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1. Introduction 1 

Risks related to landslides are one of the main concerns for development in the Andean region. This 2 

is due to a combination of physical and social factors. The geodynamic of the Andean region is rather 3 

prone to landslides. This condition is aggravated by climate change. Further on urban areas have 4 

been growing very rapidly over the last decades. They now gather 70% of the population and the 5 

share of urban population keeps growing rapidly. Unplanned urbanization is developing without any 6 

consideration for landslide risks and public bodies have limited capacities in the management of 7 

urban development (Comunidad Andina, 2017; D’Ercole et al., 2009; UNISDR, 2018). Evidence about 8 

landslide-prone conditions in the region has been presented by Kirschbaum & Stanley (2018) and 9 

Sepúlveda & Petley (2015). These studies illustrate the concentration of landslide-susceptible area in 10 

the irregular orography held of Colombia, Ecuador and Peru, with hundreds of fatalities compared 11 

with lower figures of neighboring countries, except for Brazil. Accordingly, disaster risk management 12 

should be better integrated with land-use planning for an appropriate diagnostics and effective 13 

prevention of risks related to landslides.  14 

Quito, the capital of Ecuador, is the largest metropolitan district of the country with 2’781.641 15 

inhabitants in 2020 (INEC, 2016). This jurisdiction covers 4.235,2 km2, from which 10% is urban area 16 

in which 81% of the 353.595 housing units of the metropolitan district are settled (MDMQ, 2015). As 17 

part of the Andean mountain cities, Quito has suffered from multiple natural threats, including 18 

landslides, volcano eruptions, floods and earthquakes. Exposure to risks was further exacerbated in 19 

the city, given the fast population growth and an uncontrolled urbanization process. Accordingly, Quito 20 

started collecting geodata about landslide disaster events systematically during the last two decades. 21 

This strengthened its management capacities and its approach towards preventive policies and 22 

actions (Rebotier, 2016), besides preparedness and response. Most recently, resiliency has been 23 

adopted as an urban policy up to the point to be institutionalized with the creation of a Resiliency 24 

Department and the production of the City’s Resiliency Strategy as an action (Alcaldia del Distrito 25 

Metropolitano de Quito, 2018; MDMQ, 2017) 26 

In relation to the state of the situation of landslide risk reduction policies in Quito, there is 27 

approximately one decade of history of landslide-related land-use zoning as part of the local plan. The 28 

first studies and policy were started in 2011 (Puente-Sotomayor et al., 2018). Before that building 29 

regulations had already included basic risk prevention measures, such as setbacks from ravines, 30 

https://www.researchsquare.com/article/rs-60877/v1


 

Page 2 of 30 
 

slope borders and rivers (Concejo del Distrito Metropolitano de Quito, 2003). In punctual cases like 1 

lahar slides prone areas, a transfer of responsibility from government to owners had been applied. In 2 

practice, this meant that owners who decided to build on flows-prone areas had to submit their project 3 

with a notarized responsibility of this condition before the city approval (Concejo del Distrito 4 

Metropolitano de Quito, 2011). Since 2013 this is no longer allowed according to national laws, 5 

because the responsibility of the generated risk relies on any official that approves the project 6 

(Asamblea Nacional del Ecuador, 2014). During the last decade the preventive/reductive approach 7 

was materialized by establishing a new category for landslide risk-zone (ZR) in the land use plan. 8 

Construction were strictly forbidden in ZR areas. This zoning policy combined intuitively and 9 

imprecisely slopes (1:5000 scale), soil stability (1:25000 scale) and field inspection as the only inputs 10 

in 2011. The application of this regulation triggered around 40 complaints a year from affected 11 

owners, who were affected socially (housing rights) and economically due to previous expectations 12 

and investments. In 2013 a reform to this ordinance relaxed it by giving back the right to build on ZRs 13 

as long as geotechnical studies submitted and approved by the municipal officials justified the project. 14 

This raised problems of technical capacity of users and officials, the objective definition of ‘mitigation’, 15 

and accessibility to technology for low socio-economic strata. A new reform in 2015 cancelled the ZR 16 

land-use category and risk areas were converted in an overlay map, which in practice did not change 17 

the policy. (Puente-Sotomayor et al., 2018). By that time, the first landslide susceptibility studies were 18 

initiated. The outputs of these studies were expected to improve the ZR policy. They were used as 19 

input data for this research  20 

 A comparison between the ZR layer, which has not changed its limits up to now, the existing 21 

landslide susceptibility study (FUNEPSA et al., 2015); and a landslide events database (from 2005-22 

2017, seen in the study area in Figure 1) provided by the Metropolitan Emergency Operations 23 

Committee of Quito (COE-M) reveals inconsistencies between the policy, studies and facts. Only 8% 24 

of recorded landslide events are contained in ZR polygons, 25% of ZR do not match with high 25 

susceptibility areas and 81% of high susceptibility areas are not covered by the ZR polygons. This 26 

means that more areas should be considered as landslide prone while, in less proportion, some area 27 

does not need a protection policy (Puente-Sotomayor et al., 2018).  28 

The objective of the present study is to go beyond these previous works by proposing a 29 

landslide susceptibility map based on logistic regression combined with a sensitivity analysis (SA) in 30 
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order to calibrate variables’ coefficients used in the model.  Developing such an evidence-based 1 

landslide susceptibility map considering sensitivity factors to appears as an indispensable input for 2 

developing an urban policy backed by a socio-political consensus (Orán Cáceres et al., 2010). 3 

 4 

Figure 1. Study Area in the Metropolitan District of Quito, with 2005-2017 landslide events and heatmap. 5 

2. Conceptual Framework 6 

A landslide is here defined as: “the downslope movement of soil, rock, and organic materials 7 

under the effects of gravity” (Highland & Bobrowsky, 2008, p. 4). Its types vary from slides, falls, 8 

topples, flows, lateral spreads and combined, whose causes could be geological, morphological or 9 

anthropic and can be triggered by water, seismic and volcanic activities (GEMMA, 2007; USGS, 10 

2004). Landslide disaster risk is the result of a combination of natural hazards (weak soil, intense 11 

precipitations and earthquakes), vulnerability (soil cuts and fills, or structural weakness) and exposure 12 

(construction in risk prone areas) (Puente-Sotomayor and Teller, 2019). Such an understanding of 13 

risk is directly related to landslide susceptibility that, beyond the understanding of disaster risk as a 14 

social product, pursues to identify the interaction between natural and built components susceptible to 15 
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prompt landslides. Reichenbach, Rossi, Malamud, Mihir, & Guzzetti (2018) define landslide 1 

susceptibility as the probability of incidence in a determined terrain relying on specific factors, 2 

including climate. These authors distinguish susceptibility from threat/hazard or vulnerability analyses 3 

in that the former is analyzed at a large-scale and the data is acquired and processed at an aggregate 4 

level. They also conclude from a global review on landslide susceptibility modelling that usual 5 

determinant factors are slope, geology and aspect, being the two first the ones with higher in 6 

prediction power. They also state that results may vary according to methodologies, model validation, 7 

landslide types, triggering factors and researchers’ background. Other studies include precipitations, 8 

population density and land-use as significant variables (Hemasinghe et al., 2018; Sepúlveda and 9 

Petley, 2015). 10 

 Reichenbach et al. (2018), classify landslide susceptibility assessment into five groups, 11 

namely: (i) geomorphological mapping, (ii) analysis of landslide inventories, (iii) heuristic or index-12 

based approaches, (iv) process-based methods, and (v) statistically based modelling methods. The 13 

present work combines the heuristic approach adopted by the municipality as preliminary input. It 14 

submits it together with other variables to a statistically based model. Although normalization of 15 

weighted data for landslide susceptibility mapping is still an open discussion (Ronchetti et al., 2013), it 16 

is considered a valid option whenever intervals between ordinal categories are considered equal, 17 

regardless of statistical limitations such as the limited number of categories and overestimation of 18 

statistical power (Norman, 2010; Pasta, 2009; Williams, 2019).  19 

 Once the data is processed and set available for modelling, one common, though simple 20 

theoretical used model is the Multi-Criteria Evaluation (MCE) that can be combined with sensitivity 21 

analysis, as in Feizizadeh & Blaschke (2014) and Orán Cáceres et al. (2010). A complementary 22 

approach to MCE is the binary logistic regression (Logit), which is amongst the most used statistical 23 

methods for landslide susceptibility mapping (Reichenbach et al., 2018). This type of model helps go 24 

beyond weighted models, which do not help assess the probability of landslide occurrences 25 

(Lombardo and Mai, 2018).  26 

 A further step in evaluating LOGIT models is to apply a Sensitivity Analysis (SA) 27 

(Reichenbach et al., 2018). The objective of sensitivity analysis is to help adjust the calibration of the 28 

studied parameters involved in the LOGIT model to improve its predicting/classification power. 29 

Amongst different methodologies, two of them, the simple, univariate, or “one-by-one” method and the 30 
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stochastic/random-selection method, also called “Monte Carlo”, whose applications vary according to 1 

the needs of the requiring field of practice (Bouyer, 2009) will be explained later in the methodology 2 

section and their results presented in the corresponding section. 3 

3. Data Compilation and Methods 4 

The research builds upon data collected during a landslide risk analysis made for the municipality in 5 

2014 and 2015. This delivered a weighted multi-criteria theoretical model with six variables surveyed 6 

and processed. These variables are slope, intense precipitations, soil stability after former large 7 

landslides, lithology, land use / vegetation coverage and seismic intensity. Each variable had partial 8 

weights proposed by local experts in the fields of geotechnics, meteorology, geography, disaster 9 

management, and seismology. The results of this model portrayed a landslide susceptibility map for 10 

Quito and its satellite ‘conurbated’ areas (an approximate total area of 610 km2)  by using the map 11 

algebra GIS tool to sum up the partial weights as shown in Figure 2 (FUNEPSA et al., 2015).  12 
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 1 
Figure 2.  Landslide Susceptibility Map for Quito including 2005.2017 events sites. Data Source: Quito 2 
Municipality 3 
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Our study proposed to develop a binary logistic regression model on the basis of the 1 

variables identified by these experts. A dataset of landslide events that occurred from 2005 to 2017 2 

was therefore collected from the COE-M (Metropolitan Emergency Operations Committee) of Quito. 3 

This database includes some 1400 events, including rotational and translational landslides, flows and 4 

topples, all considered generically as landslides (USGS, 2004). Four additional variables were 5 

included in two steps to test the model. First, population, provided by the INEC, and floor area, then 6 

road density, as well as building footprint area were included in the model. All four variables were 7 

processed and adapted for this research work. Details of all the ten variables included in this study 8 

are registered in Table 1. 9 

Table 1. Input Data to Perform Susceptibility Mapping in Quito. Characteristics. 10 

Content Disaggr
egation  

Specifications, type Source Year 

Landslide Events Point Binary COE-M Quito 2005-
2017 

Slope 50 m Pre-normalized from 
continuous to weights 
(weighted classes)  

FUNEPSA et al., 2015 2015 

Intense 
Precipitations (in 
24 hours) 

50 m Pre-normalized from 
categorical to weights 

FUNEPSA et al., 2015 2015 

Soil Stability (from 
former landslides) 

50 m Pre-normalized from 
categorical to weights 

FUNEPSA et al., 2015 2015 

Lithology 50 m Pre-normalized from 
categorical to weights  

FUNEPSA et al., 2015 2015 

Land Use / 
Vegetation Cover 

50 m Pre-normalized from 
categorical to weights 

FUNEPSA et al., 2015 2015 

Seismicity 50 m Pre-normalized from 
categorical to weights 

FUNEPSA et al., 2015 2015 

Population  Block 
Scale 

Continuous, normalized by 
natural breaks to weights 

INEC 2010 

Road Density Street 
segment 

Continuous, normalized by 
natural breaks to weights 

STHV – MDMQ 2016 

Floor Area Building 
Scale 

Continuous, normalized by 
natural breaks to weights 

STHV – MDMQ 2017 

Building Footprint 
Area 

Building 
Scale 

Continuous, normalized by 
natural breaks to weights 

STHV – MDMQ 2017 

 11 

The dependent variable, landslide events (binary), and the ten independent, explanatory variables 12 

were processed in raster files, with a pixel size of 50 x 50 m2.  13 

 The binary layer of landslide events registers one of two categories for each area unit or pixel: 14 

true (one), when a landslide or more occurred in it; or, false (zero), when no landslides occurred in it. 15 

For the first six variables of the municipality study (FUNEPSA et al., 2015), the conversion from either 16 

classified continuous data or categorical data to weights was set in a scale from 1 to 4. The additional 17 
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four variables, all continuous data, were classified by using natural breaks in four classes, to 1 

correspond to the 1-to-4 scale. The details of this conversion are shown in Table 2. The 2 

complementary data (additional four variables), all in vector format were converted into raster format 3 

to fit with the rest of the dataset (initial six variables). 4 



 

Page 9 of 30 
 

 1 

Table 2. Conversion/correspondences between variables classes or categories and weights (weights normalization) of Input Variables for Susceptibility Modeling in Quito. 2 
Source: MDMQ, INEC, adapted by authors. 3 

Weights (Partial 
Susceptibilities) 

1 2 3 4 

Slope (degrees): • 0°-10° • 10.1°-25° • 25.1°-35° 

• > 50° 

• 35.1°-50° 

Lithology (categories) • Cotopaxi Lahars: steep 
ledges and slopes. Slopes 
and canyons or deep 
throats of ravines and rivers 

• Pululahua Domes: fractured 
dacites from the volcano, 
but they appear compact 
and with resistant 
weathering 

• Quito Lake Deposits 

• Colluvial Mass Movements 

• Colluvial Conglomerates 

• Colluvials 

• Casitagua Volcanics 

• Undifferenced Volcanic 
Lahars 

• Pichincha Volcanics 

• Cangahua formations: 
compacted ashes, 
pyroclastic, lava 

• Cangahua formations: 
undifferenced ashes-
lapillistone with destroyed 
surfaces, strongly bisected 
in hills with rounded tips  

• Alluvial terraces 

• Pululahua pyroclastic flows 

• Guayllabamba, San Miguel 
and Pisque Formations: 
sequences of volcanic 
sands, pyroclastic flows, 
silts, lahars; at the base: 
fluvial-lake sequence, 
occasionally very crumbly  

Land Use / Vegetation Cover 
(categories) 

• North Andes mountain 
bushes 

• Always-green North Andean 
high-mountain forests 

• Mountain pasture 

• High-mountain and 
mountain-moor grassland   

• Reservoirs 

• Inter-Andean dry bushes 

• Inter-Andean dry forest 

• Eucalyptus forests 

• River vegetation from 
xerophytic mountain floor 

• Inter-Andean mountain 

• Airport 

• Short-cycle crops 

• Cropped grass 

• Natural grass 

• Quarries 

• Buildings 

• Eroded soils 
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Saxicola Vegetation 

Soil Stability (categories) • Stabilized • Latent • Reactivated 

• Colluvial 

• Active 

Intense Precipitations in 24 
hours (a. Máx in mm / n>10 
Return time: 100 yrs, b. 
Average rain in mm) / n<10 
yrs) 

• <75.4 • 76.4-91.88 • 91.88-107.34 • 107.34-122.79 

Seismic Intensity (European 
Macroseismic Scale, 
ordinal) 

Not applicable • EMS VII • EMS VIII Not applicable 

Population (Inhabitants) • 0-1.81 • 1.82-5.56 • 5.57-12.47 • 12.48-31.86 
Road Density (m/Ha) • 0-7.50 • 7.51-18.16 • 18.17-31.99 • 32-100.70 
Floor Area (m2) • 0-4180.33 • 4180.34-35950.76 • 35950.77-104508.01 • 104508.02-213196.34 
Building Footprint Area (m2) • 0-3344.26 • 3344.27-34278.63 • 34278.64-104508.01 • 104508.02-213196.34 
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 1 
A second normalization for the ten explanatory variables was tested and applied. It is based on a 2 

percentile normalization. The aim of applying percentile normalization was, first, to have a finer value 3 

than the scale from 1 to 4 and second, to correct an error existing in the provided data that was 4 

produced by a small portion of outliers that distorted the real range of the dataset. That condition 5 

particularly occurred with the data of the floor area and building footprint area. Table 3 shows how the 6 

ten variables were normalized through percentiles. The categorical data weights were assigned a 7 

specific percentile, which was each end or limit resulting from the division of the 1-to-100 scale in 8 

three equal segments (assuming weights as equal units in a discrete scale). For the remaining 9 

continuous data variables, the new values were simply the corresponding percentile.  10 

Table 3. Conversion table of categorical data from weights to percentile normalization, and for continuous data 11 
to percentiles. 12 

Categorical Data Variables: 

• Lithology 

• Land Use/Vegetation Coverage 

• Seismic intensities 

• Intense Precipitations 

• Soil Stability after former 
landslide events 

Weights (Partial 
Susceptibilities): 

1 2 3 4 

Percentile Value: 1 33 67 100 

Continuous Data Variables: 

• Slope 

• Population 

• Road Density 

• Floor Area 

• Building Footprint Area 

Percentile Values: Corresponding percentile (from 1 
to 100) 

 13 

 Two sets of units/pixels with an equal number of items were then selected. The first one with 14 

pixels that did not register the occurrence of landslides and the second one with pixels that did 15 

register one or more events. A generalized linear model regression was then applied to obtain values 16 

corresponding to the intercept of the function and the coefficients for all ten variables. With these 17 

values the logistic regression (Equation 1) was applied in order to obtain the landslide susceptibility 18 

values for all the elements / map units for the study area. These values provide the probability of 19 

occurrence of a landslide, varying from 0 (null probability) to 1 (absolute occurrence). These values 20 

helped generate the reference landslide susceptibility maps. This was done, firstly, for the six 21 

variables from the study provided by the municipality; secondly, with the addition of population and 22 

floor area as new variables; and lastly, with the addition of road density and building footprint area. 23 
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The coefficients of the different Logit models were validated with the Receiving Operating 1 

Characteristic (ROC). 2 

Equation 1. Logistic Regression Function for landslide susceptibility  3 

 4 

where:  5 

ls = landslide susceptibility: the probability of occurrence of a landslide (between 0 and 1) 6 
e = the mathematical constant e (2.71828) 7 
b0 = the intercept of the logistic function 8 
bn = the coefficient of variable xn  9 
xn = the variable number n 10 

 After the generation of a susceptibility map and the validation of the LOGIT model that 11 

generated it through the ROC value, a sensitivity analysis was performed to test how sensitive were 12 

the model outputs to changes in one, many or all its components. Sensitivity analysis is applied to 13 

determine the contribution of input parameters to the accuracy of the model prediction appraised in its 14 

outputs (Abbaszadeh Shahri et al., 2019; Poelmans and Van Rompaey, 2010). For this research, the 15 

referential metric selected was the ROC value as the output for all the generated simulations as 16 

experimented for SA by Poelmans & Van Rompaey (2010). Sensitivity Analyses were performed by 17 

two methods. The first one is called simple, univariate or “one-by-one” method, which is easy to 18 

assess. It consists in changing one ‘free’ parameter of the model at a time to generate variations of 19 

the model, within a defined range and with a defined interval for the changes. In this case, while one 20 

variable changes its coefficient, the others remain unaffected (fixed parameters) and left as the 21 

references. For the model used in this research the parameters changed were each of the ten 22 

coefficients generated by the LOGIT model. A set of factors ranging from 0.1 to 20 with an interval of 23 

0.1 multiplied each of the coefficients of the ten variables, one at a time, to generate in total 2000 24 

susceptibility maps, from which ROC values (outputs) were generated and plotted. Those ROC 25 

values higher than the reference ROC value would indicate that their corresponding models could be 26 

better calibrated than the reference one. 27 

 A second method to test the sensitivity uses random variations for all parameters, from one to 28 

all at a time, also within a range and with an interval. This is also called the Monte-Carlo or stochastic 29 

method. For this research, factors multiplying one or more coefficients at a time ranged from 0.1 to 5 30 

with an interval of 0.1. The number of simulations for this random selection of possibilities was set to 31 

8000, which may vary, according to the computer processing capacities. Once again, ROC values 32 
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(outputs) were generated and those higher than the reference ROC value would indicate that their 1 

corresponding models with their values configuration could be a better calibration than the reference 2 

itself (Bouyer, 2009).  3 

 Another performance test that determines the classification power of the model between 4 

occurrence and not occurrence (i.e. 2 samples, one for each category) is the Kolmogorov-Smirnov 5 

test, taken in this research as a measure of sensitivity of variables. This test was applied only to the 6 

results of the simple sensitivity analysis, only. The metric considered from this tool is a p-value that 7 

measures the significance (at an alpha value of 0.05) from the relation kept between the occurrence 8 

data sample and the non-occurrence one. This will be explained in detail in the results section. 9 

 To summarize, Table 4 shows all the methodology and specific tools applied for this research. 10 

Table 4. Methodology summary, applied tools 11 

 6-Variable 
Model 

8-Variable 
Model 

10-Variable Model 

Weights-
normalizati

on 

Weights-
normalization 

Weights-
normalizati

on 

Percentile-
normalizatio

n 

LOGIT and referential landslide 
susceptibility map and ROC 

value 
  yes yes yes yes 

Sensitivity Analysis – Simple 
Method, variations plot and ROC 

values higher than reference 
no no yes yes 

K-S test no no yes yes 

Sensitivity Analysis – Monte 
Carlo Method, visualization of 2 
best predictors and ROC values 

higher than reference 

no no yes yes 

 12 

4. Analysis and Results 13 

The data from the MCE (Multi-Criteria Evaluation) presented by the Municipality in 2015 (FUNEPSA 14 

et al.) was processed through map algebra, by adding the partial weights assigned to each of the 6 15 

variables. It delivered scores from 8 (lowest landslide susceptibility) to 21 (highest landslide 16 

susceptibility), as shown in Figure 2.  17 

Three logistic regression models were then applied and one variation of the third. The three 18 

models considered the weights normalization (also called pseudo-quantitative) with the scale from 1 19 

to 4 of the variables given by the former study. The first one was run with the same data used for the 20 

initial map algebra calculation shown in Figure 2Error! Reference source not found., which 21 
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contained six variables: lithology, land use / vegetation coverage, seismic intensities, intense 1 

precipitations, soil stability after large events and slope. The second model included two more 2 

variables: population and floor area, while keeping the weights-normalization (classified by natural 3 

breaks). The third model included two more variables: road density and building footprint area, also 4 

normalized. It is noticeable that, as new variables were added, the highest prediction values 5 

(coefficients) of them make them change its relative order. For the third model (10 variables) a 6 

variation in the way variables values were normalized was applied. We then applied a normalization 7 

according to percentiles. The two reference sensitivity maps based on 10 variables with different 8 

weighting methods can be seen in Figure 3. The results of the four logistic regression models are 9 

presented in Table 5 with their corresponding ROC value. In this article, order is referred as the 10 

relative position of the explanatory variable if they are sorted according to their coefficient from 11 

highest to lowest value.12 
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 1 

Table 5. Output values from LOGIT model for Landslide Susceptibility in Quito 2 

Co
de 

Variable 

6-Variable Model 8-Variable Model  10-Variable Model  

Weights-
normalization 

Weights-normalization Weights-normalization Percentile-normalization 

Coeff-
icient 

Desc-
ending 
Order 

Coeff-
icient 

Desc-
ending 
Order 

Coeff-
icient 

Desc-
ending 
Order 

p-value 
Coeff-
icient 

Desc-
ending 
Order 

p-value 

0 Intercept -0.5281  -10.783  -4.1375  5.11e-29 -2.4317  1.75e-10 

1 Lithology 0.3756 3 0.255 5 0.1905 5 4.35e-11 0.0160 2 3.33e-16 

2 
Land use / 
vegetation 
coverage 

0.8483 1 0.425 4 0.0125 7 0.0006 0.0122 3 2.30e-12 

3 
Seismic 
Intensity 

-0.1628 6 -0.091 7 -0.2004 9 0.0538 -0.0110 8 5.50e-08 

4 
Intense 

Precipitations 
0.6528 2 0.450 2 0.3943 3 2.05e-09 0.0238 1 7.69e-33 

5 
Stability after 
large events 

0.0247 5 0.116 6 -0.1526 8 0.7374 0.0047 5 0.9740 

6 Slope 0.3756 4 0.445 3 0.3896 4 1.46e-09 -0.00045 10 0.8802 

7 Population - - 0.684 1 0.5348 2 7.54e-21 0.0034 7 0.1247 

8 Road Density - - - - 0.6101 1 1.02e-15 0.0052 4 9.43e-05 

9 Floor Area - - -0.128 8 0.0566 6 0.5540 -0.0040 6 0.6508 

10 
Building 

Footprint Area 
- - - - -0.2364 10 0.2513 -0.0038 9 9.81e-05 

 ROC value 0.755 0.784 0.7928  0.7417  

3 
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 1 
 2 
Figure 3. Landslide Susceptibility Reference Maps for Quito, from LOGIT modelling (a) weights normalization (b) percentile normalization. 3 
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 1 

 Once the 10-variable model was executed by both normalization methods (weights and 2 

percentiles), a sensitivity analysis was performed for validation. This analysis was applied by the two 3 

methods explained in the methodology section of this article. The first, simple “one-by-one”, method 4 

produced susceptibility maps, whose ROC calculations (determined as metric of the sensitivity), were 5 

plotted as observed in Figure 4. From this analysis, and from the range and interval to produce the 6 

coefficients’ variations, there were 241 ROC values higher from the reference ROC value (0.7928) out 7 

of 2000 runs. Nevertheless, as seen in this graph, the ROC improvement related to these tests is 8 

relatively marginal to the reference. From the 2000 the simulations, the highest ROC value was 9 

0.7943, which is almost 2% higher than the reference simulation ROC value. The coefficients that 10 

have the stronger impacts on results are the population, slope and road density. 11 

 12 

Figure 4. Univariate sensitivity analysis for LOGIT model (weighted normalization): ROC values as metric of 13 
coefficient variations. 14 
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 1 

The same test was applied to the 10-variable LOGIT model. In that case, there were only 34 2 

ROC values higher from the reference ROC value (0.7928) out of 2000 programmed runs. The 3 

plotting of all ROC values derived from the one-by-one variations’ susceptibility maps/datasets can be 4 

seen in Figure 5. Precipitations, Lithology and Road Density are here the most relevant factors 5 

affecting the sensitivity of the model. 6 

 7 

Figure 5. Univariate sensitivity analysis for LOGIT model (percentile normalization): ROC values as metric of 8 
coefficient variations. 9 

 10 

A Kolmogorov-Smirnov (K-S) test was applied to these results for both weights and percentile-11 

based normalization methods. This is another way to approach sensitivity, by measuring a p-value 12 

that measures the probability that, for each simulation and its susceptibility map, the distribution of the 13 

cell values corresponding to event occurrence belong to the same distribution of the cell values 14 

corresponding to non-event occurrence. For the weights-normalized method, the p-value of the test, 15 

with an alpha value of 0.05 showed that in the case of 13 resulting landslide susceptibility maps and 16 

datasets out of the 2000 generated were not significant. These 13 corresponded to variations in 3 17 
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variables: intense precipitations, population and road density. For the percentile-normalized method, 1 

with the same alpha value and number of maps, the resulting p-values showed that only por the case 2 

of 1 map and dataset was non-significant, corresponding to the intense precipitations variable. These 3 

results are illustrated in Figure 6. 4 

 5 

Figure 6. The p-values of K-S test (2-sample) applied to 2000 landslide susceptibility datasets resulting from the 6 
simple (1-by-1) susceptibility analysis of LOGIT model. (a) weights normalization (b) percentile normalization. 7 

 8 

The second sensitivity analysis method applied was the random/stochastic method, also called 9 

the MonteCarlo method. The ROC value was again used as a metric to test the sensitivity through this 10 

method for both weights and percentile normalization types. For both normalization types 8000 runs 11 

of the models were applied through the MonteCarlo methodology. It can be seen an important 12 

difference between the weights and the percentile normalization models. The weights-normalized 13 

model generated 350 ROC values (out of the 8000) higher than the referential 0.7928 ROC value, 14 

while the percentile-normalized one generated 4440 values (out of the 8000) higher than the 15 

referential 0.7417 ROC value. A set of the best 10 out of the 4440 factors combinations to change the 16 

referential coefficients are presented in Table 6.  17 

18 
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 1 
 2 

Table 6. Randomly selected combination of factors to multiply coefficients of the LOGIT model (percentile-3 
normalized) to calibrate it for optimal results in defining the landslide susceptibility map for Quito, Ecuador. 4 

ROC Fact
or 
 1 

Factor  
2 

Factor 
 3 

Factor 
 4 

Factor 
 5 

Factor  
6 

Facto
r  
7 

Factor  
8 

Factor  
9 

Factor  
10 

Variabl
e  

Slope Land 
Use / 
Veg 

Cover 

Seismi
c 

Intensi
ty 

Intense 
Precipitati

ons 

Soil 
Stabili

ty 

Slope Popul
ation  

Road 
Densit

y 

Floor 
Area 

Buildin
g 

Footpri
nt 

0,7417 
** 

0,01
6* 

0,0122 
* 

-0,011 
* 

0,0238 
* 

0,004
7 
* 

-0,000454 
* 

0,003
4 
* 

0,005
2 
* 

-0,004 
* 

-
0,0038 

* 

0,7968
2 

1 1 1 1,3 1 1 1 1 1 1 

0,7968
2 

1 1 1 1,3 1 1 1 1 1 1 

0,7967
6 

1 1 1 1,4 1 1 1 1 1 1 

0,7967
6 

1 1 1 1,4 1 1 1 1 1 1 

0,7967
6 

1 1 1 1,4 1 1 1 1 1 1 

0,7967
1 

1 1,5 1,4 1,3 1 1 1 1 1,9 1 

0,7966
7 

1 1 1 1,2 1 1 1 1 1 1 

0,7966
7 

1 1 1 1,2 1 1 1 1 1 1 

0,7966
2 

1 1 1 1,4 3,9 1 1 1 1 1 

0,7965
5 

1 1 1 1,5 3,1 1 1 1 0,3 1 

0,7965
3 

1 1 1 1,1 1 1 1 1 1 1 

0,7965
3 

1 1 1 1,1 1 1 1 1 1 1 

0,7965
1 

3,4 4,2 1,6 3,9 0,1 4,1 3,1 3,7 2,9 1,1 

0,7965
1 

1 1 1 1,1 1,8 1 1 1 1 1 

0,7965
1 

1 1 1 1,1 1,8 1 1 1 1 1 

0,7964
6 

0,9 1 1 1 1 1 1 1 1 1 

0,7964
6 

0,9 1 1 1 1 1 1 1 1 1 

* The referential coefficients for each variable provided from the former LOGIT model application 
(percentile-normalization) 
** The referential ROC values provided after the former LOGIT model application 
(percentile-normalization) 

  

 5 
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The two variables with the highest values of coefficients (see Table 5) were selected to compare 1 

their ROC values with combination of the variations of both coefficients, while the rest 8 remained as 2 

the referential results. They were illustrated in graphs to approximately identify the coordinates 3 

(combination) that performs the highest ROC value. For the weights-normalized model these 4 

variables were Population and Road Density and the random outputs selected 12 combinations, but 5 

none of them were higher than the reference (see Figure 7). For the weights-normalized model these 6 

variables were Population and Road Density and the random outputs selected 18 combinations. In 7 

this last case, all combinations performed higher ROC values than the referential (0.7417), as shown 8 

in Figure 8. 9 

 10 

Figure 7. ROC values resulting from random combinations of population and road density coefficients variations 11 
from the referential outputs from the LOGIT model (weights normalization). 12 
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 1 
Figure 8. ROC values resulting from random combinations of Lithology and Precipitations coefficients variations 2 
from the referential outputs from the LOGIT model (percentile normalization). 3 

 4 

5. Discussion 5 

A relevant issue for further research is to consider as a parameter the way the data is processed. Van 6 

Dessel, van Rompaeya, & Szilassi, (2011) stress on the incidence that the quality of the input maps 7 

has on the resulting coefficients of logistic regression models applied for landslide susceptibility 8 

analysis. This research implements a so-called pseudo-quantitative method, which, initially consider 9 

weights from a multicriteria assessment of landslide susceptibility (Leoni et al., 2009; Lombardo and 10 

Mai, 2018), which later is, as commonly, migrated to a LOGIT model. This pondering is usually done 11 

according to criteria determined by experts and their knowledge of the study area. Other works have 12 

adopted other ways of applying this pondering based on the frequency ratio of events that a specific 13 

class has (Bui et al., 2020), which would be ideal when complete events report is available, which is 14 

not the case for Quito. For this research, part of the processing of the variables was normalization 15 

based on both weights and percentiles methods. In this regard, there are differences that should not 16 

be overlooked when running the LOGIT between the weighted method and the percentile-normalized 17 

one for the variables tuning.  18 

By seizing the availability of data provided by the municipality of Quito, this research considered 19 

to include more variables to the previous landslide susceptibility study done by the municipality. 20 

These were population, road density, floor area and building footprint area, which may have helped to 21 
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be more specific in characterizing the urban category from the land use / vegetation coverage variable 1 

from the former study. It could be expected that population, which appears as an important predictor 2 

after the LOGIT application, is related to building footprint area and floor area. Nonetheless, the latter 3 

variables did not perform to be relevant predictors. This might be related with the fact that the largest 4 

floor area volumes are concentrated on the center-north of the main city, an area where self-built / 5 

informal construction is low, and building are often medium-rise with appropriate construction 6 

techniques for soil management. A further step of this study, beyond a better tuning of the model, 7 

could be a complement to assess building scales, from a vulnerability and uncertainty quantification 8 

approach, considering the heterogeneity of urban fabrics as the ones performed by Kaynia et al. 9 

(2008) and Du et al. (2013), which may indeed steer to enhance the data quality surveying of building 10 

conditions and soil management to collect it at a large scale, as the case of Quito. 11 

Another complementary remark to the results in terms of policy implications is that when 12 

observing the relevance of the road density variable as predictor it does not necessarily mean that 13 

roads per se promote topples risk. In parallel way, for the case of translational landslides, attention 14 

should focus on sloppy soils that alternate soft and hard rock sliding strata (Du et al., 2020), which 15 

highlights lithology as predictor, but the territory is too heterogeneous to generalize this assumption. 16 

In fact, heterogeneity can importantly affect the model (Wang et al., 2020).  Considering roads as 17 

promoters of development, it is necessary to research on the detail of how vulnerability is produced at 18 

the household scale in terms of construction techniques and soil management in the resulting 19 

landslide-susceptible areas from this model. Due to the costly and complex nature of these studies, it 20 

could be thought as a sampling studies, to build a multiple-case analysis. 21 

 When revising the quality of the data corresponding to soil stability after previous large events 22 

and the seismic intensities, it is noticeable that the level of detail is poor, corresponds to a smaller 23 

scale and collects few information. This might be resulting in imprecise outputs of the models here 24 

referred. Micro-zoning seismicity studies are being surveyed at the moment as part of a long-term 25 

project. In the future, this could help precise results in the modeling for landslide susceptibility studies, 26 

as well as together with better quality and new data, which seems to be promising from the municipal 27 

institution of Quito. 28 
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6. Conclusions 1 

This article presents the application of a binary logistic regression model with the objective of defining 2 

a landslide susceptibility map for the urban area of Quito Metropolitan District in Ecuador (main city 3 

and satellite urban areas). A landslide events database covering the period 2005-2017 was used as 4 

dependent binary variable. Ten explanatory variables were tested: lithology, land use / vegetation 5 

coverage, seismic intensities, intense precipitations, soil stability based on previous events, slope, 6 

population, road density, floor area, and ground-built area. Two normalization methods were applied. 7 

The first method considered weights previously assigned to the variables scores and the second one 8 

applied a percentile scale. 9 

 After running the LOGIT model, the weighted-scaled method had a Receiver Operating 10 

Characteristic (ROC) of 0.7928, while the percentile-scaled one obtained 0.7421. Regarding the 11 

resulting coefficients for the explanatory variables, the first method performed more stable values than 12 

the second one (more oscillation), after simulation of the models for several times. According to these 13 

values, the first method portrayed as best predictors road density, population, intense precipitations 14 

and slope, in that order. The second method portrayed intense precipitations, lithology, land use / 15 

vegetation coverage and road density as best predictors, in that order. Both methods presented 16 

ground-built area and seismic intensities with negative values and as the lowest coefficients for the 17 

LOGIT model. The other variables fluctuate around zero. 18 

 A subsequent analysis was applied to the LOGIT model to measure how sensitive were all 19 

explanatory variables as parameters for the model. Two methods were used for this matter. These 20 

were the one-by-one ‘simple’ method (variation of the coefficient of one variable at a time, while the 21 

others remain unchanged) and the random-variation one, also called MonteCarlo (in which all 22 

variables may change randomly). The Area Under the ROC Curve (AUC), also called ROC value has 23 

been adopted, considering it is a common measure to evaluate prediction accuracy of models for 24 

natural hazards (Abbaszadeh Shahri et al., 2019; Wang et al., 2020). By interpreting the ROC value 25 

as a metric from the simple method, it can be observed that the slope, road density, intense 26 

precipitations and population variables’ curves importantly vary along with the variations of the factors 27 

that multiply the reference coefficients. This is the case for the weights-normalized model  (see Figure 28 

4 ). For the case of the percentile normalized model (see Figure 5), the most sensitive variables’ 29 

curves are intense precipitations, land use/vegetation coverage, lithology and road density. 30 
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When executing the LOGIT model, the weights-normalized model (ROC=0.7928) proved to be 1 

more stable and reliable than the percentile-normalized one (ROC=0.7417), considering the results 2 

from the MonteCarlo Sensitivity Analysis, from which out of 8000 runs, 4440 showed higher ROC 3 

values than the referential one, reaching values of almost 0.8. This differs substantially from the 4 

weights-normalized model, which in the MonteCarlo application only provided 350 higher ROC values 5 

from the reference. This means that the calibration of the percentile-normalized model’s variables can 6 

still be adjusted through their coefficients to improve predictability.  7 

 8 

 9 
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Abbreviations 2 

 3 
AUC Area Under the Curve (ROC value) 4 

EMS European Macroseismic Scale 5 

EPMMOP Empresa Pública Metropolitana de Movilidad y Obras Públicas (Metropolitan Public 6 

Enterprise of Mobility and Public Works) 7 

GIS Geographic Information Systems 8 

INEC Instituto Nacional de Estadísticas y Censos de Ecuador (National Institute of 9 

Statistics and Census of Ecuador) 10 

MCE Multi-Criteria Evaluation 11 

MDMQ Municipio del Distrito Metropolitano de Quito (Government of the Metropolitan District 12 

of Quito) 13 

ROC Receiving Operator Characteristic 14 

SA Sensitivity Analysis 15 

SGP Secretaría General de Planificación (General Planning Secretariat of the MDMQ) 16 

SSG Secretaría de Seguridad y Gobernabilidad (Security and Governability Secretariat of 17 

the MDMQ) 18 

STHV Secretaría de Territorio, Hábitat y Vivienda (Territory, Habitat and Housing 19 

Secretariat of the MDMQ) 20 
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