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Abstract. Following the development of the simplified at-
mospheric convective-scale “toy” model (the ABC model,
named after its three key parameters: the pure gravity wave
frequencyA, the controller of the acoustic wave speedB, and
the constant of proportionality between pressure and density
perturbations C), this paper introduces its associated varia-
tional data assimilation system, ABC-DA. The purpose of
ABC-DA is to permit quick and efficient research into data
assimilation methods suitable for convective-scale systems.
The system can also be used as an aid to teach and demon-
strate data assimilation principles.

ABC-DA is flexible and configurable, and is efficient
enough to be run on a personal computer. The system can run
a number of assimilation methods (currently 3DVar and 3DF-
GAT have been implemented), with user configurable obser-
vation networks. Observation operators for direct observa-
tions and wind speeds are part of the current system, and
these can, for example, be expanded relatively easily to in-
clude operators for Doppler winds. A key feature of any data
assimilation system is how it specifies the background error
covariance matrix. ABC-DA uses a control variable trans-
form method to allow this to be done efficiently. This ver-
sion of ABC-DA mirrors many operational configurations
by modelling multivariate error covariances with uncorre-
lated control parameters, each with special uncorrelated spa-
tial patterns.

The software developed performs (amongst other things)
model runs, calibration tasks associated with the background
error covariance matrix, testing and diagnostic tasks, single
data assimilation runs, and multi-cycle assimilation/forecast

experiments, and it also has associated visualisation soft-
ware.

As a demonstration, the system is used to tackle a sci-
entific question concerning the role of geostrophic balance
(GB) to model background error covariances between mass
and wind fields. This question arises because although GB
is a very useful mechanism that is successfully exploited in
larger-scale assimilation systems, its use is questionable at
convective scales due to the typically larger Rossby numbers
where GB is not so relevant. A series of identical twin ex-
periments is done in cycled assimilation configurations. One
experiment exploits GB to represent mass–wind covariances
in a mirror of an operational set-up (with use of an additional
vertical regression (VR) step, as used operationally). This ex-
periment performs badly where error accumulates over time.
Two further experiments are done: one that does not use GB
and another that does but without the VR step. Turning off
GB impairs the performance, and turning off VR improves
the performance in general. It is concluded that there is scope
to further improve the way that the background error covari-
ance matrices are represented at convective scale. Ideas for
further possible developments of ABC-DA are discussed.

1 Introduction

The grid sizes of limited-area models for operational weather
forecasting have become small enough to allow some con-
vective processes to be resolved explicitly (Clark et al., 2016;
Yano et al., 2018). Some leading operational models in-
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clude the COSMO (COnsortium for Small-scale MOdelling)
model (Baldauf et al., 2011), used at MeteoSwiss (1.1 km
grid size) and at the Deutscher Wetterdienst (DWD) (2.8 km
grid size); the AROME (Application of Research to Oper-
ations at Mesoscale) model (Brousseau et al., 2016), used
at Météo-France (1.3 km grid size); the UKV (UK Variable
resolution) model (Tang et al., 2013) (1.5 km grid size); and
the WRF (US Weather Research and Forecasting) model
(Schwartz and Liu, 2014) (3 km grid size). Each of these sys-
tems is invaluable in the forecasting of fine-scale weather,
including that associated with convective storms, and has its
own data assimilation (DA) system to estimate its initial con-
ditions from new observations and a background state.

Apart from the capability to assimilate new high-
resolution observation types, such as radar reflectivity and
Doppler radial wind, the DA systems are still based on those
designed for use with synoptic- and planetary-scale phenom-
ena in mind. The convective-scale DA problem needs to ac-
count for effects that can often be safely ignored or treated
approximately when dealing with large scales. These in-
clude certain dynamical properties of background state errors
(namely non-hydrostatic and non-geostrophic contributions,
vertical motion, multiple phases of water, strong inhomo-
geneity and flow dependence, and non-Gaussianity), certain
properties of observation errors (namely cross-correlations),
and other features associated with a small grid size (e.g.
feature misalignment). There are also challenges associ-
ated with assimilating new observation types (as mentioned
above, including the large volumes of data needed), the short
DA time window (often 1 h or less), the compatibility of lat-
eral boundary conditions from a coarser parent model, and
questions concerning the appropriateness of allowing DA to
simultaneously modify the larger-scale flows present in the
convective-scale problem.

The properties of background state errors are of partic-
ular concern to this paper, although the DA system to be
described can be equally applied to study other aspects of
convective-scale DA, such as the exploration of strategies
for high-resolution observation networks (such as those from
Doppler wind instruments), or indeed some of the advanced
DA methods mentioned below. In DA, the background state
is traditionally assumed to be subject to random error, which
is distributed according to a Gaussian distribution described
by a multivariate error covariance matrix (the “B-matrix”,
e.g. Bannister, 2008a). Given that B is too large to store ex-
plicitly, in variational DA (Var) it is represented in the form
of a “model” (Bannister, 2008b). One important means of
representing B in a way that naturally adapts to the flow con-
ditions is to derive a matrix implicitly from an ensemble of
forecasts, which are often produced anyway for probabilis-
tic forecasting purposes. This is the basis of the ensemble
Kalman filter (e.g. Houtekamer and Zhang, 2016) and En-
Var (pure ensemble-variational) formulations (e.g. Liu et al.,
2008). Although information from an ensemble in principle
follows the dynamical properties of the model to be reflected

in the B matrix used at the analysis time, the result is often
corrupted by sampling error due to the small ensemble sizes
(usually a few tens of members). For this reason, the B ma-
trix used operationally is often still modelled according to
physical insight. That insight, though, is based on traditional
assumptions of (for instance) geophysical balance, whose ap-
plicability is questionable at convective scales.

Studying convective-scale DA in operational systems is
burdened severely by the cost and complexity of these sys-
tems. The DA system described in this paper has been de-
signed in the same spirit as that of the convective-scale toy
model (the ABC model; Petrie et al., 2017), i.e. with an em-
phasis on low cost and simplicity. This DA system (together
with the model code, hereafter called ABC-DA) is a multi-
featured Var system suited to the ABC model. ABC-DA is
actually a suite of software used not only to perform DA it-
self (in cycling mode if required) but also to calibrate the B
matrix from sets of forecast data, to flexibly generate ran-
domly perturbed data such as synthetic observations from a
truth run (which can then be assimilated) to compute a sam-
ple of covariances implied from a chosen B matrix model and
to perform a set of validation tests. The suite also includes
sample plotting codes to help visualise and monitor the out-
puts, a script to build the executables, sample run scripts,
and detailed user documentation. The ABC-DA numerical
codes are written in Fortran 90, scripts are written in Linux
Bash, and the plotting code is written in Python 2. Certain
open-source software libraries are also required to compile
the code.

This paper presents the scientific documentation for the
system, with examples and pointers to how a user can access
the software. Finally, a short study of ABC-DA is presented
to investigate the impact of balance constraints in the formu-
lation of the convective-scale B matrix. The paper is struc-
tured as follows. In Sect. 2 the ABC model is described, in
Sect. 3 the ABC-DA system is outlined, in Sect. 4 the ABC-
DA system is described in detail, in Sect. 5 a brief study of
the role of geostrophic balance is presented, and in Sect. 6
the paper is summarised.

2 The ABC model

2.1 The model equations

The ABC model comprises a set of simplified partial differ-
ential equations for a two-dimensional spatial grid (x and z)
plus time (t), which are based on the Euler equations. This
section summarises the ABC model, and the reader is di-
rected to Petrie et al. (2017) for the details. The model equa-
tions are as follows:
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∂u

∂t
+Bu · ∇u+C

∂ρ̃′

∂x
− f v = 0, (1a)

∂v

∂t
+Bu · ∇v+ f u= 0, (1b)

∂w

∂t
+Bu · ∇w+C

∂ρ̃′

∂z
− b′ = 0, (1c)

∂ρ̃′

∂t
+B∇ · (ρ̃u)= 0, (1d)

∂b′

∂t
+Bu · ∇b′+A2w = 0, (1e)

where u=
(
u v w

)
is the wind vector (comprising zonal,

meridional, and vertical wind components, respectively); ρ̃
is the scaled density variable (akin to pressure); b is the
buoyancy variable (akin to temperature); f is the Cori-
olis parameter; g is the acceleration due to gravity; and
A, B, and C are tunable parameters (see below). Primed
variables indicate perturbations from a reference state de-
fined as b(x,z, t)= g+b0(z)+b

′(x,z, t) and ρ̃(x,z, t)= 1+
ρ̃′(x,z, t). The model supports a range of motions, namely
balanced (Rossby-like) modes and unbalanced (gravity and
acoustic) modes, which have been studied in detail in Petrie
et al. (2017). There are three tunable parameters: A is the
pure gravity wave frequency, controlling the gravity wave
speeds in the model; B modulates the advective and diver-
gent terms in the equations, controlling the acoustic wave
speeds; and C specifies the equation of state that relates pres-
sure and density perturbations, p′ = Cρ0ρ̃

′, where ρ0 is a
density scaling constant. In the linearised equations, only the
product BC (and not B and C individually) affects the char-
acteristics of the flow, so C also controls the acoustic wave
speeds. In numerical integrations of the non-linear equations
(Eq. 1), the effect of scaling C is found to be virtually in-
distinguishable from scaling B in terms of the patterns of
forecast perturbations.

2.2 Properties of the ABC model equations

Equation (1) conserves total mass and energy, although
this exact property is lost when the equations are discre-
tised for numerical integration. The equations approximate
to geostrophic and hydrostatic balance (GB and HB, re-
spectively) when the Rossby number, Ro= U/fL, is small
(where U is the characteristic zonal wind speed and L is the
characteristic horizontal length scale of the motion). The GB
relations are

− f v+C
∂ρ̃′

∂x
= 0, (2a)

u= 0, (2b)

and the HB relation is

−b′+C
∂ρ̃′

∂z
= 0. (3)

These balance relations are well satisfied for motion at the
large scales where Ro is small, and they are used in tradi-
tional Var schemes to model the covariances between mass,
wind, and temperature perturbations in background errors.
We will revisit these later in the paper.

2.3 Discretisation and integration

As reported in Petrie et al. (2017), the continuous equations
(Eq. 1) have been discretised in time and space; the cur-
rent implementation uses a 360× 60 (horizontal× vertical)
element grid with a grid box size of 1500m× 250 m. Vari-
ables are stored on an Arakawa C grid in the horizontal and
Charney–Phillips grid in the vertical (see Fig. 1 of Petrie
et al., 2017), and periodic boundary conditions are imposed
in the horizontal to avoid the need for a driving model to
provide lateral boundary conditions. The integration scheme
used is the split-explicit forward–backward scheme of Cullen
and Davies (1991) with a main time step of 1t = 4 s.

2.4 Future developments of the model

The current version of the ABC model does not include
moist processes. There is much that can be learned about
convective-scale DA from a dry model, but assimilating and
forecasting moisture fields is a major reason for convective-
scale forecasting (Sun et al., 2014; Bannister et al., 2020).
It is planned to upgrade the model to permit the advection
of one or more water variables and allow condensation and
evaporation processes to affect the flow. The assimilation of
moisture is a complex task and so a moist ABC-DA system
is expected to be very useful in that line of research.

3 Overview of the ABC-DA system

Like the ABC model, the DA system is intended to be low
cost and easy to run, when compared to a operational-scale
system, yet mirror many of the features and options available
in operational systems. In this section we review the princi-
ples on which ABC-DA is based, which includes a definition
of the mathematical notation, but we leave it to Sect. 4 to
describe the details.

3.1 Variational data assimilation

Var systems construct a scalar functional (called a cost func-
tion, J ) that is minimised with respect to the state x by con-
sidering observations made over a time window (indicated
by an integer time index) t ∈ [0,T ]:

J [x]=
1
2
(x− xb)B−1(x− xb)

+
1
2

T∑
t=0

[
y(t)− ym(t)

]TR−1
t

[
y(t)− ym(t)

]
. (4)
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In Eq. (4), x represents all variables of the model state at
t = 0 (here u, v, w, ρ̃′, and b′) at each location in the do-
main, xb is a special state at t = 0 called the background
state (normally a short forecast from the previous DA), y(t)
is the collection of observations at time t , and ym(t) is the
model’s version of the observations computed from x. Let
there be n elements in x and pt elements in y(t). Here we
use the convention that quantities like x without a time argu-
ment imply the value at t = 0. The model’s observations are
found in two steps. Firstly, the state is found at time t using
the model propagator: x(t)=M0→t (x), which is the result
of integrating Eq. (1) from times 0 to t , and then the model’s
observations are found using the observation operator at this
time: ym

=Ht (x(t)). This DA method is known as 4DVar
(Dimet and Talagrand, 1986). B and Rt are covariance matri-
ces (e.g. Kalnay, 2002) pertaining to errors in the background
state and in the observations at time t , respectively. Mathe-
matically B (an n×n matrix) and Rt (a pt ×pt matrix) may
be thought as the metrics in which deviations are measured
in the cost function (i.e. measures of the precision to which
the background and observations are known). The analysis
xa is the special state that minimises J .

The B and Rt matrices are important as they can have a
profound effect on the way that observations combine with
the background to yield the analysis. It is a particular chal-
lenge to use a B matrix that is relevant to the uncertainties
in convective-scale forecasts. As B is usually a much larger
matrix than Rt (operationally by orders of magnitude), it can-
not practically be stored explicitly. Instead the B matrix is
modelled, which is usually done via the technique of control
variable transforms (CVTs) – see Sect. 3.4. As this modelling
process is a major component of any DA system, and may re-
quire new thinking for convective-scale systems, much of the
design of ABC-DA is concerned with how B is modelled. As
a starting point for ABC-DA, the approach that is currently
implemented is a conventional one (to mirror typical current
operational configurations that were designed around global
systems, Sect. 4.2, but still applied for convective-scale sys-
tems). This approach, though, can be adapted to accommo-
date new convective-scale strategies that are discussed at the
end of the paper.

3.2 The incremental formulation of the problem

If M0→t and Ht are linear functions, then Eq. (4) is a
quadratic function of x and may be minimised using effi-
cient algorithms such as a conjugate gradient-based method
(Golub and Van Loan, 1996; Lewis et al., 2006). The model
M0→t , though, is a non-linear operator, and many observa-
tions require non-linear observation operators (such as mea-
surements of wind speed, top-of-atmosphere radiance, etc.).
This leads to a non-quadratic function, which may have mul-
tiple minima. Furthermore, there are no general efficient min-
imising algorithms for such problems. In order to simplify
the problem, the cost function is minimised by breaking it

down into a sequence of quadratic problems by iteratively
linearising M0→t and Ht . This is incremental Var (Courtier
et al., 1994).

Suppose that xr(t) is a reference trajectory satisfying
xr(t)=Mt−1→t (x

r(t − 1)), 1≤ t ≤ T . A perturbation to
this trajectory (δ prefix) at t is approximately related to
a perturbation at t − 1 via the linear operation δx(t)≈

Mt−1→tδx(t − 1), where the full states are x(t)≈ xr(t)+

δx(t) and x(t − 1)≈ xr(t − 1)+ δx(t − 1). Mt−1→t is the
tangent linear (or Jacobian) of Mt−1→t and is mathemat-
ically representable by an n× n matrix. We assume that
xr(t)+ δx(t) is close to Mt−1→t (x

r(t − 1)+ δx(t − 1)),
provided that δx(t − 1) is sufficiently small. Similarly, we
suppose that the observation values computed from xr(t) sat-
isfy ymr(t)=Ht (x

r(t)). A perturbation to these reference
observations is approximately related to a perturbation in
xr(t) via the linear operation δy(t)=Htδx(t). Ht is the tan-
gent linear (or Jacobian) of Ht and is mathematically repre-
sentable by a pt × n matrix. These approximations may be
summarised as the following:

x ≈ xr
+ δx, (5a)

ym(t)≈ ymr(t)+ δym(t), (5b)

where

δym(t)=HtM0→tδx. (5c)

When Eq. (5) and the following definitions,

δxb
= xb

− xr, (6a)
d(t)= y(t)−Ht

(
M0→t

(
xr))
= y(t)− ymr(t), (6b)

are substituted into Eq. (4), J becomes a functional of the
perturbation δx instead of the full state x:

J [δx]=
1
2

(
δx− δxb

)T
B−1

(
δx− δxb

)
+

1
2

T∑
t=0

[HtM0→tδx− d(t)]TR−1
t [HtM0→tδx− d(t)] .

(7)

This is the incremental form of 4DVar. J [δx] is exactly
quadratic, allowing efficient algorithms to be used to min-
imise it to yield the special state δxa. The iterations required
to minimise Eq. (7) form an inner loop. The full cost func-
tion (Eq. 4) is minimised by updating the reference state,
xr
→ xr

+δxa, and repeating the inner loops. These iterations
form the outer loop. In the first outer loop, xr is typically
set to xb. This inner and outer loop procedure, though, does
not necessarily find the global minimum of Eq. (4), which
can lead to complications in highly non-linear systems with
a long DA time window (e.g. Fabry and Sun, 2010).

Because M0→t is a difficult operator to derive, the ap-
proximation that M0→t = I is often made. This leads to an

Geosci. Model Dev., 13, 3789–3816, 2020 https://doi.org/10.5194/gmd-13-3789-2020



R. N Bannister: ABC-DA system v1.4 3793

approximate method called 3DFGAT (3DVar First Guess at
Appropriate Time; Lee et al., 2004; Lawless, 2010). For ap-
plications when it is too expensive to use M0→t in the DA
loops, a further approximation is made that x(t)= x over the
window. This is called 3DVar, although many systems that
specify 3DVar actually use 3DFGAT.

3.3 The observations, their operators, and their error
statistics

The observation operator Ht (and Ht ) is built to suit the range
of observations assimilated. The components of Ht and Ht

represent the model’s version of the observations. Typical ex-
amples include simple bi-linear interpolation of grid values
to an observation location, the computation of model wind
speed as the root of the sum of squares of the wind com-
ponents, or the evaluation of top-of-atmosphere radiance by
a radiative transfer equation. The ABC-DA system currently
implements observations of the first two kinds, but the system
is flexible enough to support observations of any required
model variable at arbitrary times and positions. The Rt ma-
trices are taken to be diagonal, and have specified variances.
The system could be adapted to extend any of these aspects
to include more complicated observation operators, such as
radiative transfer models, Doppler winds, or for correlated
observation errors.

3.4 Modelling B with control variable transforms

The B matrix is meant to represent the covariances of errors
in xb. Operational-scale DA systems all share the challenge
of determining and using B given that this n×nmatrix is too
large to manipulate (or even store) and is in any case unknow-
able. Most practical variational methods use control variable
transforms (CVTs) to simplify this problem. Consider a vec-
tor δχ , which is an alternative representation of δx via the
relation

δx = Uδχ . (8)

δχ is called a control vector, and U is the CVT. The CVT is
a powerful way of accounting for cross-correlations between
background errors of model variables (including spatial and
multivariate components). δx and δχ have different assumed
statistical properties: model space errors have covariance〈
δxδxT〉

b = B, and control variables are taken to be uncorre-
lated and have unit variance

〈
δχδχT〉

b = I, where the b sub-
script indicates expectation over hypothetical background er-
ror samples. When Eq. (8) is substituted into Eq. (7), J be-
comes a functional of δχ :

J [δχ ]=
1
2

(
δχ − δχb

)T(
δχ − δχb

)
+

1
2

T∑
t=0

[HtM0→tUδχ − d(t)]T

R−1
t [HtM0→tUδχ − d(t)] . (9)

Notice that the B matrix has effectively disappeared from this
formulation because of the assumed statistical properties of
δχ . This is a considerable simplification, although the prob-
lem of defining the CVT remains. The δχ cost function is
minimised (giving the special vector δχa), which then leads
to δxa via Eq. (8). This is equivalent to minimising Eq. (7)
with a background error covariance matrix equal to

Bic
= UUT, (10)

which is known as the implied background error covariance
matrix. Apart from not needing to know the B matrix ex-
plicitly, the minimisation problem (Eq. 9) is found to be nu-
merically better conditioned than Eq. (7), leading to a more
efficient and accurate minimisation.

It is common to work backwards here: first a CVT is pro-
posed (based on physical principles such as those discussed
in Bannister (2008b) and later in this paper), and then its abil-
ity to generate reasonable background error covariance struc-
tures is studied by looking at the implied covariances. This
can be done by studying either UUT or the analysis incre-
ments of single-observation DA experiments. Constructing
U is one way of doing background error covariance mod-
elling. We do this by defining new parameters and their spa-
tial covariances via a proposed form like U= UpUs (Bannis-
ter, 2008b). Here Up is the parameter transform (where U−1

p
transforms model variables to alternative parameters that are
assumed uncorrelated using sets of balance operators as in
Parrish and Derber, 1992; Gauthier et al., 1999), and Us
is the spatial transform (which transforms each parameter’s
field to modes that are assumed to be uncorrelated, such as
Fourier modes). Us can itself be decomposed into separate
horizontal, vertical, and scaling parts; e.g. Us =6UvUh (see
Sect. 4.2.3). More complicated sequences of transforms are
also possible, e.g. based on wavelets (Deckmyn and Berre,
2005). A property of the CVT approach is that B can be mod-
elled even if it is singular.

3.5 The gradient of J and minimising the cost function

Equation (7) is minimised by iteratively adjusting δχ until a
convergence criterion is met, indicating that a point close to
the minimum of J [δχ ] has been found. The gradient vector,
∇δχJ , is used with a conjugate gradient algorithm to perform
this task. ∇δχJ is found by differentiating J [δχ ]:

∇δχJ =δχ − δχ
b
+UT

T∑
t=0

MT
0→tH

T
t R−1

t

[HtM0→tUδχ − d(t)] , (11)

where d(t) is the difference between the observations at time
t and the model’s version of them based on the reference state
Eq. (6b). Equation (11) requires the Jacobians Ht and M0→t ,
the CVT U, and their adjoint counterparts. The evaluation of
Eq. (11) can be made more efficient by the following stan-
dard algorithm.
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1. Set the reference state at t = 0 to the background state:
xr
= xb.

2. Do the outer loop.

(a) For the first outer loop, δχb
= 0; otherwise, com-

pute δχb
= U−1 (xb

− xr).
(b) Compute xr(t) over the time window,

1≤ t ≤ T , with the non-linear model:
xr(t)=Mt−1→t (x

r(t − 1)).

(c) Compute the reference state’s observations:
ymr(t)=Ht (x

r(t)).

(d) Compute the differences: d(t)= y(t)− ymr(t).

(e) Set δχ = 0 and δx = 0.

(f) Do the inner loop.

i. Integrate the perturbation trajectory over the
time window, 1≤ t ≤ T , with the linear fore-
cast model: δx(t)=Mt−1→tδx(t − 1).

ii. Compute the perturbations to the model obser-
vations: δym(t)=Htδx(t).

iii. Compute 1(t) vectors defined as 1(t)=

HT
t R−1

t

[
δym(t)− d(t)

]
.

iv. Set the adjoint state λ(T + 1)= 0.
v. Integrate the following adjoint equa-

tion backwards in time, T ≥ t ≥ 0:
λ(t)=1(t)+MT

t→t+1λ(t + 1).
vi. Compute the gradient as follows: ∇δχJ = δχ−

δχb
+UTλ(0).

vii. Use the conjugate gradient algorithm to adjust
δχ to reduce the value of J .

viii. Compute the new increment in model space us-
ing the CVT: δx = Uδχ .

ix. Go to step 2fi until the inner-loop convergence
criterion is satisfied.

(g) Update the reference state: xr
→ xr

+ δx.

(h) Go to step 2a until the outer-loop convergence cri-
terion is satisfied. At convergence, set xa

= xr.

3. Run a non-linear forecast from xa for the background of
the next cycle and longer forecasts if required.

The full procedure (adapted for 3DFGAT, where the linear
model is omitted) is shown graphically in Sect. 4.7.

3.6 System tests

The system has a special test suite to check aspects of op-
erators that are coded. Operators that have an adjoint coun-
terpart are subject to an adjoint test to demonstrate that the
adjoint has been coded correctly. This includes the linearised
observation operators and components of U. Many of these
operators are subdivided into constituents that are tested sep-
arately (e.g. interpolation, halo swapping, and Fourier trans-
forms). For a coded operator, A, with input vin and its coded

adjoint AT, the adjoint test computes the left- and right-hand
sides of the following formula, which must agree to machine
precision to gain confidence that the coded adjoint is correct:

(Avin)
TAvin

?
= vT

inATAvin, (12)

where a random vector vin will normally suffice. The CVT
needs to be inverted in the gradient algorithm when using
more than one outer loop (step 2a in Sect. 3.5) and in cali-
brating the B matrix (Sect. 4.3). These operators are subject
to an inverse test to demonstrate that the inverse has been
coded correctly. This is done by reading in a perturbation
state and then passing it through AA−1. The result is out-
put, which can be compared to the original field read-in data.
A test that the gradient of the cost function (as computed for
the minimisation) is valid can be confirmed in a gradient test,
which is also provided as part of the test suite. The gradient
test estimates progressively more accurate finite-difference
approximations to the gradient, and it checks that they con-
verge to the analytically computed gradient (Eq. 11). Other
tests are possible that have not been included in this version
of ABC-DA, e.g. checks that the innovation statistics, namely〈
(y− ym)(y− ym)T

〉
equals to R+HBicHT (where ym(t) is

the background’s version of the observations and the angled
brackets indicate average over a large number of DA cycles
with the same observation network).

4 Scientific and technical configuration of ABC-DA
v1.4

This section is a description of the current scientific
configuration of the ABC-DA system. This section also
contains some technical information and can be read in
conjunction with the user documentation available on
GitHub (https://github.com/rossbannister/ABC-DA_1.4da/
blob/master/docs/Documentation.pdf, last access: 24 Au-
gust 2020) where more information is available, including
names of the executables to be run, the namelist variables
that have to be set, and the input and output file names.
References are made to this document in the sections below
in the form of GitHubDoc§x. The code is divided into master
programs that perform specific tasks. The relevant variables
are set in a namelist file (filenames, options, switches, and
parameters), and then the relevant executable is run. A list
of the available master routines is listed in GitHubDoc§2,
and instructions on how to download and build the code are
found in GitHubDoc§3.

4.1 Construction of a model state and making a
forecast

The initial conditions for a model run may be generated
using the program Master_PrepareABC_InitState (GitHub-
Doc§4.1). The code can take a slice from a specific Met Of-
fice Unified Model (UM) file, or it can generate a simple
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idealised pressure “blob” of specified position and size (or
a combination of these). When initial fields are taken from
the UM, they need to be adjusted to make them compati-
ble with the ABC model. This involves a number of steps:
(i) adjusting the fields towards the E and W edges of the do-
main to be consistent with the periodic boundary conditions;
(ii) adding a constant to the v field to force its integral over
each level to zero to allow GB in Eq. (2a) (balance condi-
tion, Eq. 2b, though, is not enforced to allow for some im-
balance); (iii) computing ρ̃′ from v with Eq. (2a) and then
adding a constant to force its integral over each level to zero;
(iv) computing b′ to satisfy the HB condition (Eq. 3); and
(v) setting w′ so that the 3D winds have zero divergence. A
forecast can be made from these initial conditions using the
program Master_RunNLModel (GitHubDoc§4.2) by numer-
ically integrating Eq. (1).

4.2 The CVTs (B matrix) implemented

ABC-DA has a variety of options implemented to model the
B matrix using control variable transforms (CVTs, Sect. 3.4),
and this section describes the current implementation. The
transforms are most easily understood by describing first the
inverse CVTs (since they allow the difference “spaces” to
be defined starting in model space and working towards the
control space). The CVT operators defined are used in many
of the programs mentioned in later sections.

4.2.1 The inverse parameter transform, U−1
p

Recall that U−1
p transforms a perturbation in model vari-

ables Eq. (1) to alternative parameters that are assumed to
be uncorrelated. It is needed primarily to calibrate the CVT
(Sect. 4.3). The input fields in this procedure are the pertur-
bations δu, δv, δw, δρ̃′, and δb′; the output fields are (in the
version of the code documented) δψ (streamfunction), δχvp

(velocity potential1), δρ̃′u (unbalanced scaled density), δb′u

(unbalanced buoyancy), and δwu (unbalanced vertical wind).
All input and output fields are a function of longitude and
height. This is the algorithm for U−1

p .

1. Compute the streamfunction:

δψ =∇−1
x δv. (13)

The operator ∇
−1
x is defined as ∇

−1
x δv =

(∂/∂x)−2∂(δv)/∂x, which is based on application
of the Helmholtz theorem (see Petrie et al., 2017,
Sect. 4.1).

2. Compute the velocity potential (again based on the
Helmholtz theorem):

δχvp =∇
−1
x δu. (14)

1Do not confuse the velocity potential perturbation, δχvp, with
the control vector, δχ .

Note that in Eq. (13) δψ depends only on the merid-
ional wind and in Eq. (14) δχvp depends only on the
zonal wind. This is unlike a system that has latitude de-
pendence, where δψ and δχvp would each depend on
both δu and δv as per the Helmholtz theorem.

3. Compute the GB scaled density:

δ ˜ρ′
b
= αf δψ/C, (15)

which follows from application of the Helmholtz the-
orem for this system, (δu,δv)=

(
∂δχvp/∂x, ∂δψ/∂x

)
,

applied to the GB equation (Eq. 2a). The value α = 1,
unless the system is configured to turn off GB in this
transform, in which case α = 0.

4. Compute the balanced scaled density after it has been
vertically regressed:

δ ˜ρ′
br
= Rρδ ˜ρ′

b
. (16)

The vertical regression (VR) operator Rρ has the form

Rρ = Cδρ̃′δρ̃′
b
(

Cδρ̃′
b
δρ̃′

b
)−1

, where Cδρ̃′
b
δρ̃′

b
is the cor-

relation matrix between a previously computed popula-
tion of δρ̃′b perturbations with itself, and Cδρ̃′δρ̃′

b
is the

correlation matrix between δρ̃′b and δρ̃′. The justifica-
tion for the use of Rρ is given in Appendix B. The sys-
tem can be configured to turn off this step (and is not
used anyway if α = 0 in step 3).

5. Compute the unbalanced scaled density:

δ ˜ρ′
u
= δ ˜ρ′− δ ˜ρ′

br (17)

(δρ̃′u = δρ̃′ if α = 0).

6. Compute the HB buoyancy:

δb′
b
= βLhbδ ˜ρ′. (18)

The operator Lhb is defined as Lhbδρ̃′ = C∂ρ̃′/∂z, as in
Eq. (3). The value β = 1, unless the system is config-
ured to turn off HB, in which case β = 0.

7. Compute the unbalanced buoyancy:

δb′
u
= δb′− δb′

b (19)

(δb′u = δb′ if β = 0).

8. Compute the anelastically balanced vertical wind:

δwb
= γ

(
Lab
u δu+Lab

ρ̃′ δ
˜ρ′
)
. (20)

Using Eq. (1d), the operators Lab
u and Lab

ρ̃′
are defined

as Lab
u δu=−(1/ρ̃0)

∫
dz′ ∂(ρ̃0δu)/∂x and Lab

ρ̃′
δρ̃′ =
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−(1/ρ̃0)
∫

dz′
[
∂(u0δρ̃

′)/∂x+ ∂(w0δρ̃
′)/∂z′

]
(integrat-

ing from the ground to height z), and δwb is the com-
ponent of the vertical wind that, with δu, has zero 3D
divergence (sometimes called anelastic balance (AB);
see Sect. 3.1.1 of Pielke, 2002). The value γ = 1, un-
less the system is configured to turn off AB, in which
case γ = 0.

9. Compute the unbalanced vertical wind:

δwu
= δw− δwb (21)

(δwu
= δw if γ = 0).

Some of these steps may be omitted according to user op-
tions, as specified above. The above steps may be written
more compactly as the following “super matrix”:

δχ = U−1
p δx,

δψ

δχvp

δρ̃′
u

δb′
u

δwu

=


0 ∇
−1
x 0 0 0

∇
−1
x 0 0 0 0
0 −αRρ fC∇

−1
x 0 1 0

0 0 0 −βLhb 1
−γLab

u 0 1 −γLab
ρ̃′

0




δu

δv

δw

δρ̃′

δb′

 .
(22)

It is noted here that this particular form of transform is not
necessarily the most appropriate form for convective-scale
systems, e.g. GB in step 3 and HB in step 6 may not be rele-
vant. There is, however, expected to be some GB at the larger
scales represented and HB at even shorter scales. Further-
more these relationships are still used in some operational
systems, so their inclusion in this study is justified. The use
of other balance relationships is possible, including statis-
tical balance relationships (e.g. Derber and Bouttier, 1999;
Chen et al., 2013; Bannister et al., 2020). An alternative bal-
ance relationship that may be applicable at convective scale
is mentioned in the summary.

4.2.2 The forward parameter transform, Up

Up transforms perturbations of parameters to model space.
This transform (and its adjoint) is used at each iteration of
the Var algorithm. The input fields in this procedure are the
parameter field perturbations δψ , δχvp, δρ̃′u, δb′u, and δwu;

the output fields are δu, δv, δw, δρ̃′, and δb′. This is the
algorithm for Up.

1. Compute the zonal wind based on the Helmholtz theo-
rem:

δu=∇xδχvp. (23)

2. Compute the meridional wind (also based on the
Helmholtz theorem):

δv =∇xδψ . (24)

3. Compute the balanced scaled density ρ̃′b (Eq. 15).

4. Compute the vertically regressed balanced scaled den-
sity δρ̃′br (Eq. 16).

5. Compute the total scaled density:

δ ˜ρ′ = δ ˜ρ′
br
+ δ ˜ρ′

u
. (25)

6. Compute the hydrostatically balanced buoyancy δb′
b

(Eq. 18).

7. Compute the total buoyancy:

δb′ = δb′
b
+ δb′

u
.

8. Compute the anelastically balanced vertical wind δwb

(Eq. 20).

9. Compute the total vertical wind:

δw = δwb
+ δwu. (26)

Again, some of these steps may be omitted according to user
options, as set out in Sect. 4.2.1. The above steps may be
written more compactly as the super matrix:

δx = Upδχ ,
δu

δv

δw

δρ̃′

δb′

=


0 ∇x 0 0 0
∇x 0 0 0 0

αγLab
ρ̃′

Rρ fC γLab
u ∇x γLab

ρ̃′
0 1

αRρ fC 0 1 0 0
αβLhbRρ fC 0 βLhb 1 0




δψ

δχvp

δρ̃′
u

δb′
u

δwu

 . (27)

Using Eqs. (22) and (27), it may be confirmed that UpU−1
p =

I. The adjoint of Eq. (27) is constructed directly from the
code.

4.2.3 The inverse spatial transform, U−1
s

In the current configuration, the spatial transform comprises
separate horizontal (Uh), vertical (Uv), and scaling (6) trans-
forms. The order of these transforms may vary. The first or-
dering is called the “classic transform order” (CTO, since
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this was the transform order in the first Met Office Var sys-
tem; Wlasak and Cullen, 2014),

U−1
s = U−1

h U−1
v 6−1, (28)

and the second is called the “reversed transform order”
(RTO)

U−1
s = U−1

v U−1
h 6−1. (29)

6 is a diagonal matrix of background error standard devia-
tions of the parameters, as a function of longitude and height
(although options are implemented to allow the standard de-
viation to be a function of height only or a constant for each
parameter). After the parameters have been divided by6, the
problem remains one of modelling the covariances between
spatial points in space.

There are separate spatial operators for each parameter de-
fined in Sect. 4.2.1, and so strictly we should define the over-
all spatial transforms as block-diagonal forms, but we instead
adopt a casual way of describing the transforms to avoid get-
ting bogged down in notation. Depending on the context,
these transforms may represent all parameters at once (as
done in Sect. 3.4), single parameters or to individual hori-
zontal levels or vertical columns (as is done below).

Uh and Uv have the same generic form, as follows:

U−1
h/v =G3−1/2FT, (30a)

so Uh/v = F31/2GT, (30b)

where F is the (exact or assumed) matrix of eigenvectors
(columns of F) of the covariance matrix that is being mod-
elled, 31/2 is the diagonal matrix of eigenvalues, and G is
any orthonormal square matrix (GTG= I) of the same di-
mensions as 31/2. In Eq. (30a), FT projects a state onto the
eigenvectors (mutually uncorrelated by definition), 3−1/2

scales the projections so they have unit variance, and G is
an arbitrary rotation. If the complete CVT had this form (but
also incorporating6), then the implied covariance would, by
Eq. (10), be

6F31/2GT
(
6F31/2GT

)T
=

6F31/2GTG31/2FT6 =6F3FT6,

where F3FT is the eigenvalue decomposition of the covari-
ance matrix in question. In this illustration, the CVT is an
exact representation of the covariances, but when this proce-
dure is applied in practice, it is only an approximate covari-
ance model, e.g. due to the separation of the horizontal and
vertical transform or to the application of approximate eigen-
vectors. The structure of the actual implied covariances can
be investigated with the software suite (Sect. 4.4).

In the ABC-DA system, we use the following for F and G
in Eq. (5).

– For the horizontal transform U−1
h , F is called Fh, whose

columns comprise horizontal plane waves of the form
∼ exp ikx, where i =

√
−1 and k is the wavenumber

(each column of Fh is a different k). In this context, FT
h

represents a horizontal Fourier transform. This makes
the assumption that the eigenvectors of the horizontal
covariance matrix are plane waves, and the eigenvalues
in 3h are their variances. This is equivalent to assum-
ing horizontal error covariances that are homogeneous
(see Bartello and Mitchell, 1992; Berre, 2000; Bannis-
ter, 2008b). G is set to I in the horizontal transform.

– For the vertical transform U−1
v , F is called Fv whose

columns are the eigenmodes of a vertical covariance
matrix (labelled with ν; see below), and 3v represents
their variances. G is set either to Fv to give a symmetric
vertical transform or to I, depending on user choice.

The spaces that these operators work in depends on the
chosen order of the transforms and on whether the vertical
transform is symmetric or not. The following summarises
these options, is repeated for each parameter, and can be read
with Fig. 1, which shows how the transforms change the hor-
izontal and vertical co-ordinates.

– For the CTO, U−1
v operates vertically on a field that is a

function of x and z. The vertical eigenvectors or values
are those of a pre-computed horizontally averaged verti-
cal covariance matrix, and so these matrices themselves
are not dependent on horizontal position in ABC-DA.

– For the symmetric vertical transform option, U−1
v =

Fv3
−1/2
v FT

v ; the output of U−1
v is also a field that

is a function of x and z. The horizontal transform,
U−1

h , then operates horizontally on such a field. The
horizontal eigenvalues are those of pre-computed
horizontal covariance matrices (one for each z in
ABC-DA). The output of U−1

h is a field that is a
function of k and z (see Fig. 1a). This combination
of options allows a different horizontal covariance
to be specified for each vertical level.

– For the non-symmetric vertical transform option,
U−1

v =3
−1/2
v FT

v ; the output of U−1
v is a field that is

a function of x and vertical eigenmode index ν. The
horizontal transform, U−1

h , then operates horizon-
tally on such a field. The horizontal eigenvalues are
those of pre-computed horizontal covariance matri-
ces (one for each ν in ABC-DA). The output of U−1

h
is a field that is a function of k and ν (see Fig. 1b).
This combination of options allows a different hor-
izontal covariance to be specified for each vertical
mode, effectively allowing horizontal and vertical
length scales to be associated.

– For the RTO, U−1
h operates horizontally on a field that

is a function of x and z. The horizontal eigenvalues are
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Figure 1. Schema to illustrate the different options for the spatial
transforms as indicated by the panel titles (these are combinations
of classic and reversed transform orders and symmetric and non-
symmetric vertical transforms). Representations of the vertical di-
rection include model levels (labelled with z1, z2, etc.) and verti-
cal modes (ν1, ν2, etc.). Representations of the horizontal direc-
tion include model grid points (x1, x2, etc.) and Fourier modes (k1,
k2, etc.). Moving from left to right indicates the forward transform
and from right to left indicates the inverse transform. The horizon-
tal transform is always done independently for each vertical co-
ordinate (zi to zi or νi to νi ), and the vertical transform is always
done independently for each horizontal co-ordinate (xi to xi or ki to
ki , as guided by the colours). The co-ordinates used in the control
space in each option are indicated on the leftmost panels.

those of pre-computed horizontal covariance matrices
(one for each z in ABC-DA). The output of U−1

h is a
field that is a function of k and z. The vertical transform,
U−1

v , uses a separate set of vertical eigenvectors/values
for each k.

– For the symmetric vertical transform option, the
output of U−1

v is also a field that is a function of
k and z (see Fig. 1c).

– For the non-symmetric vertical transform option,
the output of U−1

v is a field that is a function of k
and ν (see Fig. 1d).

We would expect no difference between the implied covari-
ances of the symmetric and non-symmetric vertical trans-
form options in the reversed case; although, both options ex-
ist in the code.

4.2.4 The forward spatial transform, Us

The forward spatial transforms follow in a straightforward
way from the inverses defined in Sect. 4.2.3, namely for the
CTO

Us =6UvUh, (31)

and for the RTO

Us =6UhUv. (32)

The adjoint operators follow in a straightforward manner.

4.3 Calibrating the CVTs (B matrix)

The CVTs comprise many sub-matrices that need to be de-
termined in a calibration procedure. The operators to be de-
termined are the regression operator Rρ (part of the pa-
rameter transform mentioned in Sect. 4.2.1 and 4.2.2) and
6, 3h, Fv, and 3v (parts of the spatial transforms men-
tioned in Sect. 4.2.3 and 4.2.4). The number of pieces of
information to be determined in this procedure is explored
in Appendix A. These matrices are determined from model
training data in five stages, all using the program Mas-
ter_Calibration (GitHubDoc§4.4), and they are stored in a
covariance file, which is produced by this routine. It is im-
possible to use a genuine sample of forecast errors to cali-
brate the B matrix, so instead we use ensembles of forecast
perturbations, which are considered proxies of forecast er-
ror (Buehner, 2005; Pereira and Berre, 2006). The five cal-
ibration stages are described here, and example outputs are
shown for a standard set-up (experiment GB+VR+ to be de-
scribed in Sect. 5.1).

4.3.1 Generate a population of training data from UM
fields

This is calibration run stage 1 (Master_Calibration is run
with the namelist variable CalibRunStage set to 1). This takes
data from one or more UM files (one or more ensembles of
forecasts) and extracts multiple longitude and height slices
from these files to construct an effective “super ensemble”.
These are each adjusted to make them compatible with the
ABC model (as in Sect. 4.1) followed by a short forecast
of specified length (in our examples 1 h). These procedures
are intended to give the ensemble members properties of the
ABC model rather than the Unified Model from which they
came, although the degree to which this has been achieved
is not demonstrated. The super ensemble is output from this
stage. Also specified at this stage are the model parameters
(in the example to be described A= 0.02 s−1, B = 0.01, and
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Figure 2. Plots comparing an example total scaled density perturbation, δ ˜ρ′, with the diagnosed balanced part, δ ˜ρ′b, and showing the effect
of the regression matrix. (a) δρ̃′ (output from stage 2 of the calibration procedure), (b) δρ̃′b (diagnosed from the streamfunction as in Eq. 15),
(c) the regression matrix Rρ (found from stage 3), and (d) its effect on δρ̃′b, i.e. δρ̃′br

= Rρδρ̃′b. Note that in panel (c) the lowermost level
corresponds to the top of the matrix.

C = 10 000 m2 s−2) and user settings for the transform op-
tions mentioned in Sect. 4.2 (here, unless stated otherwise,
the control options use GB (α = 1), Sect. 4.2.1 step 3; VR,
step 4; HB (β = 1), step 6; no anelastic balance (γ = 0),
step 8; the CTO, Sect. 4.2.3; non-symmetric vertical trans-
form, Sect. 4.2.3; and parameter standard deviations that are
a function of vertical level only). These are all output in a
provisional covariance file (netCDF format). At this stage,
the file is blank apart from containing information on these
options for future reference. These user options are read from
this file in later stages of the calibration when the above men-
tioned matrices are computed and output to this covariance
file. Technical information is given in GitHubDoc§4.4.1, and
the ensemble members can be plotted using the Python pro-
gram specified there.

In this paper, a super ensemble of 260 members is used.
Appendix A shows that this is more than adequate to deter-
mine the spatial transform matrices and the vertical regres-
sion matrix.

4.3.2 Generate a population of forecast perturbations

This is calibration run stage 2 (Master_Calibration is run
with the namelist variable CalibRunStage set to 2). The fore-
casts output from stage 1 are converted to means and per-
turbations from the means. See GitHubDoc§4.4.2, which in-
cludes plotting information.

4.3.3 Compute the vertical regression matrix Rρ

This is calibration run stage 3 (Master_Calibration is run
with the namelist variable CalibRunStage set to 3). The per-
turbations from stage 2 are used to calculate populations of
δρ̃′

b (Eq. 15). The vertical correlations between δρ̃′b and it-
self and between δρ̃′ and δρ̃′b are then used to compute Rρ
in the way specified in point 4 of Sect. 4.2.1 (see also Ap-
pendix B). Rρ is then output to the covariance file created in
stage 1. See GitHubDoc§4.4.3, which includes plotting in-
formation.

Fig. 2a and b compare example δρ̃′ and δρ̃′b fields. The
large-scale pattern of these fields is similar, with δρ̃′b be-
ing smoother and of lower magnitude than δρ̃′, indicating
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Figure 3. Profiles of background error standard deviations for the five control parameters with height: (a) streamfunction δψ , (b) velocity
potential δχvp, (c) unbalanced scaled density δ ˜ρ′u, (d) unbalanced buoyancy δb′u, and (e) vertical wind δw. The blue lines are for the
experiment described in the text – namely GB and VR are switched on in the parameter transform. In panel (c) the red line is for the
experiment with GB (and hence VR) switched off, and the green line is for the experiment with GB switched on and VR switched off. In the
other panels all experiments yield the same profiles. The values have been smoothed using a running average over the nearest five levels.

that the unbalanced contributions to δρ̃′ are at smaller scales
(as expected). Panel (c) shows an example Rρ matrix and
panel (d) shows its effect on δρ̃′b, showing its ability to mod-
ify values and vertical scales.

4.3.4 Perform the inverse parameter transform on the
forecast perturbations

This is calibration run stage 4 (Master_Calibration is run
with the namelist variable CalibRunStage set to 4). The per-
turbations from stage 2 are transformed to parameters using
the procedure represented by U−1

p (Sect. 4.2.1) and then out-
put. The mean states found from stage 2 are also used in some
of the calculations; e.g. ρ̃0 is used in step 8 of that procedure.
See GitHubDoc§4.4.4, which includes plotting information.

4.3.5 Calibrate the spatial transforms for each
parameter

This is calibration run stage 5 (Master_Calibration is run
with the namelist variable CalibRunStage set to 5). The per-
turbations from stage 4 are used to diagnose the matrices 6,
Fv, 3v, and 3h for each of the five control parameters.

The blue lines of Fig. 3 show the background error stan-
dard deviations (diagonal elements of 6) for the control ex-
periment described above (see the figure caption for a suc-
cinct summary). The parameters show some variability with
height, although none of the parameters show variations of
6 of orders of magnitude. Note that the heights in the ABC
model do not correspond with those in the real atmosphere.2

The large variability of w (panel e) at model heights around

2This is the case because, for simplicity, the irregularly spaced
UM model levels are assigned new regularly spaced heights in the
ABC model when generating training data in Sect. 4.3.1.

13 or 14 km for instance does not lie in the ABC model’s
stratosphere, and in any case without radiative forcing in the
ABC model and an ozone layer, we would not expect signa-
tures of the stratosphere to be present.

The blue lines in Fig. 4 show the square root of the eigen-
values of the vertical covariance matrix (diagonal elements
of 31/2

v ).3 We find the vertical covariance matrices of each
parameter over each super ensemble member and over each
longitude. Each y axis in Fig. 4 is the (integer) vertical model
index. The eigensolver sorts these into ascending value of
eigenvalue, so the physical meaning of the modes can be un-
clear. For instance, examining the eigenvectors by eye (not
shown), for parameters δψ (panel a), δχvp (panel b), and

δρ̃′
u (panel c), the vertical modes of low index have vertical

profiles that are generally rapidly oscillating and have more
weight in the lower model levels than in the upper ones. As
the vertical mode index increases, the oscillations, become
less rapid and tend to have weight over the entire depth of
the model atmosphere. There is no obvious trend concern-
ing the vertical modes of δb′u (panel d) and δw (panel e).
The values in Fig. 4 are of comparable magnitude between
parameters because the vertical error covariance matrices are
formed from the populations after they have been normalised
with 6−1 – see Eqs. (31) and (32).

Calibrating the vertical transform involves (for the CTO)
constructing a single global vertical covariance matrix or
(for the RTO) constructing one vertical covariance matrix for
each wavenumber. The eigenvalues and eigenvectors follow
from this procedure. The eigenvectors of the horizontal co-

3In principle the vertical covariance matrix should actually be
a correlation (rather than covariance) matrix given that the popula-
tions have been divided by 6. Due to the approximations made, the
diagonal elements of this matrix may not be exactly unity.
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Figure 4. Profiles of the square root of the vertical eigenvalues for the five control parameters as a function of vertical mode index ν: (a) δψ ,
(b) δχvp, (c) δ ˜ρ′u, (d) δb′u, and (e) δw. The blue lines are for the experiment described in the text – namely GB and VR switched on. In
panel (c) the red line is for the experiment with GB (and hence VR) switched off, and the green line is for the experiment with GB switched
on and VR switched off. In the other panels, all experiments yield the same profiles.

Figure 5. The square root of the horizontal variances (colours) as a function of horizontal wavenumber and vertical mode index for the five
control parameters: (a) δψ , (b) δχvp, (c) δ ˜ρ′u, (d) δb′u, and (e) δw.

variance matrix are assumed to be plane waves. In the case
of the CTO with a non-symmetric vertical covariance model,
for example, the horizontal variances follow from passing
each ensemble perturbation (δx) through the partial inverse
transform to give δη = FT

h U−1
v 6−1U−1

p δx. Here each δη is a
field which is a function of k and ν. This ensemble is then
used to estimate the variances of δη and 30

h(k,ν).
Figure 5 shows the square root of the horizontal variances

(diagonal elements of 31/2
h ). In the particular configuration

that has a non-symmetric vertical transform, there is a differ-

ent horizontal variance spectrum for each vertical mode, so
the axes in Fig. 5 are wavenumber, k, and vertical model in-
dex ν. The spectra for δψ (panel 5a) and δχvp (panel 5b) are
similar and represent perturbations with long horizontal cor-
relation length scales (most weight is at small wavenumbers).
Their similarities are explained by the fact that the fields are
related to the horizontal winds in the same way: v = ∂δψ/∂x
and u= ∂δχvp/∂x. The spectra for δρ̃′u (panel 5c) show that
perturbations in this parameter have shorter horizontal length
scales than in panels (5a) and (5b), and the length scale re-
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Figure 6. (a) The same horizontal spectra of Fig. 5c but shown as a function of horizontal (lh) and vertical (lv) length scales. Also shown in (a)
is the Rossby radius of deformation, LR, plotted as a function of lv (black line). The Burger number is defined as Bu= LR/lh. (b) Vertical
length scales (x axis) of the vertical modes (y axis) for the unbalanced scaled density control parameter, calculated according to Appendix C.

duces with higher vertical modes. This suggests that pertur-
bations with broader vertical scales (generally higher verti-
cal mode index) tend to have shorter horizontal scales. The
spectra for the remaining parameters, δb′u (panel 5d) and δw
(panel 5e), show that perturbations of these parameters are
courser still, and there is no obvious pattern with vertical
mode index.

The same data plotted in Fig. 5c (for δρ̃′u) are also plot-
ted in Fig. 6a but with transformed co-ordinates to facilitate
further interpretation. In Fig. 6a the variance square roots are
shown as a function of horizontal length scale lh and verti-
cal length scale lv; lh is related to horizontal wavenumber
index k (an integer), as lh = Lh/k (where Lh = 540 km is
the horizontal domain length and excluding k = 0 since it
gives an infinite lh), and lv is related to the vertical eigen-
mode index for δρ̃′u in the way outlined in Appendix C.
For reference, panel (5b) shows lv for each vertical mode of
δρ̃′

u, which confirms that higher ν is broadly associated with
deeper structures. Furthermore, modes with deeper structures
have fewer nodes (not shown). Incidentally, this correspon-
dence between ν and lv is also found for the vertical modes of
δψ , which represent the balanced scaled density increments.

Returning to panel (a), the Rossby radius of deformation,
LR, has also been plotted (the black curve). This has been
estimated using a shallow water interpretation; i.e. LR =√
glv/f (e.g. Cullen, 2006). The Burger number, Bu, is de-

fined as Bu= LR/lh, and it follows that all of the represented
variability in these unbalanced modes has large Bu. Dynam-
ical theory says that for lh� LR (i.e. Bu� 1), the rotational
wind is a potential vorticity (PV)-like variable; for lh� LR
(Bu� 1), the mass variable becomes a PV-like variable (e.g.
Cullen, 2003; Katz et al., 2011). PV is often associated with
balanced flow, so the above theory suggests that the unbal-
anced mass variable (δρ̃′u) should vanish – and hence have
vanishing variance – for Bu� 1. Figure 6a shows that for
101 km. lh .103 km, the variance of δρ̃′u does increase as
Bu increases, showing some consistency with the dynamical
theory at synoptic scales. It further suggests that a rotational

wind variable, like δψ , is a reasonable variable to capture the
balanced part of the flow at synoptic scales.

4.4 The implied B matrix

The covariance model is completely described by (i) the pa-
rameter transform presented in Sect. 4.2.2, (ii) the results pre-
sented in Sect. 4.3.5, and (iii) other statistics like the verti-
cal eigenvectors themselves (not shown). The software suite
has a program to compute the implied covariances (Mas-
ter_ImpliedCov; see GitHubDoc§4.6), which uses informa-
tion in the CVT file output by the calibration procedures.
The program acts with the combination of matrices UUT on
a vector which is zero apart from one element (which we call
the source point), which is set to unity. (In the example be-
low, this element corresponds to δρ̃′ near the centre of the
domain.) Completing the matrix algebra, the implied super
matrix (for fields δu, δv, δw, δρ̃′, δb′) is found from Eq. (10);
U= UpUs, and Eq. (27):
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(33)

where to save space only the upper triangular part of the co-
variance matrix is shown. (The rest of the matrix is the ad-
joint of the corresponding transpose element.) The following
definitions have been made for convenience:

Bps = Ups Ups
T
, p = δψ,δχvp,δ

˜ρ′
u
,δb′

u
,or δwu, (34a)

Bic
u =∇xBχvp

s ∇
T
x , (34b)
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Bψr
s = RρBψs RT

ρ , (34d)

Bic
b′ = α

2β2 f
2

C2 LhbBψr
s LhbT

+β2LhbBρ̃
′u

s LhbT
+Bb’u

s . (34e)

Recall that the factors α, β, and γ are set to 1 or 0 to turn
on or off geostrophic, hydrostatic, or anelastic balance in
the covariance model (Sect. 4.2). Equation (34a) represents
the implied spatial covariances, where p (parameter) is short
for each control parameter listed in Eq. (34a). The diago-
nal blocks of Eq. (33) are the implied covariances of the
model variables. The structure of the terms in Eq. (33) re-
veals the way that the covariances have been modelled. For
example, the implied covariance of δρ̃′ is the 4,4th block,

α2 f 2

C2 Bψr
s +Bρ̃

′u

s , and comprises a balanced contribution (the
first term, which depends upon the covariance structure of
δψ) and an unbalanced contribution (the second term, which
is independent). Other variables have a similar decomposi-
tion.

This equation is too complicated to illustrate the implied
geographical covariance structure, so a selection of the im-
plied covariances (Eq. 10) are computed and shown graphi-
cally in the top row of Fig. 7 (Fig. 7a, b, c). All panels rep-
resent the covariances between a source point (δρ̃′ at the po-
sition of the cross) with δρ̃′ (panel 7a), δv (panel 7b), and
δb′ (panel 7c). For comparison, the bottom row shows the
respective raw sample covariances found from the popula-
tion of 260 forecasts used to calibrate the covariance model
(found using the program Master_RawCov; see GitHub-
Doc§4.7). We regard the signals contained in the raw co-
variances as a rough (row-rank) guide to the covariances that
should ideally be modelled by the CVT.

The autocovariances in panel (7a) have a region of pos-
itive correlations about the source point, with regions of
negative correlation towards the east, west, above, and be-
low. This broad structure is apparent in the raw covariance
panel (7j) although the implied values are 2 to 4 times larger.
The covariances between δρ̃′ and δv in panel (7b) show
dipole patterns in the horizontal due to GB imposed ac-
cording to Eq. (2a). This is done in the CVT via the 2,4th
block of Eq. (33), which spreads out the source point with
Bψs RT

ρ , evaluates the horizontal gradient, and then multi-
plies by α f

C
. Physically, panel (b) is the meridional wind

response (an anti-cyclone) to a positive density perturba-
tion at the cross, and these covariances mean that this pat-
tern would appear in the v analysis increments when as-
similating a single ρ̃′ measurement at the cross. The pattern
in panel (b) is evident in the raw covariance in panel (k),
but the implied version is slightly too large. Finally, the
covariances between δρ̃′ and δb′ in panel (c) show the
hydrostatic response of the density perturbation, which is

the 5,4th block of the CVT, α2β
f 2

C2 LhbBψr
s +βLhbBρ̃

′u

s =

βLhb
(
α2 f 2

C2 Bψr
s +Bρ̃

′u

s

)
. There are two contributions to the

δρ̃′–δb′ covariances: one involves the route δρ̃→ δψ→ δb′

(exploiting GB and HB) and the other involves the route
δρ̃→ δρ̃′

u
→ δb′ (exploiting only HB). A closer inspection

of Eq. (33) reveals that the 5,4th block is equal to βLhb

(proportional to the vertical derivative operator – see line af-
ter Eq. 18) acting on the 4,4th block, which is the δρ̃′ re-
sponse. Figure 7 shows that panel (7c) is indeed related to the
vertical derivative of panel (7a). The structure of panel (7c)
comprises complicated bands of positive and negative covari-
ances, and again this pattern would appear in the b′ analysis
increments when assimilating a single ρ̃′ measurement at the
cross. The structure in panel (7c) is evident in the raw covari-
ances panel (l), suggesting that HB is followed by the fore-
casts to some extent although the implied covariances are up
to about 3 times larger.

4.5 Observations and observation operators

ABC-DA currently supports observation operators for direct
(point) observations of u, v, w, ρ̃′, b′, a conserved tracer,√
u2+ v2, and

√
u2+ v2+w2. These correspond to obser-

vation codes 1–8, respectively. Observations are read in via
a text file, which specifies the time of each observation, its
longitudinal and height position, the observation code, the
observation value itself, and its error standard deviation. The
format of the input file is specified in GitHubDoc§4.8. The
observation operators employ a bi-linear interpolation, and
observation errors are assumed to be uncorrelated.

The user may extend the range of observation operators
available by assigning a new observation code and adding a
new branch in the observation operator and adjoint routines.
Furthermore, observations are assigned a batch number. This
is not used in the current code, but it may be used by the user
to allow for correlated errors within each batch.

4.6 Generating data for twin experiments

The program Master_MakeBgObs (see GitHubDoc§4.8) is
available to generate an observation network, to generate
synthetic random observations given an observation network
(for later assimilation), and to generate a random background
state that is consistent with the background errors as speci-
fied in a CVT file. Further details are as follows.

– An observation network is a specification of a grid of
observation times, locations, and error standard devia-
tions, as well as which synthetic observations to make
(but not the observation values themselves). For exam-
ple, the user may wish to generate synthetic observa-
tions of s =

√
u2+ v2 in an N s

x ×N
s
z grid between xs1

and xs2 and between zs1 and zs2. This is also true for syn-

thetic observations of ρ̃′ in an N ρ̃′

x ×N
ρ̃′

z grid between
x
ρ̃′

1 and xρ̃
′

2 and between zρ̃
′

1 and zρ̃
′

2 . Running Mas-
ter_MakeBgObs with the option to generate this obser-
vation network (specified in an input file) will produce a
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Figure 7. A selection of covariances (panel columns) found in different ways (rows). All covariances are between the source point (δ ˜ρ′

at the cross) and δρ̃′ (left column), δv (middle column), and δb′ (right column) at the field locations. The rows correspond to implied
covariances when GB and VR are used in the CVT (GB+VR+, top row), implied covariances when GB is not used (GB−, second row),
implied covariances when GB is used and VR is not used (GB+VR−, third row), and when covariances are calculated directly from the
population used to calibrate each CVT (bottom row). Red (blue) indicates positive (negative) covariances.
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text file containing entries for each individual observa-
tion (where it should be made, when it should be made,
which quantity should be measured, and at what preci-
sion – see GitHubDoc§4.8). This file could be produced
manually, but this software option exists to make the
task less tedious. Once produced, this file can be edited
by removing, adding, or altering individual observation
points.

– Pseudo observations are generated according to the out-
put from the above procedure and an ABC model ini-
tial condition (truth) file. Running Master_MakeBgObs
in this mode will run a forecast from the initial con-
ditions, generate “true observations” from the forecast,
and will then add observation noise to each observation.
The output from this stage is a file of synthetic observa-
tions which can then be assimilated (Sect. 4.7). The true
observations are also output within this data file, which
can be used later for error analysis. The user may wish
to generate synthetic observations for an identical twin
experiment by using the same model parameters (i.e. A,
B, C) as will be used in the DA or may wish to run
a non-identical twin experiment with different parame-
ters. As with the procedure for generating the observa-
tion network, this file can be edited or instead created
manually from scratch. For example, the user may want
to add, remove, or change individual observations in or-
der to investigate the effect on the assimilation.

– A valid background state may be generated with the pro-
gram Master_MakeBgObs. The truth state (convention-
ally that used to generate the synthetic observations) is
perturbed with a random state δx = Uδχ (Eq. 8), where
δχ is drawn from N(0,I). The information used to de-
scribe the CVT, U, is found from a specified CVT file.

4.7 Data assimilation

The program that performs a DA cycle is called Mas-
ter_Assimilate; see GitHubDoc§4.9. The inputs to this pro-
gram are (i) a background state (e.g. as generated in
Sect. 4.6), (ii) a set of observations (e.g. as generated in
Sect. 4.6), and (iii) a description of the B matrix (in a CVT as
found using the calibration procedure in Sect. 4.3). The as-
similation methods currently available are 3DVar and 3DF-
GAT, although the code is flexible enough to allow other
methods (e.g. 4DVar, EnVar; Bannister, 2017) to be devel-
oped.

The algorithm for 3DFGAT (the preferred option in the
current version) is shown in Fig. 8. The reference state, xr, is
set to the background, xb, which is then used to compute
the innovations, d(t), computed at their appropriate times
within the DA window. The control space perturbation, δχ
is set to zero. d(t) and δχ enter the inner-loop minimisation
(pink box), where the residuals, r(t), are computed. These
are used in the calculation of ∇δχJo, where Jo is the ob-

Figure 8. The outer and inner loops of the variational 3DFGAT
procedure. The main inputs into the algorithm are the background
state, xb, and the observations, y. The algorithm inside the pink box
is the inner loop. The small red arrows represent switches in the
data flow. The initial positions (shown) are changed after the first
iteration. This algorithm incorporates cycling, where the forecast
made (on the right-hand side) is fed back (on the left-hand side) for
the next assimilation window. The full 4DVar algorithm to calculate
the gradient ∇δχJ (essentially part of the inner loop) is given in

Sect. 3.5. Note that δχb
= U−1

(
xb
− xr

)
.

servation term of the cost function. This is added with the
background contribution, ∇δχJb, giving the total cost func-
tion gradient. This is used with a descent algorithm – in our
case a conjugate gradient algorithm – which provides the in-
crement, 1δχ . The switch is flipped (red arrow inside the
pink box) so that the inner-loop procedure is repeated with
the δχ that is updated with 1δχ . Once converged, the refer-
ence state is incremented by Uδχ . This ends the first outer-
loop iteration. If further outer-loop iterations are required, the
switch is flipped (red arrow outside of the pink box) so that
the incremented xr is fed into the innovation calculation. The
xr at the final outer loop is the analysis, xa.

In addition to the analysis, and the analysis increment,
there are many diagnostic outputs from the DA, as detailed
in GitHubDoc§4.9. This includes the reference states at each
outer loop, the gradient∇δxJo, the values of the cost function
with iteration, and versions of the observations file with extra
information. The last file is output for each outer loop and in-
cludes the model observation values computed from xr (the
xr corresponding to the last outer loop is xa), the innovation,
d(t), the residual r(t), and the gradient of the observation
term in the cost function with respect to the model obser-
vation, R−1

t r(t). These diagnostics can be plotted using the
Python program specified in GitHubDoc§4.9. A selection of
example diagnostics is shown in Sect. 5 in connection with
the study on the effect of the GB conditions in the CVT.

4.8 Cycling

A (provided) Bash script controls the schedule of tasks to
perform DA cycling; see GitHubDoc§5. The background
state for the first cycle is made using the procedure in
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Sect. 4.6, but subsequent backgrounds are found from fore-
casts originating from each analysis. The script also propa-
gates the true state from one cycle to the next for generation
of the synthetic observations and for subsequent monitoring.

Summary statistics of cycling experiments and compara-
tive diagnostics between pairs of cycling experiments can be
computed and plotted using Python programs provided. The
study in Sect. 5 shows many of these diagnostics, which may
be regarded as examples.

5 An investigation of balance in modelling the B matrix

Most Var systems began their lives serving global models on
relatively coarse grids. In mid- and high-latitude regions, and
when only relatively large scales are represented, a signifi-
cant portion of the flow fields are related via GB and HBs
(GB and HB). Most Var systems use this property to im-
ply relationships between variables, which impact the back-
ground error covariance statistics, and a similar approach is
often followed in systems that use much finer grids (as is
done in Sect. 4.2 for ABC-DA). Since GB becomes a less
important constraint at smaller scales (Berre, 2000; Bannis-
ter et al., 2011; Petrie et al., 2017), a research question arises
concerning whether using such a constraint in the B model is
necessary or indeed harmful in convective-scale DA.

Some regional Var systems, such as those for the AL-
ADIN (Aire Limitée Adaption Dynamique et dévelopment
InterNational; Berre, 2000) and WRF (Weather Research
and Forecasting model; Chen et al., 2013) models couple
mass and wind fields via a linear regression operator, which
is trained from sample data. The degree of balance repre-
sented by these operators will be appropriate to the training
sample. Other systems, such as the current configuration of
ABC-DA (Sect. 4.2), the Met Office (Ingleby, 2001; Bannis-
ter, 2008b), and HIRLAM (HIgh Resolution Limited Area
Model; Gustafsson et al., 2001) impose analytic GB opera-
tors. Analytic relationships are “cleaner” and more physical
than regressions, but their current forms are not so adaptive to
the underlying conditions. Geophysical balances are not only
sensitive to scale and latitude but also to precipitation, where
heavy precipitation leads to a weakening of the balance be-
tween mass and wind (e.g. Caron and Fillion, 2010; Chen
et al., 2016). Few, if any, studies have examined the effect
of switching off the GB constraint completely in the B ma-
trix in convective-scale systems. This is one way to affect the
implied covariances (α = 1→ 0 in Eq. 33). Other sugges-
tions have been made to change the nature of the wind cou-
pling in B at convective scale. Sun et al. (2016), for example,
compared using ψ ,χ -based uncorrelated control parameters
with u,v-based ones (with the associated change of the CVT).
Their comparison of these two alternative sets of wind con-
trol parameters was not so straightforward as theirψ ,χ -based
set used a linear regression-type balance with mass variables,
while their u,v-based set did not. This did not allow for a

clean analysis of the effect of the change of parameters ver-
sus the effect of turning off the balance constraint.

5.1 Description of the DA experiments

In this section we do three DA experiments each with its own
configuration as described below.

– Experiment GB+VR+ mirrors the operational configu-
ration of the Met Office DA system. In this configura-
tion δρ̃′ is decomposed into a GB part, δρ̃′b, and an un-
balanced part, δρ̃′u (α = 1 in Eqs. 27 and 33), and it uses
the VR operator, Rρ , to modify the calculation of the
balanced scaled density perturbation increments from
the streamfunction increment. δb′ is decomposed into
a HB part, δb′b, and an unbalanced part, δb′u (β = 1).
δw is analysed as though it were completely unbal-
anced (γ = 0). The ordering of the vertical and hori-
zontal transforms is the CTO, and the non-symmetric
vertical transform is used. As a reminder, the implied
covariances for GB+VR+ are shown in the top row of
Fig. 7.

– Experiment GB− differs from GB+VR+ in that there
is no balanced component of δρ̃′ (α = 0, β = 1, and
γ = 0). Since there is no GB operator, the VR step is
irrelevant. The implied covariances for GB− are shown
in the second row of Fig. 7. When calibrated with this
configuration, the δρ̃′− δρ̃′ covariances (panel d) are
almost the same as for GB+VR+ (see the 4,4th block
of Eq. (33) to see how α affects the δρ̃′− δρ̃′ covari-
ances). The δρ̃′− δv covariances (panel e) are zero as
expected as GB was the mechanism used to couple
these two variables in the CVT (see the 2,4th block
of Eq. 33). As δρ̃′b = 0 in this experiment, δρ̃′u = δρ̃′,
which is consistent with the variances of δρ̃′u (red line
in Fig. 3c for GB−) being larger than those of the blue
line (GB+VR+). The δρ̃′− δb′ covariances in Fig. 7f
are similar to those for GB+VR+ (panel c), showing
that the effect of GB on these statistics is small.

– Experiment GB+VR− differs from GB+VR+ in that
no VR is performed (α = 1, β = 1, γ = 0, and Rρ = I).
The implied covariances for GB+VR− are shown in the
third row of Fig. 7. When calibrated with this configu-
ration, the δρ̃′− δρ̃′ covariances (panel g) are slightly
smaller than for GB+VR+. The effect on δv (panel h)
is noticeably smaller than in GB+VR+. In GB+VR+,
Rρ has the effect of increasing the magnitude of the
balanced increment (δρ̃′br is greater than δρ̃′b on av-
erage) and thus decreasing the variance of δρ̃′u. This
is seen with the blue line of Fig. 3c (the variance of
δb′

u in GB+VR−) being smaller than the green line
(GB+VR−), and it explains why the geostrophic re-
sponse in Fig. 7b is larger than in Fig. 7h. The patterns
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Figure 9. Cost function statistics as a function of inner-loop iteration from the seventh cycle of the GB+VR+ experiment. Panel (a) shows
the cost function contributions: J b (blue), J o (red), and J = J b

+ J o (black). The yellow lines mark the 0th and 100th (the maximum
iteration) iterations. Panel (b) shows the norm of the cost function gradient.

in the δρ̃′− δb′ covariances, Fig. 7c and i, have similar
patterns but are larger in panel (c) for similar reasons.

For each experiment, the initial background is found by per-
turbing the initial truth in a way that is consistent with the B
matrix of each experiment (see last bullet point in Sect. 4.6).
All other aspects of the assimilation are identical in all three
experiments: 3DFGAT with a 1 h window is used for 30 DA
cycles. The observations are identical in all cases, which are
generated from the truth run with an error standard deviation
of 0.0015. There are 2520 observations of ρ̃′ in each cycle,
which are spread over a 20×18 grid of points broadly cover-
ing the domain, and over seven times (t = 0, 600, 1200, 1800,
2400, 3000, 3600 s). Only one outer loop of 3DFGAT is ex-
ecuted per cycle with 100 inner-loop iterations. This com-
parison is intended to be only a brief demonstration of the
ABC-DA system, and we leave a more in-depth study to later
papers.

5.2 Results for experiment GB+VR+ (control
experiment)

Figure 9 shows how the cost function (panel 9a) and the
size of its gradient (panel 9b) reduce with inner-loop itera-
tion of the conjugate gradient procedure for one cycle of the
GB+VR+ experiment. The total cost function, J (black in
panel 9a), decreases along with the observation part, J o (red
in panel 9a), and the gradient (panel 9b) at the expense of the
background part of the cost function J b (blue in panel 9a),
as expected. These results appear to show that the cost func-
tion has minimised. Figure 10 shows histograms of a selec-
tion of differences in the ρ̃′ observation space (for the same
cycle as Fig. 9). The top row concerns differences between
the observations and H(xb) (panel 9a, where H(•) is the
combined ABC model and observation operator for the ob-
servation network described at the end of Sect. 5.1), H(xa)

(panel 9b), and H(xt) (panel 9c). The width (standard devia-
tion) of each is shown in the heading of each panel, showing
a slight reduction from panels (9a) to (9b) as expected for the
DA to have worked. The analysis is closer to the truth than is
the background as expected as revealed with the histograms
on the bottom row, which are H(xb)−H(xt) (panel 9d) and
H(xa)−H(xt) (panel 9e).

Diagnostics collected over all 30 cycles for each variable
in this experiment are shown in Fig. 11. The left panels show
how the root-mean-squared (rms) values of the fields vary in
time for three versions of the fields: the truth (solid lines),
the analysed fields (dotted), and a free forecast starting from
the original background (dashed). For all fields except w,
the assimilation overestimates the rms field values, although
the assimilation does often follow the oscillations in the true
trajectory. The overestimation in the assimilation is actually
nearly always worse than for the free background for v, is
sometimes worse and sometimes better for u and b′, but it
is nearly always better for ρ̃′ (recall that only observations
of ρ̃′ are assimilated). The right panels show the rms errors
(RMSEs) of the analysed (dotted) and free (dashed) fields,
which we do know in such twin experiments. In the first few
cycles the analyses are improved compared to the free run in
all variables, but there comes a time when the assimilation
becomes worse than the free run for most fields (especially
v and b′). The assimilation stays better than the free run for
ρ̃′ over all 30 cycles, and the background error covariances
imposed between ρ̃′–v and ρ̃′–b′ (panels b and c of Fig. 7)
do not appear to be of benefit to v and b′, which is surpris-
ing. Note that there are no assimilation jumps in the u field,
because it is neither an observed variable nor correlated to ρ̃′

in the B matrix.
At t = 0 the two trajectories of the same colour in each

right panel represent background (dashed) and analysis (dot-
ted) errors and so can be compared. For all variables (except
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Figure 10. (a–c) Frequency histograms of y−H(x) for the seventh cycle of the GB+VR+ experiment, where x is (a) xb, (b) xa, and (c)
xt. (d, e) Histograms of H(x)−H(xt), where x is (d) xb and (e) xa. Observations of ρ̃′ are assimilated.

u andw), these two points are different at t = 0, with smaller
analysis errors than background errors. This indicates that
the DA does add improvement early in the cycling. Even
though the analyses are closer to the observations than the
backgrounds, the errors in the assimilated variables do grow
with time and most of the analysis increments (the jumps at
the yellow cycle boundaries) do act to increase the RMSE
throughout the experiment. There are a number of possible
reasons for this degradation, e.g. a poor B matrix formula-
tion for this model (including the use of balance constraints
in the CVT), an inappropriate population of forecasts used
to calibrate the B matrix, the use of 3DFGAT rather than
4DVar, or the particular choice of observation network for
this convective-scale system. Given that the assimilation per-
forms well at t = 0 (where the error in the initial background
is consistent with the B matrix formulation by design), it
could be that, as the cycling progresses, the nature of actual
background errors becomes very different to that assumed
by the B matrix. Confirming this hypothesis would require
recalibrating the B matrix, which is outside the scope of the
present paper. We focus now on the two remaining exper-
iments described in Sect. 5.1 to see if any changes can be
made by adjusting parts of B.

5.3 Results for experiment GB−

Diagnostics for the GB− experiment are shown in Fig. 12.
Comparing the rms values (left) with the GB+VR+ experi-

ment, the analysis RMS values become further from the truth
for u, v, and b′. Note that although the true trajectories are
exactly the same as those of GB+VR+, the free trajectories
are different as the initial background is consistent with a dif-
ferent B matrix. Again comparing to GB+VR+, the RMSE
analysis errors (right panels) are generally worse for GB−,
but the assimilation is still able to control the ρ̃′ field. This
suggests that the B matrix for GB− is still not consistent with
errors in the 1 h background forecasts over the cycles. Note
that there are no assimilation jumps in the u nor v fields, be-
cause they are not correlated to ρ̃′ in the B matrix.

5.4 Results for experiment GB+VR−

VR is designed to accompany the GB operator, and the
configuration that included these two together in the CVT
may have contributed to the relatively poor performance
in Sect. 5.2. Here we run the experiment that includes the
GB step in the CVT but not the VR. Diagnostics for the
GB+VR− experiment are shown in Fig. 13. Again, the true
state is the same as in the previous two experiments, but the
free background forecast is different due to the different B
matrix from which the initial background state is sampled
from. The rms values (left panels) of the assimilation are
generally closer to the truth than in GB+VR+ (apart from
u where they are about the same). The RMSE values (right
panels) are also smaller as a fraction of the error in the free
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Figure 11. (a–c) The rms fields of (a) u, v, w, (b) ρ̃’, and (c) b′ for the control experiment, GB+VR+. The solid lines are for the truth trajec-
tory, the dotted lines are for the assimilation trajectory, and the dashed lines are for the free trajectories starting from the initial background.
The vertical yellow lines mark the times of the cycle boundaries where the assimilation trajectory is the analysis at the start of each cycle and
the background (for the next cycle) at the end. (d–f) The rms values of the errors (trajectory minus truth) for the corresponding quantities
in (a–c).

run (or at least are smaller for a longer time), although the
errors in v do still eventually fail to be controlled by the DA.

The absence of VR does have the effect of weakening the
effective strength of the GB between δρ̃′ and δv – compare
panels (b) and (h) of Fig. 7. This is because, overall, Rρ
enhances the balanced scaled density (and so the balanced
scaled density is diminished when removing it). It is possi-
ble then that it is not the adoption of GB that results in the
relatively poor performance of the GB+VR+ assimilation in
this system but the use of the VR.

6 Summary

This article is a documentation of ABC-DA, a Var system for
use with the convective-scale ABC model (Petrie et al., 2017)
to efficiently test new ideas for convective-scale DA. The DA
currently has incremental 3DVar and 3DFGAT implemented,
although expansion to 4DVar, ensemble-variational, and hy-
brid methods is possible. The DA system has an expandable
observation operator, which is currently configured to assim-
ilate observations of all model variables, and 2D (horizontal)
and 3D wind speeds. The choice of observation network is
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Figure 12. As Fig. 11 but for experiment GB−.

not fixed, and it is possible to specify arbitrary observation
networks in space and time. The B matrix is modelled in a
very compact form by a control variable transform (CVT),
which is implemented with a range of options. The current
multivariate options include the option to use geostrophic
balance (GB) to couple δρ̃′ and δv, hydrostatic balance (HB)
to couple δρ̃′ and δb′, and anelastic balance to couple δu
and δw. All of these balances use diagnostic relationships
using analytical (rather than statistical) operators. A vertical
regression (VR) step is also included (which works with the
geostrophic step) to mirror the operational set-up of the Met
Office’s DA system. While the model increments are δu, δv,
δw, δρ̃′, and δb′, the control parameters are δψ , δχ , δρ̃′u,
δbu, and δwu, which are assumed to be mutually uncorre-

lated. The transforms that model the spatial covariances for
each control parameter are formed of vertical and horizon-
tal parts, which model covariances in these respective direc-
tions. There are further options that control how each of these
spatial transforms work, including the order in which they are
used.

ABC-DA comprises component suites to perform the fol-
lowing tasks:

– run a pure model forecast of any length starting from
specified initial conditions,

– investigate linear properties of the equations of motion,

– generate an initial ensemble of states (e.g. for calibra-
tion of the B matrix),
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Figure 13. As Fig. 11 but for experiment GB+VR−.

– calibrate the parameters that describe components of the
CVT to produce a CVT file (This specifies the B matrix
for use in the DA program.),

– test the components of the system (e.g. adjoint tests of
CVT operators),

– generate “raw” covariance maps using a specified pop-
ulation of states,

– generate implied covariance maps from a specified CVT
file,

– generate sample observations (consistent with a speci-
fied R matrix and truth) and a background state (consis-
tent with a specified B matrix and truth),

– perform a cycle of Var with a specified background
state, observations, and CVT file,

– perform a run of cycled DA/forecast steps where the
analysis of one cycle is used to make a background fore-
cast for the next.

The number-crunching code is written in Fortran 90/95, the
scripts are written in Bash, and the example plotting routines
are written in Python 2.

A selection of diagnostics of the CVT is provided in this
paper, and a brief study is made to illustrate the system’s per-
formance when GB (and VR) is switched on and off in the
CVT. GB is used to model the background error coupling
between δρ̃′ and δv, which is zero when GB is not used,
and it has a classical dipole pattern (δv response to a point
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perturbation in δρ̃′) when it is used. Exploiting this balance
constraint (or not) is investigated as there is a question of
whether it has validity in the description of convective-scale
background error covariances. VR has the effect of strength-
ening this geostrophic relationship, because it increases (de-
creases) the variance of the balanced (unbalanced) contribu-
tions to δρ̃′.

Experiments are performed using a set of three 3DFGAT
twin experiments by assimilating observations over a 30 h
forecast taken as the common truth. The three experiments
are (i) using GB and VR (GB+VR+), (ii) not using GB
(GB−), and (iii) using GB but not VR (GB+VR−). Each ex-
periment has a different CVT (i.e. a different U) and hence a
different implied background error covariance matrix; Bic

=

UUT. An initial background state is constructed for each ex-
periment by perturbing the truth at t = 0 with Uδχ where
δχ is a sample from N(0,I) (equivalent in model space as
choosing a sample from N(0,Bic)). The DA/forecast is cy-
cled hourly over 30 cycles with 2520 observations of ρ̃′ per
cycle. The results are summarised as follows.

– The GB+VR+ experiment does not result in a system-
atic reduction of errors in the model variables. In fact,
for some variables (namely v and b′), it leads to an in-
crease in error of the analysis above the error level of
the free background.

– The GB− experiment represents a degradation in per-
formance of the unobserved variables in that the errors
are above the error level of the free background for more
time than in GB+VR+.

– The GB+VR− experiment represents the configuration
that is the best of those tested. The errors in all vari-
ables except v are kept below the error level of the free
background.

It is surprising that errors in one of the variables in particular
(v) cannot be properly corrected in these experiments. It is
postulated that this outcome is not due to an inappropriate B
matrix (for instance in Figs. 11 and 13) but due to the use
of 3DFGAT. Separate tests with 3DVar and with all observa-
tions made at the analysis times, rather than spread through-
out the analysis window (not shown), suggest that observa-
tions of ρ̃′ can reduce the error in v. We have learned from
these experiments that the nature of the B matrix can have a
significant impact on the performance of the DA. Application
of GB in such a convective-scale system has a complicated
effect: while experiment GB+VR− is better than experiment
GB− overall, the application of GB does systematically in-
crease errors in the v field over the 30 cycles, and “too much”
GB (as in experiment GB+VR+) enhances this effect. Simi-
lar studies may be done by turning on and off hydrostatic and
anelastic balances.

These results highlight a difficulty of the convective-scale
DA problem, and they raise more questions about how this
system could be improved and how it could contribute to ad-
vances in DA. A possible way forward might be to keep the
current formulation of the CVT but to calibrate it with data
from a different source, either as an ensemble, as differences
between pairs of forecasts valid at the same time (the popu-
lar National Meteorological Center method; Parrish and Der-
ber, 1992; Berre et al., 2006), or from a single long forecast
(the so-called “Canadian quick” method; Polavarapu et al.,
2005). Other ways forward might be to replace the tradi-
tional geophysical balances with a new balance relationship
that may be more suitable at convective scales, such as the
diagnostic equation for non-hydrostatic pressure outlined in
Sect. 4.3 of Pielke (2002). The CVT may also be adapted
so that the DA system acts as an ensemble-variational (En-
Var) system, where the analysis increments are expressed as
linear combinations of ensemble perturbations (e.g. Lorenc,
2003; Buehner, 2005), as a hybrid-EnVar system (a hybrid of
the existing B matrix and the EnVar; e.g. Wang et al., 2007),
or as part of a hybrid gain formulation (e.g. Penny, 2014).
These approaches imply flow-dependent background error
covariances (e.g. Bannister, 2017), but each would require
a separate ensemble DA system parallel to the variational
one and would also require localisation techniques to miti-
gate for rank deficiency of the ensemble. These are entirely
possible developments given appropriate resources. Study-
ing the B matrix is the main application that the author has
in mind, although the system could equally well be used to
study impacts of new high-resolution observations.
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Appendix A: Number of pieces of information to make
up a covariance model

This appendix shows the number of pieces of information
that specifies the covariance model used in this paper. Since
only analytic balance relationships are used (rather than sta-
tistically derived ones, which would themselves require cali-
bration from data), components only of the spatial transform
(Us) and the vertical regression (Rρ) require calibration. Re-
ferring to Eq. (31) or Eq. (32), this includes determination
of the standard deviation matrix (6) and components of the
vertical (Uv = Fv3

1/2
v ) and horizontal (Uh = Fh3

1/2
h ) trans-

forms. The vertical regression, Rρ = Cδρ̃′δρ̃′
b
(

Cδρ̃′
b
δρ̃′

b
)−1

,
requires determination of a non-symmetric and symmetric
correlation matrix. Table A1 shows this information, con-
cluding that 78 030 pieces of information are needed. In this
paper, a super-ensemble of 260 members is used to esti-
mate this background error covariance model. This provides
260×5×360×60= 28 080 000 pieces of information, vastly
more than the number of elements needed for the covari-
ance model. Compare this to n(1+ n)/2 elements to de-
termine a full background error covariance matrix, where
n= 5×360×60 is the number of elements in the model state
vector. This evaluates to 5 832 054 000, requiring 54 000 en-
semble members to estimate these elements at the very least.
While this is possible, it is not practical at present.

Table A1. The numbers of components of the spatial transforms that need to be estimated from data. The numbers of elements in the third
column are for the standard ABC system of 360 longitudes and 60 levels. Note that for31/2

h , 180 wavenumbers are specified rather than 360
as the negative wavenumbers are assumed to have the same variances as the positive ones.

Matrix Description Elements to be determined

6 Standard deviations (level-dependent only) 60
Fv Eigenvectors of vertical transforms 60× 60
3

1/2
v Eigenvalues of vertical transforms 60

Fh Horizontal Fourier transform 0
3

1/2
h Horizontal variances of each parameter vertical mode 180× 60

Total per control parameter (sum of above) 14 520
For all five control parameters 72 600

Cδρ̃
′δρ̃′

b
Non-symmetric term in Rρ 60× 60

Cδρ̃
′bδρ̃′

b
Symmetric term in Rρ 60× 61/2

Grand total 78 030

Appendix B: Vertical regression of balanced scaled
density

The direct calculation of the geostrophically balanced scaled
density from Eq. (2a) (in practice found via the streamfunc-
tion as in Eq. 15) leads to difficulties with regards to the ver-
tical continuity of the resulting δρ̃′b(x,z, t) (Lorenc et al.,
2000). If a function (arbitrarily chosen but independent of x,
i.e. p(z, t)) is added to δρ̃′b, then δρ̃′b+p is also a solu-
tion of Eq. (2a). This will potentially allow damaging jumps
to appear with short vertical scale. According to geostrophic
adjustment theory, streamfunction (and hence the scaled den-
sity computed from it) is not balanced for short vertical
scales (e.g. Cullen, 2003) and so the output from Eq. (15)
is smoothed in the vertical. This is done by modifying the
balanced scaled density with a regression operator Rρ .

From here on in this appendix, we drop the ρ subscript on
Rρ for brevity as the subscript will be used to indicate ma-
trix element. We also, for brevity, drop the tilde, prime, and δ
notations on the scaled density fields, remembering that the
fields are implicitly perturbations. One strategy for R is to in-
troduce similar vertical length scales as those in the forecasts
of total scaled density, δρ. We therefore design R to minimise
the following penalty:

R= argmin
R

J [R]

=
1
2

1
N

N∑
i=1

(
Rρb(i)− ρ(i)

)T(
Rρb(i)− ρ(i)

)
, (B1)

where ρb(i) and ρ(i) are the ith members of an N -member
population of balanced and total scaled density perturbations,
respectively. To find the R that minimises J , we solve the
equation ∂J /∂R= 0, which is a matrix equation, with ele-
ment a,b being ∂J /∂Rab = 0.
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It is convenient to expand the elements of Eq. (B1):

J [R] =
1
2

1
N

N∑
i=1

∑
α

(∑
β

Rαβρb
β(i)− ρα(i)

)2

, (B2)

where all subscripts indicate matrix or vector element. Dif-
ferentiating with respect to Rab gives

∂J
Rab
=

1
N

N∑
i=1

∑
α

(∑
β

Rαβρb
β(i)− ρα(i)

)

∂

Rab

∑
β ′

Rαβ ′ρb
β ′(i)


=

1
N

N∑
i=1

∑
α

(∑
β

Rαβρb
β(i)− ρα(i)

)∑
β ′

δaαδbβ ′ρ
b
β ′(i)

=
1
N

N∑
i=1

(∑
β

Raβρb
β(i)− ρa(i)

)
ρb
b(i),

(B3)

where δαβ in the second line is the Kronecker delta function.
Now this result is put back into matrix notation. Note that(∑

βRaβρb
β(i)− ρa(i)

)
ρb
b(i) is the a,bth element of the

outer product matrix
(
Rρb(i)− ρ(i)

)(
ρb(i)

)T, so Eq. (B3)
is

∂J
R
=

1
N

N∑
i=1

(
Rρb(i)− ρ(i)

)(
ρb(i)

)T
.

Setting this to zero to solve for the optimal regression matrix
gives

R
1
N

N∑
i=1

(
ρb(i)

)(
ρb(i)

)T
=

1
N

N∑
i=1

(
ρbρ(i)

)(
ρb(i)

)T
.

The outer product matrix – summed and divided by N –
on the left-hand side is identified as the covariance matrix
of the balanced scaled density perturbations with themselves
(Cρbρb

), and the corresponding terms on the right-hand side
is the covariance matrix between the total scaled density
perturbations and the balanced scaled density perturbations
(Cρρb

). The optimal regression matrix is then

R= Cρρ
b
(

Cρ
bρb
)−1

. (B4)

Appendix C: Estimation of characteristic length scales

There is a well-defined length scale associated with a plane
wave of the form exp iκx (κ is wavenumber, x is position),
which is the wavelength l = 2π/κ . For a periodic domain
of length L, the allowed wavenumbers are κ = 2kπ/L (k
wavenumber index, integer), and so the wavelength is L/k.
There is no similar analytical relationship between the verti-
cal mode index, ν, and the vertical length scale, lv, but it is
possible to estimate the characteristic length scale as follows.
Suppose that f (z) is an oscillatory function (e.g. a particular
vertical eigenvector (column of Fv) of one of the vertical co-
variance matrices introduced in Sect. 4.2.3). Let its Fourier
transform be f (m), where m is the spectral co-ordinate (i.e.
f (z)∝

∑
mf (m)exp i2mπz/Lv, whereLv is the vertical ex-

tent of the model). Treating
∣∣f (m)∣∣2 as the weight of the con-

tribution from wavenumber index m, the characteristic value
of m is

〈m〉 =
∑
m

∣∣f (m)∣∣2m/∑
m

∣∣f (m)∣∣2. (C1)

This translates to a vertical length scale of lv = Lv/ 〈m〉. This
is the procedure used to make Fig. 6b. We note that the
Fourier transform assumes periodicity, which is not a prop-
erty of the fields in the vertical direction, but since we are
after only a rough estimate of lv, we assume that this incon-
sistency does not have a major impact.
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Code and data availability. The model and data assimila-
tion system are written in Fortran 90/95, and the plot-
ting code is written in Python. This software is open
source and freely available on a GitHub repository (Ban-
nister, 2019), https://doi.org/10.5281/zenodo.3531926. A
sample of initial condition data is also freely available:
https://doi.org/10.5281/zenodo.3946359 (Bannister, 2020).
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Yano, J.-I., Ziemiański, M. Z., Cullen, M., Termonia, P., Onvlee, J.,
Bengtsson, L., Carrassi, A., Davy, R., Deluca, A., Gray, S. L.,
Homar, V., Köhler, M., Krichak, S., Michaelides, S., Phillips, V.
T. J., Soares, P. M. M., and Wyszogrodzki, A. A.: Scientific chal-
lenges of convective-scale numerical weather prediction, B. Am.
Meteorol. Soc., 99, 699–710, 2018.

Geosci. Model Dev., 13, 3789–3816, 2020 https://doi.org/10.5194/gmd-13-3789-2020

https://www.researchgate.net/publication/242428553_First_Guess_at_Appropriate_Time_FGAT_with_WRF_3DVAR
https://www.researchgate.net/publication/242428553_First_Guess_at_Appropriate_Time_FGAT_with_WRF_3DVAR
https://doi.org/10.5194/gmd-10-4419-2017

	Abstract
	Introduction
	The ABC model
	The model equations
	Properties of the ABC model equations
	Discretisation and integration
	Future developments of the model

	Overview of the ABC-DA system
	Variational data assimilation
	The incremental formulation of the problem
	The observations, their operators, and their error statistics
	Modelling B with control variable transforms
	The gradient of J and minimising the cost function
	System tests

	Scientific and technical configuration of ABC-DA v1.4
	Construction of a model state and making a forecast
	The CVTs (B matrix) implemented
	The inverse parameter transform, Up-1
	The forward parameter transform, Up
	The inverse spatial transform, Us-1
	The forward spatial transform, Us

	Calibrating the CVTs (B matrix)
	Generate a population of training data from UM fields
	Generate a population of forecast perturbations
	Compute the vertical regression matrix R
	Perform the inverse parameter transform on the forecast perturbations
	Calibrate the spatial transforms for each parameter

	The implied B matrix
	Observations and observation operators
	Generating data for twin experiments
	Data assimilation
	Cycling

	An investigation of balance in modelling the B matrix
	Description of the DA experiments
	Results for experiment GB+VR+ (control experiment)
	Results for experiment GB-
	Results for experiment GB+VR-

	Summary
	Appendix A: Number of pieces of information to make up a covariance model
	Appendix B: Vertical regression of balanced scaled density
	Appendix C: Estimation of characteristic length scales
	Code and data availability
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

