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Abstract—Sub-meter high-resolution remote sensing (HRRS)
image land cover classification could provide significant help for
urban monitoring, management, and planning. Deep learning
(DL) based models have achieved remarkable performance in
many land cover classification tasks through end-to-end su-
pervised learning. However, the excellent performance of DL-
based models relies heavily on a large number of well-annotated
samples, which is impossible in practical land cover classification
scenarios. Additionally, the training set could contain all of
the different land cover types. To overcome these problems, in
this paper a semi-supervised multiple-CNN ensemble learning
method, namely Semi-MCNN, is proposed to solve the land cover
classification problem. Considering the lack of labelled samples,
a semi-supervised learning strategy was adopted to leverage
large amounts of unlabelled data. In the proposed approach, an
automatic sample selection method called an ensembled teacher
model dataset generation (EMDG) was adopted to select samples
and generate a dataset from large amounts of unlabelled data
automatically. To tackle the error-propagation problem, an im-
portant strategy was adopted to correct the errors by pretraining
on the selected unlabelled data and finetuning on the labelled
data. Moreover, the semi-supervised idea together with the multi-
CNN ensemble framework were integrated into an end-to-end
architecture. This could significantly improve the generalization
ability of the semi-supervised model, as well as the classification
accuracy. Experiments were conducted on Shenzhen’s land cover
data (ShenzhenLC) and two other public remote sensing datasets.
These experiments confirmed the superior performance of the
proposed Semi-MCNN compared to the state-of-the-art land
cover classification models.

Index Terms—land cover classification, semi-supervised, deep
learning, remote sensing

I. INTRODUCTION

Land cover classification is a fundamental task of intelli-
gent interpretation of remote sensing imagery, which aims to
classify each pixel into a pre-defined land cover category. With
the rapid development of earth observation and remote sensing
technology, more and more sub-meter high spatial resolution
remote sensing (HRRS) images have been acquired. Compared
with low spatial resolution remote sensing imagery, sub-meter
high spatial-resolution remote sensing imagery can capture
more details of urban objects, which makes it capable of urban
monitoring [1], planning [2], [3], and management [4] with a
higher level of discrimination.
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Currently, the widely used remote sensing imagery land
cover classification methods are based on supervised learning,
which train the classifier according to the training samples and
then classify the testing data into presetting categories with the
trained classifier. Since AlexNet [5] was proposed in 2012,
many DL-based models have been proposed to address the
task of land cover classification. These methods use different
DL-based models, such as autoencoder-based models [6],
multilevel DL-based model [7], semi-transfer learning-based
model [8], and multi-scale DL-based model [9]. By utilizing
the spatial and spectral information comprehensively, and the
powerful learning and feature conversion capabilities of deep
models, these methods have achieved very significant results
in land cover classification related tasks.

Through the end-to-end supervised learning manner, these
DL-based models can automatically learn and transform high-
level features from numerous labelled samples. These can
also achieve state-of-the-art performance without any statis-
tical information from spectral or spectral-spatial features.
However, in real urban land cover classification scenarios,
as the resolution of remote sensing imagery increases, more
spatial details can be captured. With cities becoming more
fragmented, there is significant heterogeneity in urban land
cover types. The highly heterogeneous land cover types pose
a considerable challenge for land cover classification tasks.
Based on a data-driven idea, the DL-based methods utilize
a large number of labelled samples in order to train highly
nonlinear neural networks to distinguish highly heterogeneous
land cover types. Whereas in real scenarios, the lack of
labelled samples leads to poor classification results, especially
for DL-based models.

In real-world land cover classification scenario, it is much
easier to obtain unlabeled images than manually annotated data
sets. Hence, many semi-supervised learning-based methods are
proposed to use the raw unlabeled images to generate a labeled
data set, which effectively makes up for the lack of well-
labeled samples. These methods combine semi-supervised
learning strategies (such as self-training approach [10] and
pseudo-labeling strategies [11]) with SVM [12], graph-based
method [13], GANs [14], transferable deep models [15],
discriminative adversarial learning [16], and other models. By
using a large amount of unlabeled data, the effect of land
cover classification is significantly improved. However, the
wrong choice of samples always occurs in the sample selection
process of the semi-supervised method. These errors will be
propagated to the downstream land cover classification tasks,
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reducing the final land cover classification accuracy. Hence,
most semi-supervised models reduce the impact of error
propagation by manually setting certain thresholds (confidence
parameters). However, since it is impossible to prevent the
propagation of errors, the accuracy of land cover classification
is restricted.

Inspired by the significant progress made in semi-supervised
learning, a semi-supervised multi-CNN ensemble learning
method (Semi-MCNN) for land cover classification is pro-
posed in this work. To solve the lack of labelled samples
problem, a semi-supervised learning strategy that started with
a small labelled dataset and then spread the label to other
unlabelled samples was used to leverage the unlabelled sub-
meter high spatial-resolution remote sensing images. In this
process, the wrong selection of samples might bring about
an error propagation and affect the classification accuracy. To
tackle this problem, a multi-model ensemble learning method
was used to fuse multiple trained CNNs to reduce the errors
in the sample selection. In addition, an important strategy was
adopted to correct the errors by pretraining on the selected
unlabelled data and finetuning on the labelled data. As a
result, the proposed Semi-MCNN approach integrated a semi-
supervised manner and the multi-CNN ensemble strategy into
an end-to-end architecture. This effectively compensates for
the poor generalization performance of a single model and
the error propagation of a semi-supervised model.

To validate the effectiveness of the proposed method, a
dataset built from the sub-meter high resolution remote sens-
ing images of Shenzhen city, the ShenzhenLC dataset, was
used for land cover classification. Experimental results with
the ShenzhenLC dataset and two other widely used public
remote sensing datasets showed the superior performance of
the proposed Semi-MCNN model compared to state-of-the-art
land cover classification methods. The main contributions of
this paper are summarized as follows:

1) Focusing the lack of labelled samples problem on sub-
meter urban land cover classification, we have proposed
a simple semi-supervised method (Semi-MCNN), which
integrates multiple CNNs to enhance the sample evalua-
tion and uses pretrain-finetuning for error correction.

2) Taking Shenzhen city as the research area, we have con-
structed a large-scale land cover dataset (ShenzhenLC).

3) The proposed Semi-MCNN (10% training data) achieved
similar accuracy close to supervised learning-based meth-
ods (60% training data) on the ShenzhenLC dataset. A
sub-meter land cover classification map of Shenzhen city
in 2018 has been obtained.

The rest of this paper is organized as follows: Section 2
presents the related work. In Section 3, the proposed method,
a semi-supervised multi-model ensemble learning model for
classification, is introduced in detail. Section 4 contains a
description of the experimental datasets and an analysis of the
experimental results. In Section 5, the conclusions are drawn.

II. RELATED WORK

Land cover classification is a fundamental task in remote
sensing imagery. It can be classified into two categories

according to whether the samples are fully or partially labelled,
i.e. supervised learning-based methods and semi-supervised
learning-based methods. The supervised learning-based meth-
ods usually require a large number of labelled samples to train
a robust classifier, while the semi-supervised learning-based
methods often use small labelled samples. These methods also
aim to label or learn more samples in order to tackle the small
sample problem. In recent years, the sample generation method
represented by Generative Adversarial Network (GAN) has
also made impressive achievements in solving the lack of la-
belled samples problem. Therefore, in this section, the related
work will be introduced from the following three aspects:

A. Supervised learning-based methods

Currently, the widely used remote sensing land cover clas-
sification methods are supervised learning-based methods,
which train the classifier based on the prepared training
samples, and then utilize the classifier to label the pixels
into different land cover categories. Recently, the probability
statistical-based methods, traditional machine learning-based
methods, and DL-based methods have become the focus of
current trends of supervised learning-based land cover classi-
fication.

The probabilistic statistical-based methods, including the
nearest neighbour classification [17], [18], and the maximum
likelihood method [19], usually assume that the data should
obey normal distribution. When this condition cannot be met,
classification results are unpredictable and the performance
might be poor. To improve the classification results, machine
learning-based methods such as SVM [20], [21], [22], artificial
neural networks (ANN) [23], [24], [25], and decision trees
(DT) [26], [27], [28] have been proposed. These methods have
achieved satisfying results. However, with these methods the
manually defined features all play an important role in the
final result. Selecting and combining these defined features
(including spatial features and spectral features) is time-
consuming and limits the generalization of these models.

To reduce the dependence on the manually defined features,
DL-based models have been intensely studied. Gong Cheng
et al. [6] proposed a novel a single-hidden-layer autoencoder
and a single-hidden-layer neural network to train coarse-
to-fine shared intermediate representations. Considering that
satellite images are usually multi-temporal and multi-sourced,
Nataliia Kussul et al. [7] described a multilevel DL-based
architecture that targeted land cover and crop type classifi-
cation from multi-temporal and multi-source satellite imagery.
To effectively use the rich spectral information, inspired by
transfer learning, Huang et al. [8] proposed a semi-transfer
deep convolutional neural network approach for multispectral
remote sensing imagery. Some studies treated land cover
classification as a semantic segmentation task, and the rep-
resentative methods are a series of variants of FCN [29], [30],
[31], [32] and Unet [33], [9].

DL-based methods can learn discriminative representation
of different features through an end-to-end supervised process.
However, there are still some problems that need to be
solved for these DL-based methods. Traditionally, the excellent
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performance of DL-based models relies on a large number of
well-labelled samples. For a large study area such as Shenzhen
city, there are significant differences in the visual representa-
tion of land cover types. Manually labelling a complete dataset
containing all of the different visual representations of land
cover types is expensive and time-consuming. As a result,
reducing the dependence on labelled land cover samples is
an important research topic.

B. GAN-based methods

Self-supervised learning-based high-resolution sample gen-
eration is another way to solve the lack of labelled samples
problem. Since the GAN [34] can generate a large number of
high-quality samples in a self-supervised manner, many GAN-
based works have been studied in depth for sample generation
to promote the solution to the lack of labelled samples
problem. To generate high-quality remote sensing imagery
samples, Xu et al. [35] applied the scaled exponential linear
units into the GAN. Ma et al. [36] designed the SiftingGAN
to generate more numerous and diverse labeled samples for
data augmentation. Yu et al. [37] introduced the Attention
GANs, which integrates the attention mechanism into GANs
for aerial scene classification. More recently, Han et al. [38]
proposed the GANRSIGM, which integrates the Wasserstein
distance into GAN to create high-resolution samples for scene
classification. In terms of semi-supervised learning combined
with generative models, Zhan et al.’s [14] research shows that
GANs combined with semi-supervised learning can also have
a good hyperspectral image classification performance. Zhu et
al. [16] proposed a semi-supervised centre-based discrimina-
tive adversarial learning framework for a cross-domain scene-
level land cover classification of aerial images.

Most GAN-based methods use GAN for sample generation
or feature learning. Compared with CNN-based methods,
currently, the performance of GAN-based methods is inferior
to CNN-based methods [39]. The possible reasons can be
concluded as follows: Firstly, most GAN-based classification
methods cannot be trained end-to-end, because they usually
require labels to train an additional classifier. Secondly, the
training of GAN is challenging. In the case of a few samples,
the performance cannot be guaranteed (for example, spatial
information and spectral information may be lost). Thirdly,
the GAN-based methods generate samples from a certain
distribution. In a real scene, the samples may not completely
conform to the distribution or not only conform to the distri-
bution. However, due to the powerful self-supervised feature
learning ability of GAN, the GAN-based methods still provide
a promising future direction for land cover classification.

C. Semi-supervised learning-based methods

To reduce the reliance on a large number of labelled
samples, many semi-supervised learning-based methods for
land cover classification were studied in-depth. The semi-
supervised learning-based methods mainly include a semi-
supervised strategy and a learning model. Self-training [10]
is a widely used semi-supervised learning strategy. Focusing
on obtaining an expanded annotation dataset, the self-training

strategy annotates the most reliable predictions to unlabeled
instances. In self-training, the classifier first trains on a limited
number of labeled samples and then merges the most reliable
instances with the initial samples into an expanded data set.
The model is finally optimized on the expanded data set. How-
ever, existing self-training methods are based on handcrafted
features, which rely heavily on manual design, and cannot
guarantee effectiveness. Pseudo-Label [11] technology is a
simple and efficient semi-supervised learning strategy for deep
neural networks. During Pseudo-Label, the model is trained
in a supervised process with well-labeled data. For unlabeled
data, the class which has the maximum predicted probability is
picked up as if they were true labels. Self-training and Pseudo-
Label show good results on semi-supervised tasks, but these
methods can not guarantee reliability since they assume that
the selected samples are all correct.

Since the semi-supervised learning-based methods have
good performance in the case of limited samples, in recent
years, many semi-supervised learning-based methods have
been proposed for remote sensing image classification tasks.
Camps-Valls et al. [13] designed a semi-supervised graph-
based method to handle the special characteristics of hyper-
spectral images for hyperspectral image classification. In terms
of semi-supervised learning combined with discriminative
models, Liu et al. [12] proposed a novel semi-supervised
SVM model that utilized the self-training approach in order
to address the problem of remote sensing land cover clas-
sification. Han et al. presented the [40] SSGA-E based on
cotraining strategy and deep learning. Inspired by transfer
learning, recently, Tong et al. [15] proposed a semi-supervised
learning-based pseudo-labelling and sample selection scheme
to train transferable deep models for land-use classification
with HRRS images. IZ Yalniz [41] presented a web-scale
semi-supervised teacher/student paradigm pipeline with large
convolutional networks to leverage billions of images on the
Internet to enhance image and video classification. Due to the
dependence on manual preset parameters and thresholds, these
methods still have room for improvement in real land cover
classification scenarios.

These semi-supervised learning-based methods successfully
solved the problem of reducing the dependence on a large
number of labelled samples. However, they just only con-
sider using a single feature space to evaluate samples. A
single feature space has insufficient ability to distinguish
samples. Thus it is easy to select the wrong samples, which
may ultimately affect the classification accuracy. Especially
when dealing with highly heterogeneous land cover types,
the overfitting problems and the poor generalization perfor-
mance are prone to occur. In this paper, we use multiple
CNN ensembles to obtain different feature spaces through
different neural networks. In this way, the error-propagation
problem in semi-supervised sample selection can be largely
alleviated. In addition, though these semi-supervised methods
can reduce the error-propagation by optimising the sample
selection method, there were still different levels of error-
propagation problems. To solve these problems, an automatic
sample selection method called EMDG is proposed. The
proposed EMDG can reduce the propagation of errors in the
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Fig. 1: The flow of the proposed Semi-MCNN.

semi-supervised sample selection by automatically selecting
samples with higher accuracy, without any manual setting of
thresholds and parameters. Moreover, a strategy was used to
further correct the propagated errors by pretraining on the
selected unlabelled data and finetuning on the labelled data. In
Section III, more details will be introduced for the proposed
algorithm.

III. THE SEMI-SUPERVISED MULTI-CNN ENSEMBLE
LEARNING METHOD (SEMI-MCNN)

To tackle the lack of labelled samples problem, as well as to
enhance the generalization of the classification models, a semi-
supervised multi-model ensemble learning model (namely
Semi-MCNN) is proposed in this paper. This method aimed
to identify the land cover types for sub-meter high resolution
remote sensing imagery. Formally, an HRRS image I = {xij}
was given, where i, j is the width and length of image I ,

respectively. The output Y = {yij} with yij was the land
cover label of xij .

The folowchart of the proposed Semi-MCNN is shown in
Fig. 1. It consists of a semi-supervised learning strategy and
ensembles multiple DL-based CNN models. Specifically, the
proposed method contains two processes: training and testing.
During the training process, the model utilizes the small
samples and trains them with the semi-supervised strategy.
Then, the initial classification model can be obtained. For the
testing process, the test dataset is input into the initial model
and output with the probability value through the ensembled
multiple DL-based model. The final label for each pixel is
decided with the maximum probability value in the probability
distribution. The details are introduced in the following two
subsections.
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Fig. 2: The Semi-supervised Learning Strategy

A. The Semi-supervised Learning Strategy

In the proposed algorithm, to label the unlabelled samples
more efficiently and precisely, a semi-supervised learning
strategy was adopted, shown in Fig. 2. The semi-supervised
strategy was based on the idea of the teacher-student model.
First, an ensembled teacher model was used to train the
training samples initially to obtain a preliminary sample dis-
crimination. Then, the fine-tuned ensembled teacher model
was applied to select samples and generate a new dataset.
Finally, the newly generated dataset was used to train a student
model to get the final model. The generated dataset used
by the student model was selected by the teacher model
from unlabelled samples, and would cause an error-propagate
problem. Therefore, a fine-tuning operation was adopted by
the student model with a labelled dataset in order to optimize
the final results. The semi-supervised strategy is described as
follows:

1) Ensembled teacher model training: In the semi-
supervised learning strategy, the first step is to train the teacher
model. A good teacher model will significantly reduce the
error transmission problem in the semi-supervised process
and directly affect the final performance of the proposed
method. Therefore, two strategies are used to guarantee a
better teacher model. The first one is the use of transfer
learning. The parameters trained by the ImageNet dataset are
adopted in order to initialize the teacher model. Next, a fine-
tuning operation is carried out for the teacher model with
the training samples. The second strategy is the multi-model
ensemble work. Because a single model can easily fall into a
local optimum, and the generalization ability is not enough,
in the Semi-MCNN a variety of different CNN models are
used for the ensemble methods. The features extracted and
transformed by different CNN models are ensembled to obtain
different features. Through the above two strategies, a good
ensembled teacher model is obtained for the semi-supervised

Algorithm 1 Ensembled teacher model dataset generation
(EMDG)

Input: The lowest single category accuracy rate in the

ensembled teacher model: accteacher, Unlabelled data: U =

{u1, u2, ..., uI}, Ensembled teacher model: T

Output: NewDataSet D = {d1, d2, ..., dK}

1: function EMDG(accteacher, U , T )

2: D ← ∅
3: for i = 1 to I do
4: Input ui into the model T and calculate the corre-

sponding category and its accuracy, and denote it as acc

5: if acc ≥ accteacher then
6: Add ui to D according to the corresponding

category

7: end if
8: end for
9: Calculate the number of samples in each subset in D.

The number of samples in the smallest subset are called

the minimum number N

10: Sort the samples in each subset in D in decreasing

order according to acc.

11: Keep the samples within the top N of each subset in

D, and discard the remaining samples.

12: return D

13: end function
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learning-based classification.
2) Ensembled teacher model dataset generation (EMDG):

After the teacher model is obtained, labelling the large un-
labelled dataset and generating an augmented training sam-
ple dataset is another task. Currently, the sample generation
methods mostly rely on thresholds, which are preset man-
ually. These include the top-K [41] and the SSGA-E [40]
method, and the performance might be greatly affected by the
manually preset thresholds. To improve these circumstances,
a semi-supervised dataset generation method—namely the
EMDG—is presented in this paper.

The process of EMDG is shown in Algorithm 1. Here,
the lowest single category accuracy rate in the ensembled
teacher model (accteacher), the unlabelled dataset: U =
{u1, u2, ..., uI}, and the ensembled teacher model T are the
input. The purpose of the EMDG is to obtain a generated
dataset: NewDataSet D = {d1, d2, ..., dK}. First, the un-
labelled sample is input into the ensembled teacher model
T to calculate the category and the corresponding accuracy
rate, which is denoted as acc. To reduce the error of the
sample selection with teacher model T , samples with a higher
confidence value are selected (lines 5-8 in Algorithm 1). In
the newly generated dataset, the number of samples in each
category might be inconsistent, which will cause the category
imbalance problem and affect the final land cover classification
accuracy. To avoid this problem, the number of samples in
each category, which are denoted as N , are calculated to
ensure the minimum number for each category. Then, the
first N samples in descending order of acc for each class are
selected to obtain the final dataset D (lines 9-12 in Algorithm
1).

3) Ensembled student model pretraining and ensembled
final model fine-tuning: Finally, the ensembled student model
is trained with this newly generated training dataset. Because
the newly generated dataset D is automatically selected from
the unlabelled samples, it will inevitably contain some wrong
samples, which will result in error propagation problems. To
solve this problem, the weights of the ensembled student
model are inherited and used to initialize the final model. Then,
the final model is fine-tuned with the original labelled dataset.
By pretraining on the selected unlabelled data and finetuning
on the labelled data, the error propagation problems can be
better solved. Through progressive training from coarse (the
ensembled teacher model) to fine (the ensembled final model),
the performance can be greatly improved.

B. The Multiple Deep Learning-based CNN Ensembles
To enhance the generalization of the semi-supervised

learning-based classification methods, multiple CNN models
are to be ensembled. Many works have shown that different
structures of CNN can learn variant features, and some are
good at extracting spatial features. Others are more skilled
at extracting spectral features. Different components of CNN
have different feature perception capabilities, such as kernel
size, activation function, depth, and the number of hidden
units. Therefore, the features generated by different CNNs can
be combined to improve the land cover classification perfor-
mance. Among them, residual networks [42] have efficient

feature extraction capabilities, and the ResNet50 network is
widely used for various image classification tasks due to its
strong feature extraction and generalization capabilities. The
ResNet50 network uses skip connections, which enables the
network to be trained under a very deep architecture (hundreds
of layers), and significantly improves the accuracy of the
model. The ResNeXt [43], as a supplement and an upgraded
version of residual networks, has multi-scale analysis capabil-
ities. The RexNeXt network proposes the aggregated residual
transformations combined with the deep residual network to
more effectively utilize the parameters. Compared with the
residual network, RexNeXt has better classification ability
with fewer parameters. ShuffleNet-V2 [44] is a lightweight
network with efficient feature extraction capability and few
parameters, which is very suitable for model fusion. Therefore,
the ResNet50, ResNeXt, and ShuffleNet-V2 models are suit-
able to apply to remote sensing imagery for feature extraction.

The proposed semi-supervised method, shown in Fig. 2,
is first used to train the above three models independently
and save the optimal model for each network. The above
models are used to extract the softmax feature, which was
the output vector of the softmax layer (denoted as output =
{a1, a2, ..., ak}, and k is the number of categories). Where

ai =
ezi∑k
j=1 e

zj
, i ∈ [1, k] (1)

z is the input vector of the softmax layer.
Finally, the softmax features are ensembled to calculate the

final output by normalizing the element-wise addition of these
softmax features, which are defined as follows:

outputfinal =

∑N
i=1 outputi

N
(2)

where N is the number of models. The category corresponding
to the largest value in output is the predicted land cover type.

IV. EXPERIMENT AND ANALYSIS

To validate the effectiveness of the proposed framework, in
this section ResNet50 [42], ResNeXt [43], and ShuffleNet-V2
[44] are adopted and compared to the proposed method. More
information about the study area, as well as the classification
system, will be introduced in Subsection IV-A. Details about
the experimental settings are presented in Subsection IV-B.
The analysis on the experimental results is shown in Subsec-
tion IV-C, Subsection IV-D, Subsection IV-E, respectively.

A. The Shenzhen data and classification system

1) Classification system: In this paper, the Chinese Land
Use Classification Criteria (GB/T21010-2017) is referred as
our land cover classification system, and the Shenzhen data is
classified into six categories: bare land, cropland, impervious,
shrub, water, and forest, shown as Fig. 3.

2) Shenzhen data: In this study, Shenzhen is used as an
example of urban land cover classification because it is a
typical international city that attracts industry, trade, tourism,
and finance. The city is China’s first special economic zone,
which covers an area of about 2,020.5 km2, and is located
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Fig. 3: Samples of land cover categories in Shenzhen city

in the southern part of Guangdong Province, China. Shenzhen
city borders Hong Kong in the south, Huizhou in the north
and northeast, Dongguan in the north and northwest, the Pearl
River in the west, and Dapeng Bay in the east. Over the
past three decades, Shenzhen city has been one of the fastest-
growing cities in the world, and its land use and land cover
have undergone tremendous changes. The houses, natural
growth, and artificially planted vegetation have different visual
appearances. Urban planning, construction, and development
have made the land cover fragmented and heterogeneous.
Affected by factors such as light, temperature, and humidity,
land covers in different regions also show significant differ-
ences. These will increase the heterogeneity of land cover in
Shenzhen city and affect its classification accuracy. Therefore,
to better estimate the land cover types of Shenzhen city, in
this study Shenzhen is treated as a research area for land cover
classification research.

To better analyze the land cover situation in Shenzhen city,
we used sub-meter high resolution remote sensing images of
Shenzhen city obtained from Google earth, and manually con-
structed a sub-meter (0.59m) land cover classification dataset
of Shenzhen (ShenzhenLC). The dataset containes six classes
of land cover types, and each class contains 1,000 images,
as shown in Table 1. In DL-based land cover classification
experiments, the images are usually reshaped to the size of
28, 56, 128, 224, or 256 pixels. In this study, considering that
the image patches should contain enough information (not too
small), and also should not bring too many parameters to the
model (not too large), all of the image patches are reshaped
to 56× 56.

B. Experimental settings

To assess the performance of the proposed framework,
ResNet50 and ResNeXt, together with ShuffleNet-V2, were
adopted to analyze the land cover situation of Shenzhen
city using the ShenzhenLC dataset. In addition, to prove
the effectiveness and generalization of the proposed Semi-
MCNN, two experiments are also designed based on the public
benchmark remote sensing datasets, i.e. the NWPU-RESISC45
dataset [45] and the aerial image dataset (AID) [46].

The semi-supervised strategy in the proposed Semi-MCNN
model includes three training steps: Ensembled teacher
model training, Ensembled teacher model dataset generation
(EMDG), and Ensembled student model pretraining and en-
sembled final model fine-tuning. In the ensembled teacher
model training step, only 10% of the labelled samples are used
to train models, without any unlabelled samples. In the ensem-
bled teacher model dataset generation (EMDG) step, we pick
up unlabelled samples using the proposed EMDG algorithm.
The number of samples picked for the ensembled student
model pretraining are 337 per class (337 ÷ 1000 = 33.7%)
for the ShenzhenLC dataset, 61 per class (61 × 30/10000 =
18.3%) for the AID dataset and 171 per class (171 ÷ 700 =
24.2%) for the NWPU-RESISC45 dataset. In the ensembled
final model fine-tuning step (the final training process), only
10% of the labelled samples (without any unlabelled samples)
are used.

The parameters of the model were finally determined after
many attempts. During the training, the Adam optimization
method [47] was used. The learning rate was set to 0.0001
for the pretraining period, and 0.00001 for the finetuning
period. While the decay was set to 0.000001, the batch size
was set to 32 and a total of 100 epochs were trained. In
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TABLE I: Statistics for the land cover classification dataset of Shenzhen city (ShenzhenLC)

Land cover categories bareland cropland forest impervious shrub water

Number of samples per category 1000 1000 1000 1000 1000 1000

order to facilitate a comparison to other models, the following
strategy was used to split the dataset: 10% as the training
set, 50% as the unlabelled set, and 40% as the testing set.
All implementations were based on Pytorch (Version 1.5.0)
and an NVIDIA RTX 2080Ti GPU. In order to evaluate the
proposed method, we assessed the experimental results using
the overall accuracy (OA) and the confusion matrix, which are
widely used evaluation criteria.

C. Experiment (1): Land cover classification using the Shen-
zhenLC dataset

Table II shows the OA of different models for the Shen-
zhenLC dataset. It can be seen that the proposed method had
the highest OA, with nearly 3% improvement on the OA when
using just 10% of the training set compared to other models.
It is worth mentioning that the OA of the proposed method
using only 10% of the training set outperformed the other
models. This occurred even when 50% of the training set
was used. It was also close to the other methods that used
60% of the training set. The experimental results using the
ShenzhenLC dataset indicate that the proposed approach can
effectively generate samples using a semi-supervised learning
strategy, and that the multiple DL-based CNN ensembles can
simultaneously improve the accuracy of land cover classifica-
tion.

To test the effectiveness of the semi-supervised strategy
in the proposed model, models with different training stages
were used. The final results with the OA values are shown
in Table III. It can be seen that the proposed Semi-MCNN
(final) model achieved the highest OA value. The proposed
Semi-MCNN (final) model achieved an improvement of nearly
2% on OA compared to the Semi-MCNN (teacher) model,
and a nearly 1% improvement compared to the Semi-MCNN
(student) model. Still, the results of the additional experiment
indicate that the proposed approach can effectively reduce
the error propagation problem and enhance the classification
accuracy. The classification map of Shenzhen city in 2018 is
shown in Figure 5. The original classification maps exceeds
40GB. In order to show it in the paper, we resample it to
3508× 2480 pixels.

TABLE IV shows the time cost of different models as well
as the proposed Semi-MCNN on the ShenzhenLC dataset. As
can be seen from TABLE IV, for training time per epoch,
the time cost of the proposed Semi-MCNN model (6.40s
per epoch) on a single GPU is approximately the sum of
the other three models. To reduce the overall time cost, the
three different CNN networks were independently trained
on different machines or GPUs. When the proposed model
is trained on three GPUs separately, the time consumption
(2.40s per epochs) is close to the training time of these
single models (ResNet50, ResNeXt and ShuffleNet-V2). For

the ShenzhenLC test data, the time cost of the proposed model
on the entire test data set (8.73s) is about twice of the single
models. Considering that for the neural networks, the time
cost of training is much greater than the time cost of testing,
so we believe that the twice of testing time will not have a
great impact on the real application outcome of the proposed
Semi-MCNN.

The confusion matrices obtained by ResNet50 [42],
ResNeXt [43], ShuffleNet-V2 [44] and the proposed method,
are shown in Fig. 4 (a-f, respectively). It can be seen that for all
models, the forest and shrub categories were heavily confused,
perhaps because of the difficulty in identifying different visual
features, such as texture and structural information. For water,
impervious surfaces, and bare land, all models had a high
classification score. It demonstrated that visual features can
help classify these categories well. It can be seen that the
proposed method had the highest accuracy rate in all of the
categories except for the shrub category, which obtained the
second-highest OA accuracy.

D. Experiment (2): The NWPU-RESISC45 dataset

The NWPU-RESISC45 dataset is a large-scale dataset that
was used for the remote sensing imagery scene classification
task, which contains 31,500 remote sensing images with 45
categories. The images were obtained from satellite as well
as aerial photography. The spatial resolution varies from
about 0.2 to 30 meters. Due to the diversity of different
perspectives, occlusions, poses, spatial resolutions, this dataset
contains certain similarities between the different categories,
as well as certain differences within the same categories.
Recently, the NWPU-RESISC45 dataset has been widely used
to evaluate the performance of different scene classification
models. Therefore, in this study it was also used to assess the
proposed model with other state-of-the-art models.
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(a) The Confusion Matrix of ResNet50. (b) The Confusion Matrix of ResNeXt.

(c) The Confusion Matrix of ShuffleNet-V2. (d) The Confusion Matrix of Semi-MCNN (teacher model).

(e) The Confusion Matrix of Semi-MCNN (student model). (f) The Confusion Matrix of Semi-MCNN (final model).

Fig. 4: The confusion matrix of the mentioned methods for the ShenzhenLC dataset
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TABLE II: Results for the proposed models on the ShenzhenLC dataset

Model Name OA (%)

10% training set 50% training set 60% training set

Supervised Methods
ResNet50 90.50 92.26 92.54

ResNeXt 90.79 92.73 93.17

ShuffleNet-V2 89.75 92.83 92.88

OA (%)

10% training set and 50% unlabeled set

Semi-MCNN
Semi-MCNN (ensembled teacher model) 92.04

Semi-MCNN (ensembled student model) 92.92

Semi-MCNN (ensembled final model) 93.04

TABLE III: Results for different models of the proposed Semi-MCNN on the ShenzhenLC dataset

Model Name OA (%)

Semi-MCNN (ensembled teacher model)
ResNet50 90.50

ResNeXt 90.79

ShuffleNet-V2 89.75

Semi-MCNN (ensembled student model)
ResNet50 91.75

ResNeXt 91.83

ShuffleNet-V2 91.67

Semi-MCNN (ensembled final model)
ResNet50 92.29

ResNeXt 92.67

ShuffleNet-V2 92.50

TABLE IV: Time cost of different models and the proposed Semi-MCNN on the ShenzhenLC dataset

Model Training Time per Epochs (s) Time cost of the ShenzhenLC test data (s)

ResNet50 2.20 4.90

ResNeXt 2.40 5.12

ShuffleNet-V2 2.35 4.96

Semi-MCNN (One GPU) 6.40 8.73

Semi-MCNN (Three GPU) 2.40 -

Table V shows the quantitative results of the different mod-
els in our experiments. It can be seen that the proposed Semi-
MCNN outperformed the other semi-supervised methods, with
an improvement in OA ranging from 5% to 12%. The proposed
Semi-MCNN had the highest OA value compared to all of
the supervised learning-based models, with an improvement
of nearly 1% to 3.5% in the case of the 10% training set.
It can be seen that the Semi-MCNN, in the case of the
10% training set, had a higher OA value than some of the
supervised learning-based models in the case of the 20%
training set. It was also close to HW-CNN [51] and Hygra

[52] in the case of the 20% training set, which are the current
outstanding models for remote sensing image classification.
The results also indicated that the proposed framework had a
very competitive performance with small samples.

The confusion matrix of the proposed method for the
NWPU-RESISC45 dataset is present in Fig. 6. It can be seen
that some pairs of classes, e.g. church and palace, mountain
and desert, rectangular farmland and terrace, lake and wetland,
were slightly confused. The reason for this is because there
is a certain visual similarity between these categories. Some
categories, such as church, freeway, commercial area, medium
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Fig. 5: The land cover classification map of Shenzhen city

residential, palace, railway station, and thermal power station,
where the OA was lower than 90%, were difficult to correctly
classify due to their high inter-class diversity.

E. Experiment (3): Aerial image dataset (AID)

The AID is different from the NWPU-RESISC45 dataset, as
it is a large-scale aerial image dataset collected from Google
Earth images, which consists of 30 categories of aerial scenes
with 10,000 images. The images in the AID are multi-sourced,
as these come from different sensors. They are acquired at
different locations, times and seasons, and so the different
imaging conditions lead to a certain diversity within each
category. This can bring certain challenges to different scene
classification algorithms. In this section, the AID dataset was
also used to evaluate the proposed method.

Table VI shows the quantitative results of different algo-
rithms with the AID. Unlike the previous experiments on the
NWPU-RESISC45 where the OA only reached 94.51%, on the
AID, the OA of the best methods is higher than 95% and 97%
with the labeled training set ratio of 20% and 50%. Compared
with the NWPU-RESISC45, the AID contains fewer categories
and smaller diversities and variations, which enables DL-
based models to achieve better classification results. It can
be observed that the Semi-MCNN outperformed the other

semi-supervised methods with an improvement rate of 7%
to 14%. Different from the results for other semi-supervised
comparison methods, the supervised learning-based methods
generally achieved an OA of higher than 90%, due to the
use of more samples. Among them, the Hygra [52] achieved
the best OA in the case of 20% and 50% ratio of training
sets. The Semi-MCNN in the case of the 10% training set
achieved the highest OA value. It had an improvement rate
of nearly 0.2% to 5% in the case of the 20% training set
for supervised methods. In addition, in the case of the 10%
training set, the proposed final model reached a higher OA
than some of the supervised learning-based models in the case
of the 50% training set. When the proposed method used the
10% training set, the results were only 1% to 1.7% lower than
the results of the current best classification methods ((D-CNN
[48], SF-CNN with VGGNet [49], HW-CNN [51] and Hygra
[52]) with the 50% training set.

The confusion matrix of the Semi-MCNN on the AID
dataset is provided in Fig. 7. It can be observed that the resort
and park were easily misclassified, and that the categories of
school, resort, commercial, and square were slightly confused,
as these have a high intra-class similarity.
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TABLE V: Results for the proposed models on the NWPU-RESISC4 dataset

Model Name OA (%)

10% training set 20% training set

Supervised Methods

D-CNN [48] 89.22± 0.50 91.89± 0.22

SF-CNN with GoogleNet [49] 87.43± 0.13 90.51± 0.13

SF-CNN with VGGNet [49] 89.89± 0.16 92.55± 0.14

Inception-v3-CapsNet [50] 89.03± 0.21 92.6± 0.11

HW-CNN [51] - 94.38± 0.16

ResNet [52] 89.24± 0.75 91.96± 0.71

Hygra: an ensemble of CNNs [52] 92.44± 0.34 94.51± 0.21

OA (%)

10% training set and 50% unlabeled set

Semi-supervised Methods

Self-training (VGG-S) [40] 81.46± 0.68

Self-training (ResNet) [40] 85.82± 1.30

Co-training [40] 87.25± 0.95

SSGA-E [40] 88.60± 0.95

Semi-MCNN
Semi-MCNN (ensembled teacher model) 92.28

Semi-MCNN (ensembled student model) 91.13

Semi-MCNN (ensembled final model) 93.48

TABLE VI: Result of proposed models on the AID.

Model Name OA (%)

10% training set 20% training set 50% training set

Supervised Methods

D-CNN [48] - 90.82± 0.16 96.89± 0.10

SF-CNN with GoogleNet [49] - 91.83± 0.11 95.53± 0.09

SF-CNN with VGGNet [49] - 93.60± 0.12 96.66± 0.11

VGG-16-CapsNet [50] - 91.63± 0.19 94.64± 0.17

HW-CNN [51] - - 96.98± 0.33

Hygra: an ensemble of CNNs [52] - 95.50± 0.27 97.40± 0.10

OA (%)

10% training set and 50% unlabeled set

Semi-supervised Methods

Self-training (VGG-S) [40] 81.46± 0.68

Self-training (ResNet) [40] 85.82± 1.30

Co-training [40] 87.25± 0.95

SSGA-E [40] 88.60± 0.95

Semi-MCNN
Semi-MCNN (ensembled teacher model) 0.9410

Semi-MCNN (ensembled student model) 0.9490

Semi-MCNN (ensembled final model) 0.9573
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Fig. 6: The Confusion Matrix of The Proposed Semi-MCNN on the NWPU-RESISC45 dataset

V. CONCLUSIONS

In this paper, a semi-supervised multi-CNN ensemble learn-
ing method, namely the Semi-MCNN, was proposed for urban
land cover classification, which integrated a semi-supervised
strategy and a multi-CNN ensemble strategy into an end-to-
end architecture. A semi-supervision strategy was adopted to
leverage lots of unlabelled images to labelled samples, and
the EMDG was proposed to automatically select samples
and generate a dataset from unlabelled data without any
manual setting thresholds. In addition, pretraining on the
selected unlabelled data and finetuning on the labelled data

operation were taken in the proposed framework and used to
solve the error propagation problem. To evaluate the perfor-
mance of the proposed Semi-MCNN method, several state-
of-the-art land cover classification models were compared
to the ShenzhenLC dataset, together with the public high-
resolution remote sensing scene classification benchmarks,
i.e. the NWPU-RESISC45 dataset and the AID. All of the
experimental results demonstrated a consistent conclusion that
the proposed Semi-MCNN had better performance results
compared to other state-of-the-art models in both quality and
quantity. In addition, it can achieve comparative accuracy with
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Fig. 7: The Confusion Matrix of The Proposed Semi-MCNN on the AID

small samples compared to the supervised model with big
training sample sets, and also proves the superiority of the
semi-supervised strategy and the multi-CNN fusion strategy
of the Semi-CNN in handling land cover classification tasks.
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[3] E. López, G. Bocco, M. Mendoza, and E. Duhau, “Predicting land-cover
and land-use change in the urban fringe: a case in morelia city, Mexico,”
Landsc. Urban Plan., vol. 55, no. 4, pp. 271–285, 2001.

[4] W. Zhou, G. Huang, and M. L. Cadenasso, “Does spatial configuration
matter? understanding the effects of land cover pattern on land surface
temperature in urban landscapes,” Landsc. Urban Plan., vol. 102, no. 1,
pp. 54–63, 2011.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2020.3019410, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, 2017.

[6] G. Cheng, J. Han, L. Guo, Z. Liu, S. Bu, and J. Ren, “Effective
and efficient midlevel visual elements-oriented land-use classification
using VHR remote sensing images,” IEEE Trans. Geosci. Remote. Sens.,
vol. 53, no. 8, pp. 4238–4249, 2015.

[7] N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, “Deep learning
classification of land cover and crop types using remote sensing data,”
IEEE Geosci. Remote. Sens. Lett., vol. 14, no. 5, pp. 778–782, 2017.

[8] B. Huang, B. Zhao, and Y. Song, “Urban land-use mapping using a deep
convolutional neural network with high spatial resolution multispectral
remote sensing imagery,” Remote Sens. Environ., vol. 214, pp. 73–86,
2018.

[9] P. Zhang, Y. Ke, Z. Zhang, M. Wang, P. Li, and S. Zhang, “Urban land
use and land cover classification using novel deep learning models based
on high spatial resolution satellite imagery,” Sensors, vol. 18, no. 11, p.
3717, 2018.

[10] R. Mihalcea, “Co-training and self-training for word sense disambigua-
tion,” in Proc. Conf. Comp. Nat. Langu. Learn., CoNLL 2004, Boston,
Massachusetts, USA, May 6-7, 2004, pp. 33–40.

[11] D.-H. Lee, “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks,” in Proc. Int. Conf. Mach.
Learn., ICML 2013, Atlanta, Georgia, USA, 2013, vol. 3, no. 2, 2013.

[12] Y. Liu, B. Zhang, L. Wang, and N. Wang, “A self-trained semisupervised
SVM approach to the remote sensing land cover classification,” Comput.
Geosci., vol. 59, pp. 98–107, 2013.

[13] G. Camps-Valls, T. V. B. Marsheva, and D. Zhou, “Semi-supervised
graph-based hyperspectral image classification,” IEEE Trans. Geosci.
Remote. Sens., vol. 45, no. 10, pp. 3044–3054, 2007.

[14] Y. Zhan, D. Hu, Y. Wang, and X. Yu, “Semisupervised hyperspectral
image classification based on generative adversarial networks,” IEEE
Geosci. Remote. Sens. Lett., vol. 15, no. 2, pp. 212–216, 2018.

[15] X.-Y. Tong, G.-S. Xia, Q. Lu, H. Shen, S. Li, S. You, and L. Zhang,
“Land-cover classification with high-resolution remote sensing images
using transferable deep models,” 2018.

[16] R. Zhu, L. Yan, N. Mo, and Y. Liu, “Semi-supervised center-based
discriminative adversarial learning for cross-domain scene-level land-
cover classification of aerial images,” ISPRS-J. Photogramm. Remote
Sens., vol. 155, pp. 72–89, 2019.

[17] P. T. Noi and M. Kappas, “Comparison of random forest, k-nearest
neighbor, and support vector machine classifiers for land cover classifi-
cation using sentinel-2 imagery,” Sensors, vol. 18, no. 1, p. 18, 2018.

[18] L. Ma, M. M. Crawford, and J. Tian, “Local manifold learning-based
k -nearest-neighbor for hyperspectral image classification,” IEEE Trans.
Geosci. Remote. Sens., vol. 48, no. 11, pp. 4099–4109, 2010.

[19] J. R. Otukei and T. Blaschke, “Land cover change assessment using
decision trees, support vector machines and maximum likelihood clas-
sification algorithms,” Int. J. Appl. Earth Obs. Geoinformation, vol. 12,
no. Supplement-1, pp. S27–S31, 2010.

[20] M. Pal, “Support vector machine-based feature selection for land cover
classification: a case study with dais hyperspectral data,” Int. J. Remote
Sens., vol. 27, no. 14, pp. 2877–2894, 2006.

[21] T. Kavzoglu and I. Colkesen, “A kernel functions analysis for support
vector machines for land cover classification,” Int. J. Appl. Earth Obs.
Geoinformation, vol. 11, no. 5, pp. 352–359, 2009.

[22] C. Sukawattanavijit, J. Chen, and H. Zhang, “GA-SVM algorithm
for improving land-cover classification using SAR and optical remote
sensing data,” IEEE Geosci. Remote. Sens. Lett., vol. 14, no. 3, pp.
284–288, 2017.

[23] D. L. Civco, “Artificial neural networks for land-cover classification and
mapping,” Int. J. Geogr. Inf. Sci., vol. 7, no. 2, pp. 173–186, 1993.

[24] T. Kavzoglu and P. Mather, “The use of backpropagating artificial neural
networks in land cover classification,” Int. J. Remote Sens., vol. 24,
no. 23, pp. 4907–4938, 2003.

[25] X. Song, Z. Duan, and X. Jiang, “Comparison of artificial neural net-
works and support vector machine classifiers for land cover classification
in northern china using a spot-5 hrg image,” Int. J. Remote Sens., vol. 33,
no. 10, pp. 3301–3320, 2012.

[26] M. Pal and P. M. Mather, “An assessment of the effectiveness of decision
tree methods for land cover classification,” Remote Sens. Environ.,
vol. 86, no. 4, pp. 554–565, 2003.

[27] M. A. Friedl and C. E. Brodley, “Decision tree classification of land
cover from remotely sensed data,” Remote Sens. Environ., vol. 61, no. 3,
pp. 399–409, 1997.

[28] R. De Fries, M. Hansen, J. Townshend, and R. Sohlberg, “Global land
cover classifications at 8 km spatial resolution: the use of training data
derived from landsat imagery in decision tree classifiers,” Int. J. Remote
Sens., vol. 19, no. 16, pp. 3141–3168, 1998.

[29] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., CVPR 2015, Boston, MA, USA, June, 2015, pp. 3431–3440.

[30] J. Sherrah, “Fully convolutional networks for dense semantic labelling
of high-resolution aerial imagery,” 2016.

[31] N. Audebert, B. Le Saux, and S. Lefèvre, “Beyond rgb: Very high reso-
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