I'; is diagonalizable. This implies
that, in all cases, I' is an extension of a connected group by a diagonalizable group. This proves
(ii).

To show (i), we need to show that the extension is split. To show this, we just need to show
that Ext}QE (G.,Gg) = 0 for any constant group G, and diagonalizable G4 of p-power order. We
prove this via strong induction on |G.||G4|. Note that EX‘G}QE (Z/pZ, 1vp) = 0 in the cases of (i)
by the remark we made in the first paragraph of the proof. Thus, the case |G.| = |G4| = p is
done. Now in a general case, suppose |G.| > p. Then, we can find a subgroup G, C G. such
that G, =2 Z/pZ and G./G.. # 1. Note also that any morphism from an étale group scheme to
a connected group scheme is trivial, as it factors through the reduction of the connected group,
which is trivial. Thus, a part of the long exact sequence for Ext in this case is

0 — Exté, (Ge/GL, Gg) — Exty, (Ge, Ga) = Extyy (GL, Ga).

By strong induction, Ext}gE (G¢, Gg) = 0. The same argument applies to the case when |G4| > p,
as in this case we can find G/, C G4 such that G/, = p,,. This finishes the proof. O

This easily gives the nonexistence result we were looking at.

Theorem 1.1.2 [Fol, Corollaire 2]. For E = Q,Q(v/—1),Q(v/—3),Q(V/5), there is no nontriv-

1al abelian variety over E with everywhere good reduction.

Proof. Suppose the contrary, and let A be an abelian variety of dimension g > 1 over E with
everywhere good reduction. Let p be any prime corresponding to F as in Theorem 1.3.3. Then,
the p-divisible group A(p) is, by Theorem 1.3.3, an extension of a constant p-divisible group by
a diagonalizable p-divisible group. Note that a constant p-divisible group is necessarily of form
(Qp/Zyp)", as it is clear by passage to Tate module, and a diagonalizable p-divisible group is
necessarily off form (py)® by Cartier duality. Thus, A(p)° = (pp=)* and A(p)* = (Q,/Z,)"
As A(p) is of dimension g (cf. [Tat2, 2.3]), A(p)? is of dimenson g, and A(p)** = (Z(p)O)D is so
by Cartier duality and existence of dual abelian varieties. Thus, A(p) sits inside a short exact
sequence
0= (pp=)? = Alp) = (Qp/Zp)? — 0.

In particular, if £ = Q, Q(v/—1) or Q(v/=3), we have A(p) = (Q,/Z,)? ® (up=)?. Thus, for any
n > 0, there is an E-rational primitive p™-torsion point of A, where primitivity here means that
the point is not of p"!-torsion. Let A be a Néron model of A over O, then this E-rational
point in A factors through Op, so there is a Opg-rational primitive p"-torsion point of A. For
a prime p of E over p, after the reduction modulo p, the Og-rational primitive p"-torsion point
of A becomes a k-rational primitive p™-torsion point of Ay, where k = k(p). This means that
Ag(k) has at least p™ elements. As this is a finite set, choosing a large enough n gives us a
contradiction.

For E = Q(+/5), for any n > 0, still we have a subgroup I';, C A such that T',, & (un)9.
The quotient A/I',,, which exists by Theorem 1.2.3, is an abelian variety as it is proper and
connected, and A[p"]/T,, = (A/T',)[p"] is a constant group scheme of order p™. By the same
process of passage to Néron model and its reduction, it follows that p™ < #(A/T';,)k(k). On the
other hand, an abelian variety over a finite field k£ has a bounded number of k-rational points,
namely #(A/T)k(k) < (V#k + 1)%, which is a consequence of Riemann Hypothesis over a
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finite field, Proposition 2.2.9. Thus, p™ < (v/#k + 1)29, which is a contradiction if we take n
large enough.

One can alternatively prove this corollary just with finite flat group schemes, without ap-
pealing to p-divisible groups. Namely, for any n > 1, we have the exact sequence

0— D, —» A]p"] - C, — 0,

where D,, and C), are diagonalizable and constant, respectively. By using the same argument
as above, we can bound |C,| < (v#k + 1)%9. We can take the Cartier dual of this sequence,
and get the exact sequence N

0—CP - Ap"] - DP — o0,

as X[p”] = A[p"]” by the Weil pairing, Proposition 1.2.22. Thus we can similarly bound
|Dy| = |DP| < (V#E + 1)29. Thus, p*9 = |A]p"]| < (V#k + 1)*, which is a contradiction by
taking a large enough n.

Without appealing to the Riemann Hypothesis over finite field, one can argue alternatively
as follows. As A/D, and A are isogenous, (A/D,); and Aj are isogenous abelian varieties
over k. As they have the same number of k-rational points by Theorem 1.2.37, #Ax(k) >
|Cy|. By taking dual, #A,(k) > |DP| = |D,|. As A and A are also isogenous, we have
#AL(K)? = #A(k) - #A\k(k) > |Cyl - |Dp| = |A[p™]] = p*™9. Taking large enough n, one gets a
contradiction. O

1.3.2.2 Restrictions on 2-Groups

Although we have proved the nonexistence of abelian variety over Q with everywhere good
reduction, it will be beneficial to review the whole argument in general terms so that we can see
what is needed in generalizing the argument to other situations. In particular, we prove that
a finite flat commutative Z-group scheme of 2-power order is also an extension of a constant
group scheme by a diagonalizable group scheme, a case excluded in the previous section.
There are several arguments that work for all cases, regardless of the choice of E or p.

e Given a finite flat commutative Op-group scheme G of p-power order, F' = E(G(E)) will
still be unramified outside p and moderately ramified at p, by Theorem 1.3.2.

e The Jordan-Hoélder composition series will exist. Even though we cannot appeal to Ray-
naud’s theory on prolongations, we can use Proposition 1.2.5 so that we can find a filtration
by finding a corresponding filtration for the generic fiber. Also, even though we do not
know if the category of finite flat commutative Og-group schemes is abelian, we know
quotients exist by Theorem 1.2.3; it is the behavior of general cokernel that we do not
know well, but we will not need it in this situation. The quotients will be simple objects
as, if not, there will be some object strictly in between consecutive entries of the filtration,
which will translate into an object in between consecutive entries of the filtration of the
generic fiber, and this is impossible as, over the generic fiber, we know the category is
abelian.

e If we know that the only simple objects are constant and diagonalizable groups, then we
can rearrange the given composition series so that any finite flat commutative QOg-group
scheme of p-power order is an extension of a constant group by a diagonalizable group.
This is always possible because Theorem 1.2.6 and Proposition 1.2.6 are all we need for
this argument.
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On the other hand, what was special about the cases we considered in the previous section is
esssentially the classification of simple objects. Namely, to conclude that the only simple objects
in the category of finite flat commutative Opg-group schemes of p-power order are y,, and Z/pZ,
one needs a very special condition so that one can use something like Lemma 1.3.2 or Raynaud’s
results on full faithfulness of generic fiber functor. For example, we can see that even if £ = Q
and p = 2, the only simple objects are ps and Z/27Z, and it is because “2 is small so that we
can consider all cases.”

Proposition 1.3.3 [Sc2, §5]. The simple objects of the category of finite flat commutative
Z-group schemes of 2-power order are g and 7./27.

Proof. Let G be a finite flat commutative Z-group scheme killed by 2. Let L = Q(G(Q)). Note
that the Katz-Mazur group scheme G_; with the choice n = —1 has Q(G_1(Q)) = Q(v/-1);
recall that G_1 = Spec [[1_y Z[z]/ (22 —(=1)}). As G_1 iskilled by 2, we can define G’ := G xG_4

and instead consider F' = Q(G'(Q)) D Q(v/—1). By Theorem 1.3.2, \dﬂﬁ <otz = 4,
so by Odlyzko’s discriminant bound [Mar], [F : Q] < 4. Thus, either F = Q(v/—1) or [F :
Q(v/—1)] = 2. In any case, L, as a subfield of F, is also a Galois 2-extension of Q.

Now, let H be a finite flat commutative Z-group scheme of 2-power order, which is also

simple in that category. As 0 # H[2] C H, it follows that H is killed by 2, so K = Q(H(Q))
is of degree 1, 2 or 4 over Q. As Gal(K/Q), a 2-group, acts on Hg(Q), which is a finite set of
2-power order, by basic conjugacy class counting technique from group theory, we know that the

subgroup of Hg(Q) fixed by Gal(K/Q) is nontrivial and is of order divisible by p. Therefore, one
can take a Galois submodule of HQ(@) of order p. As Hg is étale over Q, it follows that there
is a order 2 closed QQ-subgroup scheme S of Hg. By Proposition 1.2.5, there is a corresponding
order 2 subgroup scheme S’ of H. As H is simple, it follows that H = S’, or that H is of
order 2. By [Tatl, 3.2], it is of form G, where, a,b € Z with ab = —2, such that G, is
characterized as, for a commutative ring S, G,4(S) = {y € S | y* = ay} with group structure
as y*z =y + 2 + byz. Pairs off by a unit give the same group scheme, and G_2 1 = jo whereas

G1,—2 = (Z/27Z). This is the desired conclusion. O
Thus, the discussion we had earlier in this section proves the following theorem.

Theorem 1.3.4. A finite flat commutative Z-group scheme of 2-power order is an extension of
a constant group by a diagonalizable group.

This alone also implies the nonexistence of abelian scheme over Z.

1.4 Nonexistence of Certain Semi-stable Abelian Varieties over

Q

Fontaine’s first nonexistence proof in the previous section is really a structure theorem of fi-
nite flat group schemes and p-divisible groups “having everywhere good reduction,” i.e. those
extending to the ring of integers. Philosophically, one can prove a structure theorem of “low
degree objects” in a certain category if

1. the given category is pre-abelian, i.e. has kernels and cokernels,
2. one identifies all the simple objects in the category,

3. and one identifies all the possible extensions of a simple object by another simple object
in the category.
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What the proofs we have seen in the previous section did was to associate the given category, the
category of abelian varieties over a number field with everywhere good reduction, to a pre-abelian
subcategory of an abelian category. Examples are p™-torsion subgroups in a category of finite
flat group schemes in a category of fppf sheaves, p-divisible groups in a category of p-divisible
groups in a category of fppf sheaves, and Tate modules in a category of IF,, or Z,-modules with
a group action. This dévissage-like argument is the heart of all proofs of similar nonexistence
problems. In particular, the proofs in the next chapter will use certain (pre-)abelian categories
coming up in (integral) p-adic Hodge theory.

Residing in the category of finite flat group schemes/p-divisible groups for now, one might
ask if a similar proof applies to a certain type of abelian variety which can be characterized by
its torsion subgroups or p-divisible groups. We have observed that semi-stable reduction can
also be determined purely by p-divisible groups and/or torsion subgroups, thanks to Theorem
1.2.30 and its related theorems in the Section 1.2.3.7. We would like to indulge in this idea to
prove the following result.

Theorem 1.1.3 [Scl, Theorem 1.1]. For the primes { = 2,3,5,7,13, there is no nontrivial
abelian variety over Q with good reduction outside £ and semi-stable reduction at £.

Alternatively, one can try to control the ramification of f-adic Tate modules, where ¢ is
different from the place of bad reduction. This, although gives no stronger result than Theorem
1.1.3, is in some sense more related to the more general approach we will take in the second
chapter. Finite flat group schemes and p-divisible groups are, in some sense, more rigid, as there
always is representability issue. On the other hand, we can quite freely handle purely algebraic
objects such as Galois representations, Dieudonné modules and Tate modules, although it is
more difficult to find meaning in the real world. A miracle of p-adic Hodge theory is that such
linear algebraic data can encode so much information.

1.4.1 Results of Schoof
1.4.1.1 The category D}

Let £ be a prime. An abelian variety A over Q with good reduction everywhere outside ¢ will
give an abelian scheme A over Z[1/¢]. We will consider p"-torsion subgroups A[p"], for p # ¢
another prime. Note that A[p"] obviously lies inside the category of finite flat commutative
Z[1/0)-group schemes of p-power order, which we denote as Cé’. By Theorem 1.2.30, A[p"|
actually lies inside the full subcategory of Cf of finite flat commutative Z[1/l]-group schemes
G for which (g — 1) acts trivially on G(Q) for all g in the inertia groups of primes lying over
¢. We denote this subcategory as D}. The following properties of D} are clear from the very
definition of DY.

e If G € DY, then GP € D).
o If Gl,GQ € D?, then G Xz[1/0] Go € D?

e D! is a pre-abelian category. More generally, for an object in D), any quotient or subobject
of it inside C} is in DY.

e Any G € Cf for which the inertia groups of primes over £ act trivially on G(Q) is also in
DY. We denote the category of such objects in C as G7.'? Examples are u,,Z/pZ.

2Note that objects in G do not necessarily come from a Z-group scheme. Being a p-divisible group is quite a
restriction so that unramified Galois action implies good reduction, but a lot more freedom is given in formation
of finite flat group schemes.
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e Given G € DY, any twist, unramified outside ¢ and semi-stable at ¢, of G is also in D}. To
be more precise, let p be a finite-dimensional representation of Gal(Q/Q) over F,. It can
be regarded as an F,[Gal(Q/Q)]-module, denoted as V(p). If p is unramified outside foo,
and if (p(g)? —id)? = 0 for every g in an inertia group of any prime over £, then this Galois
module, as an étale group scheme over Q, extends to an object in DY, as O[1/¢]/Z[1/]
is unramified. An example we will primarily use is pp, : Gal(Q({r)/Q) — GL(FIZ)), where,
under the identification Gal(Q(¢,)/Q) = (Z/UZ)* = Z/(¢ — 1)Z,

'_>1x
7 o 1)

e Note that an extension of G1 € DY by G2 € D} is not necessarily an object in D7, because
even though we know that an intertia group over ¢ acts unipotently, the rank of unipotence
may increase. Thus, Ext%[l /Z](le G2) does not necessarily parametrize extensions of Gy

which makes sense if p|(¢ — 1).

by G2 in D}. On the other hand, if G1, G2 € G}, the inertia group action on an extension
of G1 by G2 is at worst tamely ramified; as the extension is a p-group, this shows that the
group action is actually unramified, so that the extension is also in g;’ , 80 is in Dg . Thus,
in that case we know that Exté[]L /4] (G1, G2) parametrizes extensions of G by G2 in Df .

1.4.1.2 Criterion for Appropriate Choice of Primes ¢ # p

We now try to adapt the general strategy to D). According to the general strategy, we expect
the following.

Proposition 1.4.1 [Scl, Proposition 3.1]. Let ¢ be a prime, and suppose there is a prime p # £
satisfying the following two conditions.

1. The only simple objects in D} are Z/pZ and p,p.

2. Ext%[l/e] (tp, Z/pZ) = 0 (which is equal to Extlpg (ip, Z/pZ) by the remark in the previous

section).

Then, there is no nontrivial abelian vareity over Q having good reduction outside ¢ and semi-
stable reduction at €.

Proof. As DY is a pre-abelian category, any object has a Jordan-Holder composition series. By
1, all successive subquotients are either p, or Z/pZ. By 2, you can push all Z/pZ’s to the right.
So, for any object G € Df, there is an exact sequence 0 - D — G — C — 0, where D (C,
respectively) is obtained by successive extensions by p,’s (Z/pZ’s, respectively). In particular, C
is étale, and as the order of C'is a power of p, 1 ¢ (Z[1/¢]) = Gal(K/Q), where K is the maximal
p-extension unramified outside oo, acts through a finite p-group P. Its abelianization is cyclic,
as every abelian extension of QQ is contained in a cyclotomic extension. Thus, it follows that P
itself is cyclic; one can see this by for example noticing that the Frattini quotient of P is cyclic
[G, Section 5.1, Theorem 1.2]. Specifically, m; ¢ (Z[1/¢]) acts through Gal(Q(({,)/Q). Thus, the
Jordan-Holder filtration of C by Z/pZ’s becomes split after the base change to Z[1/¢, (s], which
means that C' is constant over the ring. By Cartier duality, D becomes diagonalizable over the
same ring.

Now suppose that there is a nontrivial abelian variety A over Q having good reduction
outside ¢ and semi-stable reduction at ¢. If we let its Néron model over Z[1//] as A, then for
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any n > 1, A[p"] € D) by Theorem 1.2.30. Thus, it fits into an exact sequence of finite flat
Z[1/£)-group schemes
0— D, = A]p"] = C,, = 0,

where C), and D,, become constant and diagonalizable, respectively, over Z[1/¢,(,]. Pick any
prime p of Z[1/¢,(;] and let k be the residue field. As A/D,, is also an abelian scheme over
Z[1/¢, (], its reduction mod p, (A/Dy)k, is an abelian variety over k. As in the last part of the
proof of Theorem 1.1.2, one can use either the Riemann Hypothesis over finite field or Theorem
1.2.37 to deduce that A has too many rational points, leading to a contradiction. O

For convenience, we will call a pair (¢,p) of primes appropriate if it satisfies the conditions
of Proposition 1.4.1.

1.4.1.3 Calculation of Ext%[l/e] (tp, Z/p7Z)
We will first calculate Ext%[l /0/(kp, Z/PZ), which really has nothing specific to this problem.

Theorem 1.4.1 [Scl, Corollary 4.2]. For ¢ # p distinct primes, Ext%[l/g] (kp, Z/DZ) is naturally
an Fp-vector space, and

1 ifEt= 0(mod p)
dimyp, Extl Z/pZ) = 24 .
¥r Zi/4 (b, Z/12) {0 otherwise
Proof. We use the Mayer-Vietoris sequence, Theorem 1.2.7. Note that Hom’s all vanish. Also,
Extép (tp, Z/pZ) = 0, as we can utilize the connected-étale sequence in this case, so that the
exact sequence
0—=Z/pZ -G — pp — 0

becomes, after taking the connected component functor,
0—0—GY— pu,—0,

which means that the extension is split by identifying the connected component with y,,. There-
fore, the Mayer-Vietoris sequence becomes

0 — Extyy g (ps Z/PL) — Extyyy g (1p, Z/PL) — Extyy, (p1p, Z /).

What is Ext(b)p (tp,Z/pZ)? Note that the two group schemes py,,Z/pZ are étale, so we can
think everything in terms of Galois modules. As p, = Z/pZ over Qp((p), EXt(%;Pp(Cp)(MP’ Z]pZ) =
Ext(bp(gp)(Z/pZ, fp). On the other hand, the Gal(Q,((p)/Qp)-invariants of EXt(%}p(qp)(Mm Z]pZ)
are precisely Ext(l@p (14p, Z/DPZ), as an obstruction of Galois descent is in H? of Galois cohomology
of Gal(Q,((p)/Qp) acting on a p-group, and as Gal(Q,(¢,)/Qp) is of order coprime to p, the
Galois cohomology should vanish. On the other hand, if we denote x : Gal(Qy((p)/Qp) — F)
to be the cyclotomic character, then as Gal(Q,(¢,)/Q,) acts on p, as x whereas acts trivially
on Z/pZ, the Gal(Q,({p)/Qp)-invariant subspace of Ext(bp (1, Z/pZ) is identified with the x>
eigenspace of Ext}Qp(Cp) (Z/pZ, pp).

The exactly same argument applies to Z[1/pf] via the extension Z[1/pl, (] /Z[1/pl]; for
a number field E, the étale fundamental group of Og[+] is the Galois group Gal(En/E),
where Ey is maximal among extensions of E unramified outside N, so the Galois group of
Z[1/pt, Cpl/Z[1]pl] is also Gal(Q,(¢p)/Qp), a group of order coprime to p. Thus, our Mayer-
Vietoris sequence becomes

0— Ext%[l/e] (tp, Z/pZ) — EXt%[l/pe,(p] (Z/PZ; pip)y2 — Ext(bp(cp)(Z/pZ, [p)y2-
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The Ext long exact sequence of functor Homg, () (+; tp) and Homgzi /0 ¢, (- 1) to the exact
sequence 0 — Z — Z — Z/pZ — 0 gives

0 = pp = Exty o o (2L, i) — H (m1,60(Z[1/0L, Gpl), 1p) — 0,

and
0= pp = Bxtgy o\ (Z/PZ, pip) = H' (m1,6/(Qp(Cp)): 11p) = 0,

where H' here is a group cohomology. Taking y2-eigenspaces, as (ftp)y2 = 0, we have

X
EXt%[l/pZ,(p] (Z/pZa /‘L;D)XQ = H' (ﬂ-l,ét (Z{l/pé, CP])? :U’p)XQa
and
Bxtdy o \(Z/PL 11p) e = H' (m1,6(Qp(G)): 1) 2

Thus, the Mayer-Vietoris sequence now becomes

0 — Bxtypy g (1p, Z/PL) — H' (1,6 (Z[L/DL, Gpl), p)ye — H (11,6 (Qp(Gp)), 1) -

Now we fit this into the long exact sequence of group cohomology applied to the Kummer

sequence 0 — 1, — G,y KRN Gy, — 0. Then, we get the following diagram with vertical

complexes being exact (written in this way due to the lack of space).

Z[1/pt, Cp]x @p(gp)x
Z[l/pﬁ, Cp]x Qp(gp)x

Hl(ﬂl,ét(z[l/lwa Cpl)s bp) —— Hl(ﬂl,ét((@p(gp))a Ip)

H (m1,60(Z[1/pl, G))s Gm) —— H' (m1,6(Qp(Gp)) Gim)

x—aP z—aP

H (my,e0(Z[1/pl, G))s Gim) —— HH (m1,60(Qp(Gp)) Gim)

Note that H'(my ¢t (R), Gp,) = Pic(R). Thus, the above diagram simplifies into

0 —— Z[1/pt, G/ Z[1/pt, Gp]*P —— H (w16 (Z[1/pL, Cpl), pp) — Pic(Z[1/pt, Gp)) [p] —— 0

| J |

0 ——— Qp(p)* /Qp(Gp) P ————— H! (71,66(Qp(Cp)), pp) — Pic(Qp(Cp))[p] = 0

Note that Pic(Z[1/pl,(p]) is the ideal class group of Z[(,] modulo the ideal classes supported
in the primes lying over £. Thus, Pic(Z[1/pt, (p])[ply2 is a quotient of Pic(Z[(y])[p],2. Note
however that Pic(Z[(p])[p]y = 0 by [W, Proposition 6.16] and this implies Pic(Z[(p])[p]y2 = 0
by the proof of [W, Theorem 5.34]. This implies that Ex‘c%[1 s (bp, Z/pZ) fits into an exact
sequence with very computable entries, namely

0— EXt%[I/Z] (Npa Z[pZ) — (Z[1/pt, Cp]X/Z[l/pE, Cp] Xp)XQ — (@p(Cp)X/Qp(Cp) XP)XQ'

We know quite well about fundamental units of cyclotomic fields thanks to [W, §8], so the
computation will not be so bad. We now divide into cases.
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1. p = 2. As the only fundamental units of Q({2) are +1, and as +£5* generates the
whole (Z/2™7)*, the group Z[1/20)* /Z[1/2(]*? is generated by 2, —1, £ whereas the group
Q5 /Q5?% is generated by 2,—1,5. So the kernel is nonzero if and only if +/ is a 2-adic
square, i.e. £ = £1(mod8).

2. p = 3. Note that x2 = 1. As the fundamental unit of Z is 1, the group

(Z[1/30, G3]* JZ[1/3€, 5] )i

is 2-dimensional, generated by 3 and £. Also 2-dimensional is (Q3(¢3)* /Q3(¢3)*3)1, which
is generated by 3 and some other integer n. Thus the kernel is nonzero if and only if ¢ is
a 3-adic cube, i.e. when ¢ = +1(mod9).

3.p>5. As2<p—1, (Qu(¢)"/Qp(Cp)*P)y2 is 1-dimensional. The theorem [W, Theorem
8.25] implies that the exact sequence is surjective on the right, so Ex‘c%[1 /e}(up,Z/pZ) is
0-dimensional if and only if (Z[1/pl, (] /Z[1/pl, (p)*P) 2 is 1-dimensional. As Z[1/pl, (]
is obtained by inverting ¢ from Z[1/p, (], there is a natrual exact sequence

0= Z[1/p, () — Z[1/pt, G = D Z — Pic(Z[1/p, () & Pic(Z[1/pt, () — 0
e

Note that we already have seen that CI(Z[1/p, (p])[pl,2 = 0. Thus, after tensoring with
Zy, we can take XQ—eigenspace, so that we get an exact sequence

il

0= (Zp[1/p, Gpl ™ )2 = (Z[1/pL, Gl (EBZ > — 0.
X2

This is split as the third entry is Z,-free. Thus we can take quotient on each entry by
p-th power and still remain to get an exact sequence. Thus, we have an exact sequence

il

0= (Z[1/p, Q1™ JZ[1/p, G P )y2 — (Z[1/pL, G JZ[1 /L, Gl P) 2 — (@F > — 0.
X2

Note that [W, Proposition 8.13] says that, as F,[Gal(Q((,)/Q)]-modules,

Z[1/p, Cp]X/Z[l/p, Gl = pp X Fp[Gal(Q(¢p + C;;l)/@)]a

which has one-dimensional y?-eigenspace. Thus, Ext%[l /0] (fp, Z/pZ) is 0-dimensional if
and only if <@[|@ Fp)x"’ is O-dimensional. Note that (@”g IFp>, as an I, [Gal(Q((p)/Q)]-
module, is isomorphic to F,[Gal(Q((,)/Q)/ ()], so the x*-eigenspace is nontrivial if and
only if it is one-dimensional and x?(¢) = 1, which is equivalent to £ = 41(mod p).

Thus we have computed all cases, so that

if p=2and ¢/ = +1(mod38),
p=3and { = £+1(mod9),
or p > 5,4 = 41(mod p)

0 otherwise.

dimg, Extyy) g (1p, Z/pZ) =

—1_

A compact way of writing the long condition above is that £ (mod p), so we are done. [J
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1.4.1.4 Simple Objects of D}

To use Proposition 1.4.1, the simple objects of Dg should be p,, and Z/pZ. Recall that, in the
first nonexistence proofs, we deduced this via arguing first that, a simple object must be of
order p, andn that there are not many choices for order p groups. Along the lines of Proposition
1.3.3, we have the following.

Theorem 1.4.2 [TO, §3, Corollary|. If R is a localization of the ring of integers of a field K
whose class number is coprime to p—1 and (p) stays inert to be a prime ideal in R, then, up to
a twist by everywhere unramified character, the only finite flat commutative R-group schemes
of order p are p, and Z/pZ.

In particular, this theorem can be applied to R = Z[1/¢]. So what we need to prove is that,
for an appropriate choice of p # ¢, simple objects of D} are of order p.

Proposition 1.4.2. Let ¢ # p be distinct primes. Suppose that every G € Df, killed by p and
containing , as a closed subgroup scheme, has a field of definition L = Q(G(Q)) a p-extension
of Q({p). Then the only simple objects of D} are p, and Z/pZ.

Proof. Let G be a simple object in D}. The field L’ generated by geometric points of G X pup
has [L : Q((p)] a power of p. As Gal(Q/Q((,)) C Gal(Q/Q) acts on G(Q) via the finite p-group
Gal(L/Q(¢p)), and as G(Q) is a simple Galois module of p-power order, the fixed part of G(Q)
being nontrivial implies that the whole G(Q) is fixed by Gal(L/Q((p)). Thus, Gal(Q/Q) acts on

G(Q) via Gal(Q(¢p)/Q). As Gal(Q(¢p)/Q) is a cyclic group of order p — 1, and as the (p —1)-st
roots of unity are all in F, the eigenspace decomposition of G(Q) implies that the whole G(Q)
is equal to one of the eigenspaces, and is therefore 1-dimensional over IF,. Therefore, G is of
order p, so by Theorem 1.4.2, G is Z/pZ or p, twisted by a character ¢ unramified outside
foo. As GG is an order p group, such a character necessarily has order dividing p — 1. On the
other hand, as G € D7, the ramification index at £ of the field generated by geometric points
of 1 should be a power of p. Thus, ¢ is ramified only at oo, or 1 is trivial. This finishes the

proof. O

Thus, we can alleviate our condition to embed a group scheme in D7 killed by p to a known
group scheme whose field of definition is of degree a power of p over Q((p).

Lemma 1.4.1 [Scl, Proposition 5.1]. Let {,p be distinct primes and G € D} be killed by
p. Then, one can find another G' € DY, containing G and killed by p, such that the field of

definition L = Q(G'(Q)) satisfies the following properties.

o Let
o {@(@) i o= 1)

Q otherwise.

Then, F(Cop, {’/Z) C L, and this extension is unramified at all primes outside p.

1
o Let dy, be the absolute discriminant of L. Then, vy(d;" ) < 1+ ﬁ.

Proof. Let G’ € DY be defined as follows.

pp X G x Gy x G- ifp=2
G =Sy x Gx Gy xppe ifp>2,p/(0—1)
tp X G <X Gy otherwise.
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Here G is the Katz-Mazur group scheme, and p)., is the 2-dimensional [F-representation of Gg
defined at the beginning of the section. It is obvious that L = Q(G’(Q)) contains F((ap, /7).
As G' € DV, we know that the inertia group of any prime [ in L over ¢ acts tamely. Also, as G’
is killed by p, for any g in the inertia group of [, ¢ = id. Since tame ramification groups are
cyclic, this implies that the ramification index of [ divide p. On the other hand, we know that
any prime over ¢ in F((p, /) has ramification index exactly p, so L/F(Czp, ¥/¢) is unramified
over £. By Theorem 1.3.2, we a priori knew this extension is unramified outside p and £. Thus,
this extension is unramified outside p. The upper bound on the p-adic valuation of discriminant
is the Fontaine’s ramification bound in Theorem 1.3.2 as well. O

Now we completely translated our problem into a Galois theory problem. Given a prime
2
£, is there a prime p # £ such that 22721 # 0(modp) and a Galois extension satisfying the
conditions of Lemma 1.4.1 has degree a power of p? If so, (¢, p) will be appropriate, and we can
deduce the nonexistence of semi-stable abelian varieties over Z[1//].

Theorem 1.1.3 [Scl, §6]. For the primes £ = 2,3,5,7,13, there is no nontrivial abelian variety
over Q with good reduction outside £ and semi-stable reduction at £.

Proof. We will show that the pairs of primes (¢,p) = (2, 3), (3,2), (5,2), (7, 3), (13,2) are appro-
priate. Indeed, those primes satisfy 522—11 # 0(mod p). Thus, we need to check that, for a pair
of prime in the above, a field extension L satisfying the conditions of Lemma 1.4.1 has a degree
over Q a power of p. The Odlyzko discriminant bounds [Mar| with a discriminant bound from
Lemma 1.4.1 imply that,

24 if (6,p) = (2,3)
32 i (4,p) = (3,2)
[L:Q] < {480 if (4,p) = (5,2)
270 if (¢,p) = (7,3)
60 if (¢,p) = (13,2)

if (¢,p) =(2,3)
7 if (4,p) = (3,2)
IL:K]<{59 if (6,p) = (5,2)
14 if (£,p) = (7,3)

14 if (£,p) = (13,2)

In particular, the Galois group Gal(L/K) is of order < 60 for all cases, so it is solvable. As
Gal(K/Q) is also solvable in all cases, G = Gal(L/Q) is solvable as well.

Then the proof proceeds by calculating various cases using class field theory to show that
successive subquotients of the derived series of [G : G] is a p-group, and the fixed field of
[G : G, the maximal abelian extension of Q in L, is a p-extension of Q((,); one can check the
calculations in [Scl, §6]. In particular, this implies that [G : G] as well as Gal(L/Q((p))/[G : G]
is a p-group. Thus, Gal(L/Q((p)) is a p-group. We can then use Lemma 1.4.1 and Proposition
1.4.2 to deduce that the only simple objects of Df are y, and Z/pZ. Therefore, the pairs of
primes we stated in the beginning of the proof are appropriate, as desired. ]

1.4.2 Results of Brumer-Kramer

Despite of yielding strictly weaker results, the work of Brumer-Kramer in [BK] should be men-
tioned, as it uses a different application of Fontaine’s discriminant bounds. The proof is quite

o7



Gyujin Oh There is no abelian scheme over Z

different in spirit, since it proceeds by making a contradiction, not by analyzing restrictions
on p-divisible groups, but by constructing infinitely many non-isomorphic isogenous abelian
varieties, contradicting with the Faltings’ Finiteness Theorem, Theorem 1.2.38(iii). We will in
particular use ¢-adic Tate modules, for £ £ p.

1.4.2.1 Increasing Effective Stage of Inertia

Let A be an abelian variety over Q, of dimension d > 0 with semi-stable bad reduction. We
want to keep track of how ramified A({) is via the following definition.

Definition 1.4.1. The effective stage of inertia acting on Ty(A), written i(A, ¢, p), is the min-
imal integer n > 1 such that Q,(A[l"]) is ramified at p.

This definition is in particular well-defined because of the Néron-Ogg-Shafarevich Criterion,
Theorem 1.2.28. We would like to construct a new non-isomorphic yet isogenous abelian variety
from A via taking the quotient of it by an appropriate finite subgroup so that the effective stage
of inertia increases.

Recall that, by Theorem 1.2.30, the ¢-adic Tate module T;(A) has a “finite part” M{ (A) =
Ty(A)!», where I, is the inertia group, and a “toric part” M’(A) C M{ (A) which corresponds
to ./\/l{ (;l\) via the Weil pairing. From this information, we know how to quotient A to increase
the effective stage of inertia.

Theorem 1.4.3 [BK, Lemma3]|. Let M¢(A) and M (A) denote the projections of MZ(A)
and My(A) to All]. For any Gg,-submodule r of Ms(A) containing My(A), i'(A/k,{,p) =
(A, 0,p) + 1.

Proof sketch. Let A’ = A/k. As k C A[{], the isogeny ¢ : A — A’ is of degree ¢, so we can
construct a Qp-isogeny ¢’ : A’ — A so that oy’ = [¢]4/, ¢’ 0 = [(] 4. Note that the effect of ¢
on (-adic Tate modules is that it is injective, it factors through T;(A")/¢T,(A") = A’[f], and the
cokernel is isomorphic to an ¢-Sylow subgroup of . In particular, Tg(gp)(M{ (A4)) C M£ (A
and Ty(p)(ML(A)) € ME(A'). So we have a commutative diagram

Ty(A) M (A) 2= Ty(A) ) M (A

o ]

MY(A) —F—— MY(A)

The condition M;(A4) C K C M¢(A) implies that the horizontal arrows are isomorphisms, and
the conclusion follows. O

To apply this to our situation, consider an abelian variety A over Q with semi-stable bad
reduction at p and good reduction outside p. It is sufficient to show that, for some ¢ # p,
M{(AQP) and /or ﬂz(AQp), a priori Gg,-submodules of T;(A), are actually Gg-submodules of
Ty(A). This is possible with a restriction on the ¢-division field Q(A[/]).

Proposition 1.4.3 [BK, Proposition 4]. Let A/Q be an abelian variety with semi-stable bad
reduction at p and good reduction at £. Suppose that the {-division field L = Q(A[{]) satisfies

the following condition: there is only one prime over p. Then, there is a Q-isogeny ¢ : A — A’
such that i(A',¢,p) =i(A, ¢, p) + 1.
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Proof. As noted above, it is sufficient to show that Mg(AQp) is a Gg-submodule of Ty(A). As
the inertia group I, is normal in the decomposition group D), it follows that M£ (Ag,) is a
Dp-module. As there is only one prime in L over p, it follows that D, maps onto Gal(L/Q) by
restriction. This implies that Mg(AQp) is a Gal(L/Q)-module. As L is the field of definition of

All], it follows that M{(A@p) is a Gg-submodule of A[(]. O

Thus, as done in the proof of Fontaine, we have reduced the problem about the field of
definition of a torsion subgroup. We have seen a fair amount of problems like this, so we list
what we know about L = Q(A[/]).

e The extension L/Q is Galois, and is unramified outside ¢ and p.

e The ramification degree of L at p divides ¢, as A[(] is killed by ¢.

e The higher ramification groups Géu) vanishes for u > 1+ Z—%v where Gy is a decomposition

group at a prime over /4.
e It actually turns out that L always contains Q((z). This is due to the following lemma.

Lemma 1.4.2 [BK, Lemma 1]. If A is an abelian variety defined over a field K of characteristic
0, then K((m) C K(A[("]).

Proof. Consider a polarization A : A — A over K of minimal degree. If All] C ker A, then there
exists another polarization v : A — A over K such that vo[l]a = A, which gives a contradiction
on the minimality of degree. Thus, A[/] is not contained in ker \. We can then choose a point
p1 € Alf] — ker A and lift it to p, € A[f"] such that its "~!-th power is p;. That p; € A[/]
but not in ker A implies that A(p,) is of order exactly ¢". As char K = 0, the Weil pairing

—~

e : A[0"] x A[€"] — pyn is perfect, we can find a point ¢, € A[¢"] such that em (¢n, A(pn)) = G-
Observe that Gal(K (A[("])/K) fixes pn, ¢n € A[l"], so it fixes (. Thus, K(¢{,) C K(A[¢"]). O

1.4.2.2 Finishing the Proof

We have succeeded in translating the whole problem to a class field theoretic problem. The
following result is the main down-to-earth calculation of [BK].

Theorem 1.4.4. For pairs of primes ({,p) = (2,3),(2,7),(3,2),(3,6),(5,2),(5,3), a Galois
extension L/Q((y) satisfying the following conditions have only one prime over p.

1. The ramification degree of L/Q at p divides ¢.
)

2. The higher ramification groups Géu vanishes for u > 1+ ﬁ, where Gy is a decomposition

group at a prime over L.
This will induce the following main result of [BK].

Theorem 1.4.5 [BK, Theorem 1]. There is no semi-stable abelian variety of positive dimension
defined over Q with good reduction everywhere outside one prime p < 7.

Proof sketch of Theorem 1.4.4. Consider the following subfield of L,

e {Q(Q) if ¢ is odd
Q(G) ife=2

Here, if £ = 2, one may need to extend L to contain (4, which is harmless in proving the theorem.
Let E be the maximal abelian subextension of F' in L and H = Gal(L/F'). Note that we now
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face a case where L/Q may be ramified even outside ¢. However, note that the valuation of the
different D, (4[¢7))/0, 18 n—iALD)FL _ ] for n > i(A,¢,p); this is because the inertia group I,
acts via the maximal pro-f quotient, which is (topologically) generated by one element. Thus,
we have a discriminant bound

_1 1
|dp | B9 < g“‘mpl*%'

The Odlyzko discriminant bound [Mar] tells us that

Thus,

[L:F)<

which implies that H is solvable.

For ¢ odd, p is inert in F, so E is necessarily Q({r, ¢/p)-

11
7

34
10
42

10
22
14
68
40
168

if (¢,p) = (2,3)
if (4,p) =(2,7)
if (¢,p) = (3,2)
if (¢,p) =(3,5)
if (¢,p) = (5,2)
if (¢,p) = (5,3)

(t.p) = (2.3)

(4,p) = (2,7)

=62 _

(4,p) = (3,5) 7

(¢,p) = (5,2)

(4,p) = (5,3)

We use class field theory to

compute successive subquotients of derived series of H to conclude that H is an f-group. As
the ramification degree at p divides ¢, |H| = ¢, so E = L, and indeed there is only one prime in

FE over p.

On the other hand, if £ = 2, E is a subfield of Q((4,/p), and as there is only one prime
in Q({4,/P) over p, one can assume that L/E is nontrivial. Let E’ be the maximal abelian
subextension of F in L. A basic Galois theory shows that E’/E is nontrivial of odd degree,
unramified outside 2 and at worst tamely ramified for primes over 2. However, such field does
not exist via class field theory.

60
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Chapter 2

Nonexistence of Certain Proper
Schemes

2.1 Overview

Thanks to the development of p-adic Hodge theory, algebraic objects can be associated to a
vastly wider class of varieties and schemes, and it starts by looking at the p-adic étale cohomology
groups of the schemes. If a given scheme is nice enough, which is a condition especially has
to do with reduction behavior, the p-adic étale cohomology, as a p-adic Galois representation,
is known to fall into some very nice class of p-adic Galois representations. Such classes of p-
adic Galois representations have corresponding Dieudonné modules, which are just consisted of
Galois modules with linear algebraic data. By proving ramification bounds for such algebraic
objects, one can lay severe structural restrictions on the p-adic Galois representation coming
from geometry.

More specifically, for a smooth proper scheme X over a number field K having everywhere
good reduction, it is known that the p-adic étale cohomology group H[} (X%, Q,) as a p-adic
G i-representation is unramified outside p and crystalline at p. The relevant discriminant bound
we will be proving for this situation is the following.

Theorem 2.1.1 (Fontaine, [Fo2, Théoreme 2|). Let k be a perfect field of characteristic p > 0,
W = W(k), K = FracW and G = Gg. Let X be a proper smooth scheme over O. Let
0<m <p—1 be an integer. Then, the ramification subgroups G*) C G acts trivially on any
subfactor in HZ (X7, Qp) which is annihilated by p if v > 1 + Z%.

On the other hand, if X has a semi-stable reduction at p and good reduction everywhere
else, then the p-adic étale cohomology group H[' (X%, Q,) as a p-adic Gk-representation is
unramified outside p and semi-stable at p. The relevant discriminant bound in this situation is
the following.

Theorem 2.1.2 (Caruso-Liu, [CL, Theorem 1.1]). Let p > 2 be a prime number and k be a
perfect field of characteristic p. Let W = W (k), and K be a totally ramified extension of W[1/p]
of degree e. Let G = Gk, and vk be the discrete valuation on K noramlized by v (K*) = Z.

Consider a positive integer r and V a semi-stable representation of G with Hodge-Tate
weights in [—r,0]. Let T be the quotient of two G-stable Zy-lattices in V, which is again a
representation of G annihilated by p" for some integer n. Denote by p : G — Autg, (T) the
associated group homomorphism and by L the finite extension of K defined by ker p. If we write
%:p“ﬁ with o € N and%<5§l, then

1. if u>1+e(n+ a) + max(ef — Iﬁj 557), then G acts trivially on T
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2. vk @pg) <l+emn+a+p)— zﬁ’
where D,/ is the different of L/K.
Using these two discriminant bounds, we will prove the following two nonexistence results.

Theorem 2.1.3 (Fontaine, [Fo2, Théoreme 1}, [Ab2, 7.6]). Let X be a smooth proper variety
over Q with everywhere good reduction. Then, H (X,Q%) =0 fori#j, i+ j <3.

Theorem 2.1.4 (Abrashkin, [Ab4, Theorem 0.1]). If Y is a smooth projective variety over Q
having semi-stable reduction at 3 and good reduction outside 3, then h?(Yg) = hb(Ye).

In this chapter, we develop the necessary preliminaries to understandn the above results.
The preliminaries include étale cohomology theory, p-adic Hodge theory, p-adic comparison
theorems and various integral p-adic Hodge theory including the theory of Fontaine-Laffaille,
Breuil-Kisin and Liu.

2.2 Preliminaries

We assume the reader is familiar with class field theory, algebraic geometry and homological
algebra, including spectral sequences.

2.2.1 Etale Cohomology and the Weil Conjectures
2.2.1.1 Sites and Topoi

The first motivation for development of étale cohomology is to develop a cohomology theory
of schemes that is analogous to singular cohomology of topological spaces. To achieve the
objective, one needs a cohomology theory that is defined over some topology which is finer than
the Zariski topology.

In retrospect, sheaf cohomology as well as singular cohomology can be neatly defined as
a right derived functor of a left-exact section functor. In this sense, one realizes that what is
really needed to define a cohomology theory is not the underlying topology, but the category
of sheaves on the topology, known as a topos. Recall that a sheaf on a scheme is determined
by its restriction on affine open subschemes. In this regard, we can in particular massage the
restriction of having an actual topology to instead have information on a certain kind of open
sets and how such open sets cover other open sets. This is the notion of site, which we will
define now.

Definition 2.2.1 (Site). A site is consisted of a pair (T, Cov(T)) of a category T and a collection
Cov(T) of coverings, i.e. families {@; : U; — U }ier of morphisms in T, satisfying the following
properties.

1. For{p;:U; — U}ier € Cov(T) and a morphism V- — U in T, the fiber products U; xy 'V
exist for all i € I, and {@; v : Ui xuy V. — V}ier € Cov(T).

2. Given {p; : Uy = Utier € Cov(T') and {1j : Vij = Ui}jes, € Cov(T) for all i € I, the
family {p; 0 1ij : Vij = Ultier jes, is also a covering.

3. If o : U — U is an isomorphism in T, then {¢ : U — U} is a covering.

We often denote the site itself as T too.
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Example 2.2.1. Obviously, any topology on a topological space X gives a site (Ox,Cov(Ox)),
where Ox is the category of open subsets of X, and coverings are just topological coverings.
This is why categorical-minded people sometimes use the word topology instead of site.

A slightly more interesting example is the canonical topology. Given a category C with fiber
products, one can always define a site, the canonical topology, by requiring a covering to be a
family of universal effective epimorphisms. Namely, a family {U; — V'} of morphisms in C is a
family of effective epimorphisms if the equalizer sequence

Hom(V, Z) — HHom(Ui, Z)= HHom(Ui xy Uj, Z)
( 2
is exact for each Z € C. A family of morphisms is a family of universal effective epimorphisms
if any pullback of the family is a family of effective epimorphisms. It is easy to check that this

is indeed a site, and it is also meant to be the finest site on C that each representable presheaf,
U — Hom(U, Z) for a fixed Z € ObjC, is a sheaf.

As the assignment of data in the definition of sites is functorial, we can define a morphism
of sites and, more importantly, the notion of presheaves and sheaves on a site.

Definition 2.2.2 (Morphism of Sites). Given sites T,T’, a morphism of sites is a functor
f:T — T of the underlying categories satisfying the following.

1. Given a covering {p; : Uj — U}icr € Cov(T), we have a covering {f(¢;) : f(U;) —
f(U)}ier Cov(T).

2. Given a covering {¢; : U; — Ultier € Cov(T) and a morphism g : V. — U in T, the
canonical morphism

fWUixu V) = f(Ui) gy F(V),

coming from the universal property of fiber products, is an isomorphism.

Definition 2.2.3 (Sheaves on Sites). Let T' be a site, and C be a category with products, for
ezample AbGrp or Sets. Then a presheaf on T with values in C is a contravariant functor
F : T — C. A morphism of presheaves is a natural transformation between contravariant
functors.

A presheaf F on T is a sheaf if, for every {U; — U}ier € Cov(T), the equalizer sequence

FU) - [[FWU:) = [[ FUs xu U;y)
il ijel
is exact in C. A morphism of sheaves is a morphism as a morphism of presheaves. In particular,

(pre)sheaves on T with values in AbGrp are called abelian (pre)sheaves.

We would like to introduce general facts about sites and categories of abelian sheaves on
sites. The proofs will be omitted, but they are fairly straightforward abstract nonsense. In this
section, we will let 7" be a site, and P (S, respectively) be the category of abelian presheaves
(abelian sheaves, respectively) on 7.

Theorem 2.2.1 ([Tam, (1.2.1.2), (1.3.2.2)]). The categories P,S are abelian categories with
sufficiently many injectives.

For U € Obj(T), I'y : P — AbGrp be the section functor, i.e. F'+— F(U). We will use the
same notation for the section functor on the category of abelian sheaves as well.
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Proposition 2.2.1 [Tam, (1.2.1.1), (I1.3.2.1), (I.3.1.1)]. Let U € Obj(T).

(i) The section functor Ty : P — AbGrp on P is exact. More generally, a sequence
F' — F — F" in P is exact if and only if F'(U) — F(U) — F"(U) is exact in AbGrp for all
U € Obj(T).

(ii) The natural inclusion functor v : & — P is left exact. Therefore, the section functor
I'y:S — AbGrp on S is left exact.

(iii) The inclusion v : S — P has the left adjoint functor, the sheafification functor # : P —
S. The sheafification functor is exact.

Definition 2.2.4 (Direct and Inverse Images). Let T,T' be sites, and P, P’ be the categories of
abelian presheaves on T, T’, respectievly. Given a morphism f : T — T' of topologies, we define
the (presheaf) inverse image functor fP : P’ — P by fPF'(U) = F'(f(U)). The functor fP has
a left adjoint f, : P — P’, called the (presheaf) direct image functor.

Similarly, let S,8’ be the categories of abelian sheaves on T, T'. Then, there are the (sheaf)
inverse image functor f* := #go fPoup and the (sheaf) direct image functor fs := #p/o fpour,
which is left adjoint to f°.

Proposition 2.2.2. Let f : T — T’ be a morphism of topologies.
(i) f? is exact and commutes with direct limits.
(i) fp is right exact and commutes with direct limits.
(iii) f* is left exact.
(iv) fs is right exact and commutes with direct limits.

Therefore, given an abelian sheaf F' on T', we can define the cohomology of U € Obj(T') with
values in F' via
Hq(Ua F) = RqFU(F)v

where the right derived functor is taken on §. If T has a final object e, one sometimes writes
HY(T, F) instead of Hi(e, F'). More generally, there is a right dervide functor R1f?: S — S,
which is called the higher direct image sheaves.

Even though a definition by derived functor is almost uncomputable, we can adapt an idea
from classical cases to define the Cech cohomology. Consider a covering {U; — U} € Cov(T).
Then, as it is not necessarily a sheaf, the functor

H°({U; = U},-) : P — AbGrp,

defined as
H({U; » U}, F) =ker(J[ F(Us) = [[ F(Ui xu U;)),
7 1,7

is not necessarily the same as F(U), and is instead left exact. Thus, with respect to the
covering {U; — U}, we can define the g-th Cech cohomology group as the ¢-th right derived
functor H1({U; — U},-) := RIH°({U; — U},-). As usual, we call an abelian sheaf F' flasque
(or flabby) if HI({U; — U}, F) = 0 for all ¢ > 0 and all coverings {U; — U}. By general
abstract nonsense, the following are standard.

Proposition 2.2.3 [Tam, §3.5]. Let F' be a flasque abelian sheaf on a site T
(i) HY(U,F) =0 for allq >0 and U € T.
(ii) Injective abelian sheaves are flasque.
(iii) Flasque resolutions in S can be used to compute H1(U,-).

The Cech cohomology is computable by the following sense.
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Proposition 2.2.4 [Tam, 1.2.2.3]. For an abelian presheaf F' on T, the group HI({U; — U}, F)
is the q-th cohomology group of the Cech complex C*({U; — U}, F), defined as

Cq({UZ%U},F): H F(Uio Xy -+ Xy Uz‘q)7

(Z‘O,A..Jq)equrl
with the coboundary d4 : C1({U; — U}, F) — CL({U; — U}, F) defined as
g+1

(dqs)i07"'7iq+1 - Z(—l)jF(pr)(s

Jj=0

)7

i07.” 7ij7.“ ’Zq+1

where ZJ\ means i is deleted and pr is the appropriate projection.

One can define the notion of Cech cohomology without referring to a specific covering as
follows. We define {U; — U}jes € Cov(T) is a refinement of {U; — U}iey if there is a map
e :J — I of index sets and a family of U-morphisms f; : U j’ — Ug(j)- Then there is a natural
homomorphism

HY(F, f): H'({U; » U}, F) = H'({Uj —» U}, F).

Taking the direct limit over the category of coverings of U, we get

HYU,F) := ling HY{U; — U}, F),
{U;i—=U}eCov(T)

the g-th Cech cohomology group of U with values in F.

Proposition 2.2.5 [Tam, 1.2.2.6]. The functor F + H°(U, F) from P to AbGrp is left exact,
and the right derived functors of this functor are the g-th Cech cohomology groups.

Now one remains to compare these various right derived functors. The most fundamental
theorem is Grothendieck’s Composition of Functors Spectral Sequence.

Theorem 2.2.2 (Grothendieck’s Composition of Functors Spectral Sequence, [Tam, 0.2.3.5]).
Let C,C’ be abelian categories with sufficiently many injectives, and C" be another abelian cate-
gory. Let F': C — C' and G : C' — C" be left exact additive covariant functors. Suppose that the
functor F' maps injectives in C to G-acyclic objects, i.e. those with vanishing R1G’s for ¢ > 0.
Then, for A € ObjC, there is a cohomological spectral sequence

E§I(A) = EPTI(A),

given by
EY(A) = RPG(RIF(A)),

E"(A) = R"(G o F)(A).
We wonder if we can use this to Ty on S, as Ty = HO(U,-) o t. We define HY := R,

Proposition 2.2.6 [Tam, (1.3.4.2, 1.3.4.3)]. Let F' be an abelian sheaf, and U € Obj(T).
(i) There is a canonical isomorphism HY(F)(U) = HY(U, F).
(ii) For ¢ > 0, H*(U,HI(F)) = 0.

Thus, we have the following spectral sequences.
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Theorem 2.2.3 (Cech-to-Derived Spectral Sequence, [Tam, 1.3.4.4]). Let F be an abelian sheaf,
U € Obj(T).
(i) For a covering {U; — U} € Cov(T), there is a cohomological spectral sequence

B} = HP({U; — U}, HU(F)) = EP*9 = HPH(U, F),

functorial in F'.
(ii) There is a cohomological spectral sequence

E3® = HP(U,HU(F)) = EP*" = HPM(U, F),
functorial in F'.

Theorem 2.2.4 (Leray Spectral Sequence, [Tam, 1.3.7.5]). Let T" 2 T ENG Y morphisms of
sites. Let F' be an abelian sheaf on T'. Then, there is a cohomological spectral sequence

B39 = RPg*(RUf*(F')) = BP9 = RPHI(f 0 g)*(F'),

functorial in F'. In particular, if g is the restriction of the site T to U € Obj(T), then the
spectral sequence is

ERY = HP(U,RTf*(F')) = EP*9 = HPY(f(U), F),
functorial in F'.

In particular, using the low-term exact sequence coming from a cohomological spectral
sequence, one gets the following useful corollary.

Corollary 2.2.1 [Tam, 1.3.4.7]. For an abelian sheaf F, HP(U, F) — HP(U, F) is bijective for
p = 0,1 and injective for p = 2.

We end this section by noticing how to compute cohomology by restricting sites. Firstly,
given an object U € Obj(T), one can think of the category T/U consisted of U-objects. It has
a site, also denoted as T'/U, whose coverings are coverings in 7. For the natural morphism
i:T/U — Y of sites, ¢° is exact ([Tam, 1.3.8.1]). This implies that H?(U, F) = HP({U d,
U}, i°F), where the right cohomology is evaluated over T'/U.

More generally, we have the following Comparison Lemma.

Theorem 2.2.5 (Comparison Lemma, [Tam, 1.3.9.1]). Let i : T" — T be a morphism of sites
with the following properties.

1. As a functor, i is fully faithful.

2. A covering {U; — U} € Cov(T), with U;’s and U objects coming from T', is a covering
in T,

3. Each object U € Obj(T) has a covering {U; — U} with objects U;’s coming from T.

Then, the functors i® and is are quasi-inverse equivalences of categories between the category of
abelian sheaves on T and the category of abelian sheaves on T'. In particular, one can evaluate
cohomology over any of the two sites.

This in particular enables us to compare various cohomology theories over different sites.
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2.2.1.2 Etale Site, Etale Sheaves and Etale Cohomology

Now that we have the whole general framework of cohomology defined over a site, we can just
define what the étale site is and let the étale cohomology to be defined as the cohomology over
the étale site.

Definition 2.2.5 (Etale Site). Let X be a scheme. Consider the category Bt /X whose objects
are the étale morphisms U — X and whose morphisms are the X -morphisms between X -étale
schemes (which are necessarily étale). We can define the étale site X¢ on Et /X by defining a
covering to be a family {U; — U} of X-morphisms whose union of images cover the whole U.

The generalities on sites immediately provide us the inverse image and direct image functors,
and more importantly the cohomology group for sheaves on the étale site, called the étale
cohomology. A sheaf on the étale site is called an étale sheaf. Also, we have the notion of sheaf
pullback and pushforward, coming from the generalities of sites. We will denote from now on
with asterisks on superscripts and subscripts. In particular, given a morphism f: X — Y,

fFY) = FY' xy X),
for an étale sheaf F' on X and an étale Y-scheme Y’, whereas

*G(X') = lim G(Y"),
fO) = lim G(Y)

for an étale sheaf G on Y and an étale X-scheme X', where the limit runs over pairs (Y’

with étale Y-scheme Y’ and an Y-morphism ¢g: X’ — Y.
We first examine various examples of étale sheaves.

,9)

Example 2.2.2. Let X be a scheme.

1. The structure sheaf. We define the structure sheaf Ox,, (or Ox, if there is no confusion)
to take values Ox,, (U) = I'(U, Oy ). That it is a sheaf is basically a faithfully flat descent.

2. Representable sheaves. Given an X-scheme, we can define a functor Z : Et /X — Sets
by Z(U) = Homx (U, Z). That this is a sheaf is also seen by faithfully flat descent. This
sheaf is called to be representable by Z. We drop underline in the notation if there is no
confusion.

If we started with an X-group scheme, we end up with a sheaf of groups. Most commonly
used representable étale sheaves are as follows.
e The structure sheaf, which is just G,.
o 0% = Gy, where the sheaf is defined by U — I'(U, Oy)*.
® (i, where the sheaf is defined by U — {z € T'(U,Op) | 2" = 1}.
e GL, x, where the sheaf is defined by U — GL,(I'(U, Op)).
3. Constant sheaves. Given a set (or an abelian group) F, one can define the constant

sheaf F(U) = F™W) where mo(U) is the number of connected components of U. This is
the sheafification of the presheaf U +— F.

4. Quasicoherent Ox-modules. Given a quasicoherent Ox-module F, the functor (f :
U — X) — D(U, f*F) defines an étale sheaf F¢. A convenient fact is that H, (X, Fet) =
H(X,F), where the right side is the usual sheaf cohomology. We can use the Leray
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spectral sequence for the inclusion ¢ : Xz, — X4 of Zariski topology to étale topology
gives a cohomological spectral sequence

EY? = HP(X,R%*(F)) = EP™ = HYPY(X, F),

for an abelian étale sheaf F. If FF = Fg for some quasicoherent Ox-module, then
R1i*Fg = 0 for ¢ > 0 whereas i*Fg = F, so we get Hét(X, Fs) = HY(X, F).

5. Skyscraper sheaves. Let T be a geometric point of X, and F be a set (or a group).
The skyscraper sheaf F* is defined by F*(U) = @gomy (z,0)F- For an abelian étale sheaf
F, there is a natural isomorphism Hom(F, F¥) = Hom(Fz, F); this will be clear when we
define a stalk of an abelian étale sheaf.

We now examine the most basic case—when X = Speck is the spectrum of a field k.
Note that an étale k-scheme is necessarily of form Spec[]; ki, where k;/k is a finite separable
extension. Thus, X’ — X'(ks) is an equivalence of sites between (Speck)s and the canonical
topology on the category of sets with continuous left Gal(ks/k)-actions. From this equivalence
of sites, one gets the following consequences on abelian sheaves.

Corollary 2.2.2 [Tam, I1.2.2]. The functor F ligk,/k finite separable F(Speck’) is an equiva-
lence of categories from the category of abelian sheaves on (Speck)e and the category of con-

tinuous Gal(ks/k)-sets. Thus, for any abelian étale sheaf F' on Speck,

HY (Speck, F) = HY(Gal(ks/k), lim F(Speck')),
k' /k finite separable

where the right hand side is Galois cohomoology.

Thus, even over a point scheme, an abelian étale sheaf can be quite complex, except for
example when the field is separably closed. Thus, it will be more appropriate to evaluate stalk
of an étale sheaf at a geometric point.

Definition 2.2.6. Given a geometric point T : SpecQ — X (so that Q is separably closed)
and an abelian étale sheaf F on X, the stalk Fz of F' at T is defined by the abelian group
T*F(Spec(?). Equivalently,

Fr= lilr]n F(U),

where U runs over étale neighborhoods of T. Alternatively, one can only evaluate the limit in
the full subcategory of connected affine étale neighborhoods of T, as it is initial.

The following are easy formal consequences which are not specific to étale topology, except
that the stalk of the étale structure sheaf is the strict henselization of the stalk of the scheme
structure sheaf; it is however just a re-statement of how a strict henselization is constructed.

Proposition 2.2.7 [Tam, IL.5, I1.6]. Let T : SpecQ — X be a geometric point, and F' be an
abelian étale sheaf.

(i) The functor F +— Fp is exact and commutes with direct limits.

(i) If f : X — Y is a morphism of schemes, then for any abelian sheaf G on Yy, (f*G)z =
G foz-

(i7i) The stalk Oxz is the strict henselization of the usual scheme-stalk Ox ,.

(iv) The property of being an isomorphism, a monomorphism, an epimorphism, a zero étale
sheaf, an exact sequence of étale sheaves can all be checked at the level of (étale) stalks.

(v) Sheafification does not change stalks.
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However, the stalks is “not compatible with pushforwards.” For example, for an open im-
mersion j : U — X and an étale sheaf F' on Uy, the stalks of j,F' need not be zero outside U.
On the other hand, there is another functor ji, the extension by zero functor, defined by the
sheafification of the presheaf defined by

FV) if
go:V—>XétaleH>{ (V) it (V) cU

otherwise.

This functor sends a sheaf to a sheaf which indeed has a zero stalk outside U, as the sheafification
does not change stalks. Also, ji is an exact functor, and is a left adjoint to j*. Note that this
construction is bound to that j is an open immersion; a pushforward through a closed immersion
has a zero stalk outside the closed set. In particular, if we let Z = X — U be the complement
closed set and let ¢ : Z — X denote a closed immersion, adjointness gives us a canonical map
Jj*F — F and F' — i,i*F, and they fit into an exact sequence

0— jij*F - F — ,i"F — 0,

as this can be checked at stalks. More generally, data over U and Z is sufficient to characterize
the original sheaf by the following.

Proposition 2.2.8 [Mill, Proposition 8.17]. Let i : Z — X be a closed immersion, and let
j: X —=Z=U — X be an open immersion. The functor

F— (i"F,j*F,i"F — " j.(§7F))

is an equivalence of categories from the category of abelian sheaves over Xg to the category of
triples (Fy, Fa, ¢) where Fy, Fy are abelian sheaves on Zg, Uy, respectively, and ¢ : Fy — i*j Fy
s @ morphism.

The existence of shriek functors is bound to the fact that the pullback f* is not only left
exact but exact, as ji makes a previously left adjoint j* to be also a right adjoint of some
functor. More concretely, G y(,) = (f*G), is canonically isomorphic, for f: X — Y and G an
étale sheaf on Y. Finally, we remark that étale site is a topological invariant, so that a pullback
and pushforward by a universal homeomorphism induces equivalences of étale sites (cf. [FK,
Proposition 1.3.16]).

2.2.1.3 Gg, Gy pn, and Z/nZ

We now want to compute very basic étale cohomology groups. Note that we already know
HP(X,F) = HEY (X, Fs), so that HY (X,Ox) = HP(X,Ox). But there is more: recall the
notion of exact sequences of finite flat group schemes. The sequence of Zariski sheaves induced
by the given exact sequence is not necessarily exact. For example, the sequence

0— pin — G = Gy, — 0,

even though n is invertible at each point in X, need not be surjective on the right, as Ox ;, simply
may not have all n-th roots. However, this sequence is exact as étale sheaves, precisely because
stalks are strictly henselian. Thus, we can use of long exact sequence for étale cohomology of
this exact sequence. This sequence is called the Kummer sequence. Moreover, Hélt(X , (’))X(,ét)
has a special meaning; we know by Corollary 2.2.1 that it is H} (X, O§7ét), and, as we have
seen in Section 1.3.2.1, any étale invertible sheaf descends to a Zariski invertible sheaf, so that
HL(X, Oxe) =H 1(X,0%) = Pic(X). Thus, for example, from the long exact sequence we get

0 — He (X, 0% o)/ (He (X, 0% )" = Hep(X, (pn)x) — Pic(X)[n] — 0.
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Another basic exact sequence is called the Artin-Schreier sequence, which applies for the base
scheme of characteristic p > 0. Note that in that case, Ox ¢ LN Ox ¢4t is also surjective
(which is not surjective as Zariski sheaves), and the kernel is the constant sheaf (Z/pZ)x. Thus,

we get the Artin-Schreier sequence
0— (Z/pZ)X — O_)Qét m OX7ét — 0.

On the other hand, for an irreducible regular scheme X, there is the Weil divisor exact sequence
([Mil1, Proposition 13.4])

0= Gm = g:Gmx = P  inZ—0,
codim(z)=1

where g : 7 — X is the inclusion of the generic point, K is the function field, and i, : 2 — X
is the inclusion of the point. This really is just a divisor exact sequence in the usual scheme
theory. This exact sequence can be used to prove the cohomology of u, over curves.

Theorem 2.2.6 (cf. [Mill, §14], [FK, 1.5.1]). Let X be a connected, smooth, projective curve
over an algebraically closed field k. Then, if n is not divisible by the characteristic of k,

k) i=0
- Pic(X)[n] i=1
H (X, ) =
(X pn) Z/nZ. i—9
0 12>3
If chark =p > 0, then

Z/pZ i=0
H(X,Z/pZ) = < a finite abelian group i =1
0 1>2

2.2.1.4 Finiteness Conditions on Sheaves

We start with noticing how finite morphisms behave very nicely with étale cohomology. Let
f X — Y be a finite morphism, then, first of all, all the higher direct images RIf, vanish
[FK, 1.3.4]. Thus, for arbitary morphism g : Z — Y, the natural base change morphism
g*(R1f.G) — RYfl(¢"G) is canonically isomorphic, where f’ ¢’ are pullbacks of f,g by g, f,
respectively. This is a special case of the Proper Base Change Theorem, but nevertheless
philosophically this case should be the prime case.

Another reason why finiteness works well with étale cohomology can be seen in the Repre-
sentability Lemma.

Theorem 2.2.7 (Representability Lemma, [FK, 1.3.15]). An étale sheaf F' of sets on a scheme
X is representable if and only if the following conditions are satisfied.

1. The stalks of F' are finite sets.

2. For each étale scheme U — X over X and every two sections a, 3 € F(U), the set of
poitns xo € U for which germs oy, Bz, are different is an open set.

This Lemma can be seen in the following context. Note that any étale sheaf F' on X has
a surjection IIX, — F' from disjoint union of representable sheaves, e.g. you can just take the
collection of stalks. The finiteness conditions are laying finiteness condition on this family so
that F' can actually be thought as being “represented by a quotient space.” In this regard, we
can develop a very important notion of contructible sheaves.
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Definition 2.2.7 (Locally Constant Sheaves, Constructible Sheaves). An étale sheaf F' on a
noetherian scheme X is locally constant if there is an étale cover {U; — X} such that F|y, is
constant. If in addition each F|y, is represented by a finite set, we say F' is locally constant
constructible (or, finite locally constant as in [FK]). Finally, F is constructible if X admits a
finite stratification over which F is locally constant constructible. Here, o finite stratification
is a finite set {X;} of pairwise-disjoint non-empty locally closed subschemes of X.

This definition of constructibility is to ensure that F' is a quotient of a finite disjoint union
of representable sheaves. Thus, F' is always at least represented by an algebraic space, which
we have had a glimpse on in Section 1.2.3.2. Note also that we need noetherianness for X to
apply noetherian induction. This is not a restriction, as all the scheme we will be interested in
will be noetherian.

We list basic properties of constructible sheaves. Let X be a noetherian scheme, and F' be
an étale sheaf over X.

e Locally constant constructible sheaves are representable. This is just a faithfully flat de-
scent. In particular, the category of locally constructible sheaves over X is equivalent to
the category of finite étale X-schemes via Y +— Y.

e A sheaf represented by an étale scheme is constructible.

e A sheaf is constructible if and only if, for every nonempty closed irreducible subscheme
Y C X, there is an étale scheme V over Y such that F|y is constructible [FK, 1.4.3”].

o Constructibility is étale-local. More precisely, if there is an étale cover {U;} such that F'|y,
is constructible for all 4, then F' is constructible [C, Theorem 1.1.7.5].

e If F' is constructible, then given a family of sheaves {F; — F'} whose union ILF; — F
is surjective, there is a finite subfamily Fj,,--- , F;, such that 7 Fi; — F is surjective
[FK, 1.4.5].

e F' is constructible if and only if there is an étale scheme Y over X such that F' has a
surjection from Y, i.e. there exists a surjective map ¥ — X. From this condition, it
is immediate that a subsheaf of a constructible sheaf is constructible. By Representabil-
ity Lemma, Theorem 2.2.7, we can deduce that a subsheaf of a representable sheaf is
representable.

e Constructibility is preserved by many functors, for example pullback, image, finite limit.
This can be easily seen by noetherian induction: by noetherian induction, we can reduce
to the case when the given étale sheaf F' is locally constant constructible, and locality of
constructibility reduces the problem to the case when F'is finite constant. On the other
hand, it is not in general true that a pushforward of a constructible sheaf is constructible,
unless there is another finiteness condition on the morphism we are pushing forward. In
contrast, extension of a constructible sheaf by zero is constructible [C, Example 1.1.7.8].

Note that stalks of constructible sheaves are finite groups, so they are torsion groups. We will
call a sheaf with torsion stalk groups a torsion sheaf. The relation between the category of
constructible sheaves and the category of torsion sheaves is this.

Theorem 2.2.8 [FK, 1.4.8-9]. The category of constructible sheaves is an abelian subcategory
of the category of torsion sheaves. Conversely, the category of torsion sheaves is generated by
the category of constructible sheaves via filtered direct limit. In other words, every torsion sheaf
is the filtered direct limit of its constructible subsheaves.

An abelian étale torsion sheaf satisfies the ascending chain condition, then it is constructible.
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In particular, if F' is a constructible sheaf killed by n # 0, then F' is a subsheaf of a direct
sum of Z/nZ!

2.2.1.5 Base Change Theorems

Recall that we have a natural base change homomorphism for a cartesian diagram. Namely,
given a cartesian square

xXp L7

4 )

X——S

using adjunction, there is a natural map
g (R'f.F) = R fi(g"F),

for every abelian étale sheaf F' on X. We call this map the base change homomorphism. This
morphism, even though not isomorphic in all cases, is indeed isomorphic for certain important
cases. One is the Proper Base Change Theorem; we fix the above notation throughout this
section.

Theorem 2.2.9 (Proper Base Change Theorem, [FK, 1.6.1]). If f : X — S is proper and F is
a torsion sheaf on X, then the base change homomorphism is an isomorphism.

It is done via various reduction techniques. As cohomology and filtered direct limit of
sheaves commute [C, Theorem 1.3.2.1], we can assume F' is constructible Z/nZ-module for
some integer n > 1. By Noetherian induction [C, Theorem 1.3.2.2], since an isomorphism can
be checked stalkwise, we can reduce the problem to the case when S = Spec R is the spectrum
of a strictly henselian local noetherian ring R and g : S’ — S is the inclusion of the closed
point. Using Chow’s lemma, one can also assume that f is projective. Embedding X into P§
and subsequently covering it by ]P’}g X ee X ]P’}g, it is sufficient to prove when X = IP’%. Then
one is reduced to the problem of cohomology of curves. The detailed proof can be found in [C,
1.3.4] and [FK, 1.6.1].

The Proper Base Change Theorem has some immediate corollaries as follows.

Corollary 2.2.3. Let f : X — Y be a proper morphism, and F' be an abelian torsion sheaf on
X.

(1) For every geometric point g € Y, (RIf.(F))y = HY(Xy, Fy) for ¢ > 0.

(ii) If f is of relative dimension < n, RIf.F' =0 for ¢ > 2n.

(i11) If X is a proper k-scheme and k'/k is an extension of separably closed fields, then
HQ(X’ F) = Hq(Xk/7Fk/) fOT’ all q > 0.

Another instance where the base change homomorphism is an isomorphism is when base-
changing through a smooth morphism.

Theorem 2.2.10 (Smooth Base Change Theorem, [C, Theorem 1.3.5.2], [FK, 1.7.3]). Ifg : T —
S is an inverse limit of smooth S-schemes' with affine transition maps, and if the torsion orders
of sections of F' are invertible on S, then the base change homomorphism is an isomorphism.

!The requirement that T is an inverse limit of smooth S-schemes is convenient in considering non-finite type
base change. For example, we can see that étale cohomology of a torsion sheaf of invertible order stays the same
through a purely transcendental field extension.
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This is proven by again using various reduction techniques; the details are in [FK, 1.7] and
[C, 1.3.5]. In particular, this is equivalent to the Acyclicity Theorem.

Theorem 2.2.11 (Acyclicity Theorem, [FK, 1.7.4]). Let g : Spec B — Spec A be a smooth
homomorphism of strictly henselian rings. Then, for any torsion sheaf F' on Spec A of invertible
order, F — g.g*F is an isomorphism, and R'g.(¢g*F) =0 for i > 0.

2.2.1.6 Cohomology with Proper Support and Finiteness Theorems

We will eventually reach theorems inspired from algebraic topology, for example Poincaré dual-
ity. Thus, it is viable to expect that we will at some point need the notion of cohomology with
compact support. Its existence was somehow forseen in the case of extension-by-zero functor.
We can generalize this functor to a wider class of morphisms.

Definition 2.2.8 (Higher Direct Images with Proper Support, [C, Definition 1.3.6.1]). Let
f: X — S be a separated finite type morphism with S quasicompact quasiseparated. By Nagata
compactification theorem, there exists an open immersion j : X — X to a proper S-scheme
f: X — S. The higher direct images with proper support for torsion sheaves are RIf, :=

(Rq?*) o Jr.
In this setting, the cohomology with proper support is defined as

Hq

c,ét

(X, F) = Hgt(Yh?'F)

We list some basic properties. Let f : X — S be separated finite type with S quasicompact
quasiseparated.

e Indeed, the definition R?f; is well-defined, so that it does not depend on the choice of
compactification. In particular, fi = f, if f is already proper.

e The functor fi is left adjoint to f*.
e The formation of the functor RYfi is compatible with base change [FK, 1.8.7(1)].

e If h =go f, then in the derived category Rhy = R g o R fi. More concretely, this means
that we can apply Grothendieck’s Composition of Functors Spectral Sequence, Theorem
2.2.2, so that there is a cohomological spectral sequence

ENY = RPg(RIf\(F)) = EPTY = RPTIp(F),
for any torsion sheaf F' [FK, 1.8.7(2)].

e We knew that j) is exact for an open embedding j. This means that R%j = 0 for ¢ > 0.

e Excision. If Z — X is a closed subscheme with open complement U, then there is a long
exact excision sequence

c- = R(flun(Flu) = R AF = R (flz)i(Flz) = -
for torsion sheaves F' on X [FK, 1.8.7(3)].

The cohomology with proper support is somehow the “right object” to satisfy finiteness; the
finiteness of (ordinary) étale cohomology is a consequence of finiteness of cohomology with
proper support. We record various finiteness theorems with references, since the proofs are
technical and long-winding as others are.
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Theorem 2.2.12 [C, Theorem 1.3.6.3]. Let f : X — S be a finite type separated map to
a scheme S, and let F be a torsion abelian sheaf on Xg&. Then R'fi(F) vanishes for i >
2sup,egdim Xs. If S is noetherian and F is constructible, R'fi(F) is constructible as well.
In particular, if S = Speck for a separably closed field k, Hc et(X, F) is a finite group and it
vanishes for i > 2dim X.

Theorem 2.2.13 [C, Theorem 1.3.6.4]. Let f : X — S be a finite type separated map between
schemes of finite type over a regular base of dimension < 1 (e.g. the spectrum of a field or
a Dedekind domain). Let F be a constructible abelian sheaf on X whose torsion-orders are
invertible on S. Then, the sheaves R'f,F are constructible, and they vanish for i > dim S +
2dim X.

Theorem 2.2.14 [C, Theorem 1.3.7.1]. Let f : X — S be smooth and proper. Let F be
a locally constant constructible abelian sheaf on X, whose torsion-orders are invertible on S.
Then, R'f,F is locally constant constructible on S and its formation commutes with arbitrary
base change.

2.2.1.7 Kiinneth Formula, Poincaré Duality

As promised, we have Kiinneth formula and Poincaré duality for étale cohomology. In this
section, we briefly explain how to construct the natural map for those formulas and state
theorems on when those maps are isomorphic (or fit inside a short exact sequence).

We first start with Kiinneth formula. The setting is as follows. Fix a commutative ring
A that is killed by a nonzero integer. Let f : X — S, f' : X’ — S be separated finite type
maps. Given étale sheaves of A-modules F, F’ on X, X', respectively, we would likt to relate
the cohomology of 7*F @ #*F’ where m: X xg X' — X, ' : X xg X’ — X' are projections.
We cannot define pullback along 7 or 7’ as they might not be proper.

First, assume that S is quasicompact and quasiseparated. We can then choose j : X «— X
and 7' : X' — X’ into proper S-schemes f : X — S, f/: X’ =+ S. Then, X xg X' is also
a compactification of X xg X’. Along the projections of this product we can pullback, which
gives us a map

RPf,(jiF) @5 ROF,(jIF') —— RPFI(f x ). (T (iF) oa 7" (JIF'))

RP fi(F) @ RIf{(F') RPFI(f x f) J X JW(r*F @5 7™ F')

\

RPFA(f x f')(n*F @p 7 F').

This map is independent of compactification, so this construction globalizes to give the Kinneth
morphism
D RPf(F) @a RU\(F') = R*(f x fW(7*F @p 7 F').
pt+g=n

As there is an extra torsion term in the Kiinneth formula from algebraic topology, we also need
torsion terms to correctly characterize R™"5(f x f')(7*F @5 7"*F'). This is because what we
really get is an isomorphism of complexes in the derived category. For example, if F' or F’ has
A-flat stalks, then the Kiinneth morphism is the edge map of a cohomological spectral sequence

D Tor} (R AF, RY f{F') = R (f x f')\(x*F @ 7" F'),

ata’'=s
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where the Tor is evaluated in the category of étale sheaves [C, Theorem 1.3.9.2]. From this, we
know that the Kiinneth morphism is an isomorphism when, for example, either F' or F’ has flat
direct images with proper support.

For the Poincaré duality, one starts with a globalized trace map. For a Z[1/n]-scheme S
and any smooth separated finite type map f : Y — S with pure relative dimension d, there is a
unique theory of trace map try : R f(u®4) — 7./nZ satisfying axioms, including compatibility
with base change, reduction modulo a divisor of n, transitivity in f (via spectral sequence) and
match with originally existing trace maps in low dimensions [C, 1.3.8.5]. Then, the Poincaré
duality is really about the existence of cup product pairing. For any Z/¢"Z-sheaf G, we define
G(d) = G @gpmg 1o

Theorem 2.2.15 (Poincaré duality, [C, Theorem 1.3.8.1]). Let £ be a prime, and f : X — S be
a smooth separated map between noetherian Z[1/l]-schemes. Let (A,m) be a complete discrete
valuation ring with finite residue field of characterristic £ and fraction field of charcateristic
zero. Let F,G be constructible sheaves on X of A/m"l-modules on X and S, respectively.
Then, there is a canonical isomorphism

Extl (F, f*G(d)) = Homg(R* fi(F), G),

that is compatible with base change and étale localization on X.

When S = Speck is a geometric point and F is locally constant constructible with A/m
flat stalks, then the isomorphism in the special case G = A/m" ! is induced by the perfect cup
product pairing

n+1_

HL (X, FY(d) @ HXH(X, F) — HX2 (X, (A /m™ 1) (d)) 2 A/m"+T,

c,ét c,ét

2.2.1.8 /-adic Cohomology

Even though the étale cohomology of a non-torsion sheaf is not saying much, we can instead
exploit the fact that projective limit does not commute with étale cohomology. Let £ be a prime.

Definition 2.2.9 (¢-adic Sheaves). A projective system (Fy)nen of constructible sheaves on a
scheme X is called an (-adic sheaf if ¢"t1F, =0 for alln >0 and

Fr1 ®gypmveg LJTZ S Fy.

An l-adic sheaf F = (F),) is locally constant (constructible, respectively) if all F,’s are
locally constant (constructible, respectively).

Example 2.2.3. 1. If a constructible sheaf F is killed by £™, then F,, = F/¢{"*1F for n >0
forms an f-adic sheaf. In particular, the category of constructible /-power torsion sheaves
embeds as a full subcategory inside the category of 