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1. Introduction

The puipose of this nots is to give a methold for solving & prodlem relatei
to the truveling saleecman problem. It seemy worthwhile to give u Gescription
of the original pmblem.‘F One fcermudation 18 to find the shortest routs for a
oalesman starting ©rom Veshington, vieiting all the state capitals and t an
returninge 4o ‘.‘.':.shing‘:.o;.* More genernlly, to fir;d the shortest closed curve
containing n given roints in the plane,

Clearly, it 1s aufficient to conslder curves made up of line segments
Jolning paire of the given points. Also, wnlesg all the points lie on a
stralight 1ins, the optimal path will not pase through eny point twice. EHence

the problem can be utated as follows:

Arrange the n points in & cyolic order so that the sum of the
distance tetween consccutive points is a nminimm.

In this statement ot the problem, arbiirery real numbers can be assigned
as the "dlatances” between ordered paire of distinct points. Thus, the "distance"
from A to B need not be the saw as from B to A. Ve alinll sometimes refer to the
"longth” of AB instead of the "distance" frum A to B.

Since there are cnly a finite number of paiha to comsider, the prodblem
consists in finding e method f-r picking out the optimal path vhem n is moder-
ately large, say n = 50. In this ssee, thers are more than 1062 possidle paths,

80 wo can not almply try them all. Even for as few us 10 polnts, same short

cute are desimble.

% Actually, the prollem may go dack to W. R, Hamilton. OSee R. W, Ball:
Mathematical Recreations on the Hamiltonian gume.

o In this psper I shall not be concerned with the various possible
applications of the problea rolved here,
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2. Statemont of the problem

fn wmsuccessful attempt to solve the above probler: led to a solution of
the following:

Given n points and all the "distances"” between >rdered pairs of distinct

points. Tho problem is to find 2 system of ordered circuite such that:

i. Each point lies on exactly ons c¢clreult.

1i. ZFach circuit contains at least 2 pointe,
111, No cireuit passes through the same point mors than cnce.
iv. The total "lenath" of the circults i{s a minimum.

Homevar st flret plance, it locks more A1ffL:ult than the traveling
falesman problm, for thare are obviously many more systems of ecircuits than
circuits, Actually the topological characterization of a system of circuits
is much simpler than that of a single ci_'rcuit &nd can be used to solve this
pro‘tlen,

The msthod presented hero of handling this prodlem will enable us to check
vhether a given sysiem of cirouite is optimal or, if not, to fini a better one.
I btelisve 1t would Vo leasible to epply it o as many as 50 pointe provided

suitable calculating equimment is awmailable,

3, Doscription of the method.

Number the pointe 1, 2, ..., n. Tut D = ”d““ , vhere &, is the distance

13
/

Prom {1 to 3, & 0. Let < e the set of directed segments ocomprising the

11 ®
proposed system of circults. Ve wish to determine ‘I this system is optimal or,
if not, te find a better system,

Consirust the aux?liary matrix S = ||si j|| z8 follows:

wor each 1, determine 1' #o that i1' € o . Then put,
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for 34 1 .

Now think of the S-mu.trix as giving nev "distances"” betwveen the given
points and look for a cloeed circuit of negative S-length., If there is such
a cirouit, 1t will have from 2 t5 n points. Suppose (™ 1011"'11: is a cir-

1
suit of negative S-length., Then make up a now systam of cirouits J by modify-

ing & 1in the following way:

Remove Add
L} L
11 1,1
g O [+
L} L}
1111 121,
) L ’ (]
1lcj‘k 1o"k

L
The nev system of circuite .gf , thus odtained, Las a shorter total D-length
than A . In fact, if vo let £, (¢.) be the length of (L measured by the
netrix A, then

'D("z ) ) ‘-‘D('JIA) + s((ﬂJ) .
31
We then apply the same procedurs to J s
Suppose wa can not £ind a cirsult of nogative S-length. Then ve atiept

to show that £ 1s optimal. To do this, enforce ths triangle inequality,
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’13 < 8, + ’k,j"* that 1s, if llJ > 84 + lkJ replace liJ by 8, * 'k'd' These
replacemsnts can be sarried out iz any order.

If a matrix 1s eventually obdtained for which the triangle inequality holds,
then u/’ is tho best system of circuits. If not, there must Me some cirouit of
negative S-length. To find one, ve must keep track of the changes made in the
Sematrixz, For exampis, wnder Wi i, S eutry in the S-matrix, write (1J). Thea
ir 8, is replaced by By * lkJ, replace the (1)) bty (1ikJ). Similarly, if '11{,1
is replaced by 8, , + o7y then replace (1K)) by ({EZMJ). (Here K, H and M
are i'inite sequences of numbers from 1 to n.) Thus, the entry in the 4, Jt‘h
place will always be the length of the path indicated from 1 to ). If there is
a negetive oircuit in the S-matrix, then at some stege a negative mmber can be
put on the main dlagunal of the modified S-matrix, We can theu: sasily obtain

the corresponding circuit in the S-matrix.

4, A mmerical example
As an example, we take a set of six points with the following distence

matrix:
o 1 & 2 8 7
6 0 5 2 1 9
L 8 0o 7 2 6
5 5 5 0o W 8
6 1 5 7 0 h
3 9 1 2 & o
D

1, J and k need not be Atatinot.
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A8 a first trinl systam of cirouits o take the two circuits 12531 and
564, Then o = 112, 25, 53, 31, b6, 6&} . Hemoe 1' = 2, 2' = 5, 3' = 1,
b =6,5 o3 and 3' =1, Next construct the S-matrix:

0 400 +7 4 0 48
+7 0 41 +3 ¢+ 45

42 0 4+ 2 -1

We nov look for a closed circuit of negative S-length. After a fev trials,
we #ind the otreutt (& = 56234 with S-langth = -6. Ve obtain o from o by
removing 46, 53, 64, 25 and 31 from o omd edjolning 96, 63, 24, 35 and kL. We
then obtain the 4 = matrix:

)

0 +& 7 +# 0

0 0 +5 00 45 0
*w -1 0 42 +wW 4+
+H +1 =] 0 ¢ -2
+3 45 42 o 0 +p
43 & 0 B 4 0

&A

Yy >
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trizngle insquality, keeping treck of the ohanges ve male in case there is a

negative circuit.
ors in vhigh the triangle inequality holds.

(11)

()

(321)

-2
(¥321)

+1
(5321)

+2
(64321)

Ve give one intermediate matrix as an example and the fimul

+5
(142)

(22)

(32)

-2
(k32)

+2

(6432)

+2

(153)

+2
(2153)

(33)

(43}

+2
(53)

+3
(643)

(1%)

(214)

+2
(34)

(1)

(54)

(6%)

(15)

(215)

(3215)

-2
(¥3215)

(55)

+2
(643215)

Intermediate modified matrix

+2
(146)

(26)

(326)

-2
(46)

4+l
(5326)

(66)

il
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(22)

(321)

-2
(4323)

+1
(5321)

(64321)

+1
(1532)

(22)

(32)

-2
(¥32)

+1
(532)

+2
(6832)

Final S'-matrix vith £\ -ine,ualily holding

+2
(153)

(2153)

(33)

(43)

(53)

+
(643)

(14)

+4
(21h)

2

(34)

(&)

(5%)

o
(6%)

0
(15)

(2w5)

(3215)

-2

(43215)

(55)

+2

(6b3215)
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+1
(15326)

(29)

(326)

-2
(46)

+1
(5326)

0
(66)

Fee o ' 1s the optimal system of circuits. Tt cousists of the two circults

1241 and 3563 and has D-length = 15.

5, Justifigation of the method.
Firet, notice that a set of n directed segments satiafies i - 111 of

Sestion 1, if and only if
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1. Zach of the n points is an initial poeint of ons of ths segments;

2. Each of the n points is a terminal point of one of the sepwents;

3. Fach segment is between distinct points.
To see this, think of the terminal points as a permutation of the initial
points. This permuitation can be expressed as a prodwot of cyolic permutations,
These are the circuits.

This insures that, if there is a cirouit ( of negative S-lemgth and if

4" 1 obtained from f by the rule glven in Seotion 3, them 4 will also

be an adnissible system of oirouite. This is olear since, if a segnent with
initial point a is removed, one is also added and oonversely. Similarly,
for the terminal points. Hencs 1 and 2 remain satisfisi. Furthermore, if C
is of negative S-length, it oan not contain any seguents in coxmon with j ’
for these have S-length ¢ «» ; therefore, the semments added to / are between
distinst pointe.

tet (=114, Then

7
x (a) L3 ] + 8 4 ... + 8
S 1011 1,1, 1k10

Ay -, )+ (A oy ) b k(R g -, ")
1110 1010 i~1, 44, ioik 11'11(

'+ 4

- (dilio + 4

el T F A S B R
121, 1.4, 110+ 4,1 HE,
Hence [D(q{)') - ﬂD(J) = fs(é). Thus, we see that 1f there iz & oircuit
of negetive S-length, then J’ is not an optimal systeam and wve can comstruot

a system ' of shorter total length.

“ Cunversely, 12 ¥ = rot optimal, then we will show that there is a oirouit
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¢ of negative S-length. Let N l ho a system of clirouits of shorter total

D-length than o . Let (/ be the set of seguents in =/ but mot inof = amd

L ve the set of segments In & ' but mot in o . Let

U s {101;, 1345, .ue) lkik.P . Then é’)mt consist of a set of sogmeuts

vith the same initial points as in 2L, with the same terminal points and the
7 ) t N

sage number of segmonte. Hence let f = i Joio' 00Th Jkik j , Where

‘jo’ J1s v Jkisapomutation of 10, 14, .00y 1 Then

k

’};D( '/ ) - /D(J) - (d‘,oi; - dloi;) + (ddli;, - dilt;.) + (d'1k1k m dik‘;)

= .10"0 soy e .1ka
1ty
Express the permutation | °© | a8 the product of cysles, say
J e gy
0 | §

U/“ (’/2, ceey Gt. Then by rearranging and zollecting tom of

l..#‘i L EREREE N )

4.4J

ade 14

Lede

we see that this swm is Just
ZS( 01) LA 4 ‘/s( Gt)

wvhere Cl, C:», caeyp Ct are the circuits scorresponding to the cycles of the
porautation, Henoe

gD(J') - ZD(‘J) = /Z‘s(C;) $ooe § )f_ﬂr( {:t)'
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Since 'f' ‘s shorter than ./, one of the oircuits (CTEIN e ¢ must bave
nesative S-length. Therefore J/ ir optimal if and only if therv is o closod
ociroult of negative S-length.

It reaing Lo show that the non-existence of a oircult of negative S-length
is oquivalent to the existence of & mod!rfed S-matrix for which the triangle
inequality holds. Assume first that A is a modified S-matrix and that ths triangle
inequality holds in A. Let ¢ be a ofircuit of negative S-length. It corresponds
to a ctrouit (' of nogutive A-length, Let C' =1 fi1p ... L. Then

"
C :1012 1]’ is also of negative A-langth since ‘1012 < 19.1011 + 51].12.

Hemae, 1f there is any circuit of negative A-length we can find & one-point
cirouit of ragative length i.e. for same 1, T 0. 3But this is impossidle
since then B,y F8y, 8, cuntrary to the asswaption that the triangle in-
equality holds.

Un *he other hand, if thsre is no circuit of nogative S-length ve can
enforoe the trisngle inequality. The resulting matriz vill give in the 1, JB
plase the S-length of the shortest path fram 1 to J. If there 1s no slrcuit

of negative length, chere clear), is a shortest path between any two pointa.



