
Chapter 4

Protocols

It is impossible to foresee the consequences of being clever.
– CHRISTOPHER STRACHEY

If it’s provably secure, it probably isn’t.
– LARS KNUDSEN

4.1 Introduction

Passwords are just one example of a more general concept, the security protocol.
If security engineering has a core theme, it may be the study of security proto-
cols. They specify the steps that principals use to establish trust relationships.
They are where the cryptography and the access controls meet; they are the
tools we use to link up human users with remote machines, to synchronise se-
curity contexts, and to regulate key applications such as payment. We’ve come
across a few protocols already, including challenge-response authentication and
Kerberos. In this chapter, I’ll dig down into the details, and give many examples
of how protocols fail.

A typical security system consists of a number of principals such as people,
companies, phones, computers and card readers, which communicate using a
variety of channels including fibre, wifi, the cellular network, bluetooth, infrared,
and by carrying data on physical devices such as bank cards and transport
tickets. The security protocols are the rules that govern these communications.
They are designed so that the system will survive malicious acts such as people
telling lies on the phone, hostile governments jamming radio, or forgers altering
the data on train tickets. Protection against all possible attacks is often too
expensive, so protocol designs make assumptions about threats. For example,
when we get a user to log on by entering a password into a machine, we implicitly
assume that she can enter it into the right machine. In the old days of hard-
wired terminals in the workplace, this was reasonable; now that people log on
to websites over the Internet, it is much less obvious. Evaluating a protocol
thus involves two questions: first, is the threat model realistic? Second, does
the protocol deal with it?

125

4.2. PASSWORD EAVESDROPPING RISKS

Protocols may be very simple, such as swiping a badge through a reader
to enter a building. They often involve interaction, and are not necessarily
technical. For example, when we order a bottle of fine wine in a restaurant, the
standard protocol is that the wine waiter o↵ers us the menu (so that we see the
prices but our guests don’t); they bring the bottle, so we can check the label,
the seal and the temperature; they open it so we can taste it; and then serve
it. This has evolved to provide some privacy (our guests don’t learn the price),
some integrity (we can be sure we got the right bottle and that it wasn’t refilled
with cheap plonk) and non-repudiation (we can’t complain afterwards that the
wine was o↵). Matt Blaze gives other non-technical protocol examples from
ticket inspection, aviation security and voting in [260]. Traditional protocols
like these often evolved over decades or centuries to meet social expectations as
well as technical threats.

At the technical end of things, protocols get a lot more complex, and they
don’t always get better. As the car industry moved from metal keys to electronic
keys with buttons you press, theft fell, since the new keys were harder to copy.
But the move to keyless entry has seen car crime rise again, as the bad guys
figured out how to build relay devices that would make a key seem closer to
the car than it actually was. Another security upgrade that’s turned out to be
tricky is the move from magnetic-strip cards to smartcards. Europe made this
move in the late 2000s while the USA is only catching up in the late 2010s.
Fraud against cards issued in Europe actually went up for several years; clones
of European cards were used in magnetic-strip cash machines in the USA, as
the two systems’ protection mechanisms didn’t quite mesh. And there was a
protocol failure that let a thief use a stolen chipcard in a store even if he didn’t
know the PIN, which took the banks several years to fix.

So we need to look systematically at security protocols and how they fail.

4.2 Password Eavesdropping Risks

Passwords and PINs are still the foundation for much of computer security, as
the main mechanism used to authenticate humans to machines. We discussed
their usability in the last chapter; now let’s consider the kinds of technical attack
we have to block when designing protocols that operate between one machine
and another.

Remote key entry is a good place to start. The early systems, such as the
remote control used to open your garage or to unlock cars manufactured up to
the mid-1990’s, just broadcast a serial number. The attack that killed them was
the ‘grabber’, a device that would record a code and replay it later. The first
grabbers, seemingly from Taiwan, arrived on the market in about 1995; thieves
would lurk in parking lots or outside a target’s house, record the signal used to
lock the car and then replay it once the owner had gone1.

1With garage doors it’s even worse. A common chip is the Princeton PT2262, which uses
12 tri-state pins to encode 312 or 531,441 address codes. However implementers often don’t
read the data sheet carefully enough to understand tri-state inputs and treat them as binary
instead, getting 212. Many of them only use eight inputs, as the other four are on the other
side of the chip. And as the chip has no retry-lockout logic, an attacker can cycle through

Security Engineering 126 Ross Anderson

4.3. WHO GOES THERE? – SIMPLE AUTHENTICATION

The first countermeasure was to use separate codes for lock and unlock.
But the thief can lurk outside your house and record the unlock code before
you drive away in the morning, and then come back at night and help himself.
Second, sixteen-bit passwords are too short. Occasionally people found they
could unlock the wrong car by mistake, or even set the alarm on a car whose
owner didn’t know he had one [308]. And by the mid-1990’s, devices appeared
that could try all possible codes one after the other. A code will be found on
average after about 215 tries, and at ten per second that takes under an hour.
A thief operating in a parking lot with a hundred vehicles within range would
be rewarded in less than a minute with a car helpfully flashing its lights.

The next countermeasure was to double the length of the password from 16
to 32 bits. The manufacturers proudly advertised ‘over 4 billion codes’. But
this only showed they hadn’t really understood the problem. There were still
only one or two codes for each car, and grabbers still worked fine.

Using a serial number as a password has a further vulnerability: lots of
people have access to it. In the case of a car, this might mean all the dealer
sta↵, and perhaps the state motor vehicle registration agency. Some burglar
alarms have also used serial numbers as master passwords, and here it’s even
worse: when a bank buys a burglar alarm, the serial number may appear on the
order, the delivery note and the invoice. And banks don’t like sending someone
out to buy something for cash.

Simple passwords are sometimes the appropriate technology. For example,
a monthly season ticket for our local swimming pool simply has a barcode. I’m
sure I could make a passable forgery, but as the turnstile attendants get to know
the ‘regulars’, there’s no need for anything more expensive. For things that are
online, however, static passwords are hazardous; the Mirai botnet got going by
recruiting wifi-connected CCTV cameras which had a password that couldn’t be
changed. And for things people want to steal, like cars, we also need something
better. This brings us to cryptographic authentication protocols.

4.3 Who goes there? – simple authentication

A simple modern authentication device is the token that some multistorey park-
ing garages give subscribers to raise the barrier. The token has a single button;
when you press it, it first transmits its serial number and then sends an au-
thentication block consisting of the same serial number, followed by a random
number, all encrypted using a key unique to the device, and sent to the garage
barrier (typically by radio at 434MHz, though infrared is also used). We will
postpone discussion of how to encrypt data to the next chapter, and simply
write {X}K for the message X encrypted under the key K.

Then the protocol between the access token and the parking garage can be
written as:

T �! G : T, {T,N}KT

the combinations quickly and open your garage door after 27 attempts on average. Twelve
years after I noted these problems in the second edition of this book, the chip has not been
withdrawn. It’s now also sold for home security systems and for the remote control of toys.

Security Engineering 127 Ross Anderson

4.3. WHO GOES THERE? – SIMPLE AUTHENTICATION

This is standard protocol notation, so we’ll take it slowly.

The token T sends a message to the garage G consisting of its name T

followed by the encrypted value of T concatenated with N , where N stands for
‘number used once’, or nonce. Everything within the braces is encrypted, and
the encryption binds T and N together as well as obscuring their values. The
purpose of the nonce is to assure the recipient that the message is fresh, that is,
it is not a replay of an old message. Verification is simple: the garage reads T ,
gets the corresponding key KT , deciphers the rest of the message, checks that
the nonce N has not been seen before, and finally that the plaintext contains
T .

One reason many people get confused is that to the left of the colon, T

identifies one of the principals (the token that represents the subscriber) whereas
to the right it means the name (that is, the unique device number) of the token.
Another is that once we start discussing attacks on protocols, we may find that a
message intended for one principal was intercepted and played back by another.
So you might think of the T �! G to the left of the colon as a hint as to what
the protocol designer had in mind.

A nonce can be anything that guarantees the freshness of a message. It can
be a random number, a counter, a random challenge received from a third party,
or even a timestamp. There are subtle di↵erences between them, such as in the
level of resistance they o↵er to various kinds of replay attack, and the ways
in which they increase system cost and complexity. In very low-cost systems,
random numbers and counters predominate as it’s cheaper to communicate in
one direction only, and cheap devices usually don’t have clocks.

Key management in such devices can be very simple. In a typical garage
token product, each token’s key is just its unique device number encrypted under
a global master key KM known to the garage:

KT = {T}KM

This is known as key diversification or key derivation. It’s a common way
of implementing access tokens, and is widely used in smartcards too. The goal
is that someone who compromises a token by drilling into it and extracting
the key cannot masquerade as any other token; all he can do is make a copy
of one particular subscriber’s token. In order to do a complete break of the
system, and extract the master key that would enable him to pretend to be
any of the system’s users, an attacker has to compromise the central server at
the garage (which might protect this key in a tamper-resistant smartcard or
hardware security module).

But there is still room for error. A common failure mode is for the serial
numbers – whether unique device numbers or protocol counters – not to be
long enough, so that someone occasionally finds that their remote control works
for another car in the car park as well. This can be masked by cryptography.
Having 128-bit keys doesn’t help if the key is derived by encrypting a 16-bit
device number, or by taking a 16-bit key and repeating it eight times. In either
case, there are only 216 possible keys, and that’s unlikely to be enough even if

Security Engineering 128 Ross Anderson

4.3. WHO GOES THERE? – SIMPLE AUTHENTICATION

they appear to be random2.

Protocol vulnerabilities usually give rise to more, and simpler, attacks than
cryptographic weaknesses do. An example comes from the world of prepayment
utility meters. Over a million households in the UK, plus over 400 million in
developing countries, have an electricity or gas meter that accepts encrypted
tokens: the householder buys a magic number and types it into the meter,
which then dispenses the purchased quantity of energy. One early meter that
was widely used in South Africa checked only that the nonce was di↵erent from
last time. So the customer could charge their meter indefinitely by buying two
low-value power tickets and then feeding them in one after the other; given two
valid codes A and B, the series ABABAB... was seen as valid [93].

So the question of whether to use a random number or a counter is not as
easy as it looks. If you use random numbers, the lock has to remember a lot
of past codes. There’s the valet attack, where someone with temporary access,
such as a valet parking attendant, records some access codes and replays them
later to steal your car. In addition, someone might rent a car, record enough
unlock codes, and then go back later to the rental lot to steal it. Providing
enough nonvolatile memory to remember thousands of old codes might add a
few cents to the cost of your lock.

If you opt for counters, the problem is synchronization. The key might be
used for more than one lock; it may also be activated repeatedly by accident
(I once took an experimental token home where it was gnawed by my dogs).
So you need a way to recover after the counter has been incremented hundreds
or possibly even thousands of times. One common product uses a sixteen bit
counter, and allows access when the deciphered counter value is the last valid
code incremented by no more than sixteen. To cope with cases where the token
has been used more than sixteen times elsewhere (or gnawed by a family pet),
the lock will open on a second press provided that the counter value has been
incremented between 17 and 32,767 times since a valid code was entered (the
counter rolls over so that 0 is the successor of 65,535). This is fine in many
applications, but a thief who can get six well-chosen access codes – say for values
0, 1, 20,000, 20,001, 40,000 and 40,001 – can break the system completely. In
your application, would you be worried about that?

So designing even a simple token authentication mechanism is not as easy
as it looks, and if you assume that your product will only attract low-grade
adversaries, this assumption might fail over time. An example is accessory
control. Many printer companies embed authentication mechanisms in printers
to ensure that genuine toner cartridges are used. If a competitor’s product is
loaded instead, the printer may quietly downgrade from 1200 dpi to 300 dpi, or
simply refuse to work at all. All sorts of other industries are getting in on the act,
from scientific instruments to games consoles. The cryptographic mechanisms
used to support this started o↵ in the 1990s being fairly rudimentary, as vendors
thought that any competitor who circumvented them on an industrial scale could
be sued or even jailed under copyright law. But then a judge found, in the case
Lexmark v SCC, that while a vendor had the right to hire the best cryptographer
they could find to lock their customers in, a competitor also had the right to

2We’ll go into this in more detail in section 5.3.1.2 where we discuss the birthday theorem
in probability theory.

Security Engineering 129 Ross Anderson

4.3. WHO GOES THERE? – SIMPLE AUTHENTICATION

hire the best cryptanalyst they could find to set them free to buy accessories
from elsewhere. This set o↵ a serious arms race, which we’ll meet from time to
time in later chapters. Here I’ll just remark that security isn’t always a good
thing. Security mechanisms are used to support many business models, where
they’re typically stopping the device’s owner doing things she wants to rather
than protecting her from the bad guys. The e↵ect may be contrary to public
policy; one example is cellphone locking, which results in hundreds of millions
of handsets ending up in landfills each year, with toxic heavy metals as well as
the embedded carbon cost.

4.3.1 Challenge and response

Since 1995, all cars sold in Europe were required to have a ‘cryptographically
enabled immobiliser’ and by 2010, most cars had remote-controlled door un-
locking too, though most also have a fallback metal key so you can still get into
your car even if the key fob battery is flat. The engine immobiliser is harder
to bypass using physical means and uses a two-pass challenge-response protocol
to authorise engine start. As the car key is inserted into the steering lock, the
engine controller sends a challenge consisting of a random n-bit number to the
key using short-range radio. The car key computes a response by encrypting
the challenge; this is often done by a separate RFID chip that’s powered by the
incoming radio signal and so keeps on working even if the battery is flat. The
frequency is low (125kHz) so the car can power the transponder directly, and
the exchange is also relatively immune to a noisy RF environment.

Writing E for the engine controller, T for the transponder in the car key,
K for the cryptographic key shared between the transponder and the engine
controller, and N for the random challenge, the protocol may look something
like:

E �! T : N

T �! E : T, {T,N}K

This is sound in theory, but implementations of security mechanisms often
fail the first two or three times people try it.

Between 2005 and 2015, all the main remote key entry and immobiliser
systems were broken, whether by security researchers, car thieves or both. The
attacks involved a combination of protocol errors, peer key management, weak
ciphers, and short keys mandated by export control laws.

The first to fall was TI’s DST transponder chip, which was used by at least
two large car makers and was also the basis of the SpeedPass toll payment
system. Stephen Bono and colleagues found in 2005 that it used a block ci-
pher with a 40-bit key, which could be calculated by brute force from just two
responses [297]. This was one side-e↵ect of US cryptography export controls,
which I discuss in 26.2.7.1. From 2010, Ford, Toyota and Hyundai adopted
a successor product, the DST80. The DST80 was broken in turn in 2020 by
Lennert Wouters and colleagues, who found that as well as side-channel attacks
on the chip, there are serious implementation problems with key management:
Hyundai keys have only 24 bits of entropy, while Toyota keys are derived from

Security Engineering 130 Ross Anderson

4.3. WHO GOES THERE? – SIMPLE AUTHENTICATION

the device serial number that an attacker can read (Tesla was also vulnerable but
unlike the older firms it could fix the problem with a software upgrade) [2048].
Next was Keeloq, which was used for garage door openers as well as by some
car makers; in 2007, Eli Biham and others found that given an hour’s access to
a token they could collect enough data to recover the key [243]. Worse, in some
types of car, there is also a protocol bug, in that the key diversification used
exclusive-or: KT = T � KM . So you can rent a car of the type you want to
steal and work out the key for any other car of that type.

Also in 2007, someone published the Philips Hitag 2 cipher, which also had
a 48-bit secret key. But this cipher is also weak, and as it was attacked by
various cryptanalysts, the time needed to extract a key fell from days to hours
to minutes. By 2016, attacks took 8 authentication attempts and a minute of
computation on a laptop; they worked against cars from all the French and
Italian makers, along with Nissan, Mitsubishi and Chevrolet [748].

The last to fall was the Megamos Crypto transponder, used by Volkswagen
and others. Car locksmithing tools appeared on the market from 2008, which
included the Megamos cipher and were reverse engineered by researchers from
Birmingham and Nijmegen – Roel Verdult, Flavio Garcia and Barış Ege – who
cracked it [1952]. Although it has a 96-bit secret key, the e↵ective key length
is only 49 bits, about the same as Hitag 2. Volkswagen got an injunction in
the High Court in London to stop them presenting their work at Usenix 2013,
claiming that their trade secrets had been violated. The researchers resisted,
arguing that the locksmithing tool supplier had extracted the secrets. After
two years of argument, the case settled without admission of liability on either
side. Closer study then threw up a number of further problems. There’s also a
protocol attack as an adversary can rewrite each 16-bit word of the 96-bit key,
one after another, and search for the key 16 bits at a time; this reduces the time
needed for an attack from days to minutes [1953].

Key management was pervasively bad. A number of Volkswagen implemen-
tations did not diversify keys across cars and transponders, but used a fixed
global master key for millions of cars at a time. Up till 2009, this used a cipher
called AUT64 to generate device keys; thereafter they moved to a stronger ci-
pher called XTEA but kept on using global master keys, which were found in
23 models from the Volkswagen-Audi group up till 2016 [748]3.

It’s easy to find out if a car is vulnerable: just try to buy a spare key. If
the locksmith companies have figured out how to duplicate the key, your local
garage will sell you a spare for a few bucks. We have a spare key for my wife’s
2005 Lexus, bought by the previous owner. But when we lost one of the keys
for my 2012 Mercedes, we had to go to a main dealer, pay over £200, show
my passport and the car log book, have the mechanic photograph the vehicle
identification number on the chassis, send it all o↵ to Mercedes and wait for

3There are some applications where universal master keys are inevitable, such as in com-
municating with a heart pacemaker – where a cardiologist may need to tweak the pacemaker
of any patient who walks in, regardless of where it was first fitted, and regardless of whether
the network’s up – so the vendor puts the same key in all its equipment. Another exam-
ple is the subscriber smartcard in a satellite-TV set-top box, which we’ll discuss later. But
they often result in a break-once-run-anywhere (BORA) attack. To install universal master
keys in valuable assets like cars in a way that facilitated theft and without even using proper
tamper-resistant chips to protect them was an egregious error.

Security Engineering 131 Ross Anderson

4.3. WHO GOES THERE? – SIMPLE AUTHENTICATION

a week. We saw in Chapter 3 that the hard part of designing a password
system was recovering from compromise without the recovery mechanism itself
becoming either a vulnerability or a nuisance. Exactly the same applies here!

But the worst was still to come: passive keyless entry systems (PKES).
Challenge-response seemed so good that car vendors started using it with just
a push button on the dashboard to start the car, rather than with a metal key.
Then they increased the radio frequency to extend the range, so that it worked
not just for short-range authentication once the driver was sitting in the car,
but as a keyless entry mechanism. The marketing pitch was that so long as
you keep the key in your pocket or handbag you don’t have to worry about it;
the car will unlock when you walk up to it, lock as you walk away, and start
automatically when you touch the controls. What’s not to like?

Well, now you don’t have to press a button to unlock your car, it’s easy for
thieves to use devices that amplify or relay the signals. The thief sneaks up to
your front door with one relay while leaving the other next to your car. If you
left your keys on the table in the hall, the car door opens and away he goes.
Even if the car is immobilised he can still steal your stu↵. And after many years
of falling car thefts, the statistics surged in 2017 with 56% more vehicles stolen
in the UK, followed by a further 9% in 2018 [823]4.

The takeaway message is that the attempt since about 1990 to use cryp-
tography to make cars harder to steal had some initial success, as immobilisers
made cars harder to steal and insurance premiums fell. It has since backfired,
as the politicians and then the marketing people got in the way. The politicians
said it would be disastrous for law enforcement if people were allowed to use
cryptography they couldn’t crack, even for stopping car theft. Then the immo-
biliser vendors’ marketing people wanted proprietary algorithms to lock in the
car companies, whose own marketing people wanted passive keyless entry as it
seemed cool.

What can we do? Well, at least two car makers have put an accelerometer
in the key fob, so it won’t work unless the key is moving. One of our friends
left her key on the car seat while carrying her child indoors, and got locked out.
The local police advise us to use old-fashioned metal steering-wheel locks; our
residents’ association recommends keeping keys in a biscuit tin. As for me, we
bought such a car but found that the keyless entry was simply too flaky; my
wife got stranded in a supermarket car park when it just wouldn’t work at all.
So we took that car back, and got a second-hand one with a proper push-button
remote lock. There are now chips using AES from NXP, Atmel and TI – of
which the Atmel is open source with an open protocol stack.

However crypto by itself can’t fix relay attacks; the proper fix is a new radio
protocol based on ultrawideband (UWB) with intrinsic ranging, which measures
the distance from the key fob to the car with a precision of 10cm up to a range of
150m. This is fairly complex to do properly, and the design of the new 802.15.4z
Enhanced Impulse Radio is described by Srdjan Capkun and colleagues [1764];

4To be fair this was not due solely to relay attacks, as about half of the high-value thefts
seem to involve connecting a car theft kit to the onboard diagnostic port under the glove box.
As it happens, the authentication protocols used on the CAN bus inside the vehicle are also
vulnerable in a number of ways [891]. Updating these protocols will take many years because
of the huge industry investment.

Security Engineering 132 Ross Anderson

4.3. WHO GOES THERE? – SIMPLE AUTHENTICATION

the first chip became available in 2019, and it will ship in cars from 2020. Such
chips have the potential to replace both the Bluetooth and NFC protocols, but
they might not all be compatible; there’s a low-rate pulse (LRP) mode that has
an open design, and a high-rate pulse (HRP) variant that’s partly proprietary.
Were I advising a car startup, LRP would be my starting point.

Locks are not the only application of challenge-response protocols. In HTTP
Digest Authentication, a web server challenges a client or proxy, with whom it
shares a password, by sending it a nonce. The response consists of the hash
of the nonce, the password, and the requested URI [715]. This provides a
mechanism that’s not vulnerable to password snooping. It’s used, for example,
to authenticate clients and servers in SIP, the protocol for Voice-Over-IP (VOIP)
telephony. It’s much better than sending a password in the clear, but like keyless
entry it su↵ers from middleperson attacks (the beneficiaries are the spooks).

4.3.2 Two-factor authentication

The most visible use of challenge-response is probably in two-factor authentica-
tion. Many organizations issue their sta↵ with password generators to let them
log on to corporate computer systems, and many banks give similar devices to
customers. They may look like little calculators (and some even work as such)
but their main function is as follows. When you want to log in, you are presented
with a random nonce of maybe seven digits. You key this into your password
generator, together with a PIN of maybe four digits. The device encrypts these
eleven digits using a secret key shared with the corporate security server, and
displays the first seven digits of the result. You enter these seven digits as your
password. This protocol is illustrated in Figure 4.1. If you had a password gen-
erator with the right secret key, and you entered the PIN right, and you typed
in the result correctly, then you get in.

Formally, with S for the server, P for the password generator, PIN for the
user’s Personal Identification Number, U for the user and N for the nonce:

S �! U : N

U �! P : N,PIN

P �! U : {N,PIN}K
U �! S : {N,PIN}K

These devices appeared from the early 1980s and caught on first with phone
companies, then in the 1990s with banks for use by sta↵. There are simplified
versions that don’t have a keyboard, but just generate new access codes by
encrypting a counter or a clock. And they work; the US Defense Department
announced in 2007 that an authentication system based on the DoD Common
Access Card had cut network intrusions by 46% in the previous year [320].

This was just when crooks started phishing bank customers at scale, so many
banks adopted the technology. One of my banks gives me a small calculator that
generates a new code for each logon, and also allows me to authenticate new
payees by using the last four digits of their account number in place of the
challenge. My other bank uses the Chip Authentication Program (CAP), a

Security Engineering 133 Ross Anderson

4.3. WHO GOES THERE? – SIMPLE AUTHENTICATION

N?
.

N?

N, PIN K

Figure 4.1: – password generator use

calculator in which I can insert my bank card to do the crypto.

But this still isn’t foolproof. In the second edition of this book, I noted
‘someone who takes your bank card from you at knifepoint can now verify that
you’ve told them the right PIN’, and this now happens. I also noted that ‘once
lots of banks use one-time passwords, the phishermen will just rewrite their
scripts to do real-time man-in-the-middle attacks’ and this has also become
widespread. To see how such attacks work, let’s look at a military example.

4.3.3 The MIG-in-the-middle attack

The first use of challenge-response authentication protocols was probably in the
military, with ‘identify-friend-or-foe’ (IFF) systems. The ever-increasing speeds
of warplanes in the 1930s and 1940s, together with the invention of the jet engine,
radar and rocketry, made it ever more di�cult for air defence forces to tell their
own craft apart from the enemy’s. This led to a risk of pilots shooting down
their colleagues by mistake and drove the development of automatic systems to
prevent this. These were first fielded in World War II, and enabled an airplane
illuminated by radar to broadcast an identifying number to signal friendly intent.
In 1952, this system was adopted to identify civil aircraft to air tra�c controllers
and, worried about the loss of security once it became widely used, the US Air
Force started a research program to incorporate cryptographic protection in
the system. Nowadays, the typical air defense system sends random challenges
with its radar signals, and friendly aircraft can identify themselves with correct
responses.

It’s tricky to design a good IFF system. One of the problems is illustrated
by the following story, which I heard from an o�cer in the South African Air
Force (SAAF). After it was published in the first edition of this book, the story

Security Engineering 134 Ross Anderson

4.3. WHO GOES THERE? – SIMPLE AUTHENTICATION

was disputed – as I’ll discuss below. Be that as it may, similar games have been
played with other electronic warfare systems since World War 2. The ‘MIG-in-
the-middle’ story has since become part of the folklore, and it nicely illustrates
how attacks can be carried out in real time on challenge-response protocols.

In the late 1980’s, South African troops were fighting a war in northern
Namibia and southern Angola. Their goals were to keep Namibia under white
rule, and impose a client government (UNITA) on Angola. Because the South
African Defence Force consisted largely of conscripts from a small white pop-
ulation, it was important to limit casualties, so most South African soldiers
remained in Namibia on policing duties while the fighting to the north was done
by UNITA troops. The role of the SAAF was twofold: to provide tactical sup-
port to UNITA by bombing targets in Angola, and to ensure that the Angolans
and their Cuban allies did not return the compliment in Namibia.

N?

N?

ANGOLA

NAMIBIA

SAAF

MIG

N?

N
K

SAAF

N
K

N
K

Figure 4.2: – the MIG-in-the middle attack

Suddenly, the Cubans broke through the South African air defenses and
carried out a bombing raid on a South African camp in northern Namibia,
killing a number of white conscripts. This proof that their air supremacy had
been lost helped the Pretoria government decide to hand over Namibia to the

Security Engineering 135 Ross Anderson

4.3. WHO GOES THERE? – SIMPLE AUTHENTICATION

insurgents – itself a huge step on the road to majority rule in South Africa
several years later. The raid may also have been the last successful military
operation ever carried out by Soviet bloc forces.

Some years afterwards, a SAAF o�cer told me how the Cubans had pulled
it o↵. Several MIGs had loitered in southern Angola, just north of the South
African air defense belt, until a flight of SAAF Impala bombers raided a tar-
get in Angola. Then the MIGs turned sharply and flew openly through the
SAAF’s air defenses, which sent IFF challenges. The MIGs relayed them to the
Angolan air defense batteries, which transmitted them at a SAAF bomber; the
responses were relayed back to the MIGs, who retransmitted them and were
allowed through – as in Figure 4.2. According to my informant, this shocked
the general sta↵ in Pretoria. Being not only outfought by black opponents, but
actually outsmarted, was not consistent with the world view they had held up
till then.

After this tale was published in the first edition of my book, I was contacted
by a former o�cer in SA Communications Security Agency who disputed the
story’s details. He said that their IFF equipment did not use cryptography yet at
the time of the Angolan war, and was always switched o↵ over enemy territory.
Thus, he said, any electronic trickery must have been of a more primitive kind.
However, others tell me that ‘Mig-in-the-middle’ tricks were significant in Korea,
Vietnam and various Middle Eastern conflicts.

In any case, the tale gives us another illustration of the man-in-the-middle
attack. The relay attack against cars is another example. It also works against
password calculators: the phishing site invites the mark to log on and simul-
taneously opens a logon session with his bank. The bank sends a challenge;
the phisherman relays this to the mark, who uses his device to respond to it;
the phisherman relays the response to the bank, and the bank now accepts the
phisherman as the mark.

Stopping a middleperson attack is harder than it looks, and may involve mul-
tiple layers of defence. Banks typically look for a known machine, a password,
a second factor such as an authentication code from a CAP reader, and a risk
assessment of the transaction. For high-risk transactions, such as adding a new
payee to an account, both my banks demand that I compute an authentication
code on the payee account number. But they only authenticate the last four
digits, because of usability. If it takes two minutes and the entry of dozens of
digits to make a payment, then a lot of customers will get digits wrong, give up,
and then either call the call center or get annoyed and bank elsewhere. Also, the
bad guys may be able to exploit any fallback mechanisms, perhaps by spoofing
customers into calling phone numbers that run a middleperson attack between
the customer and the call center. I’ll discuss all this further in the chapter on
Banking and Bookkeeping.

We will come across such attacks again and again in applications ranging
from Internet security protocols to Bluetooth. They even apply in gaming. As
the mathematician John Conway once remarked, it’s easy to get at least a draw
against a grandmaster at postal chess: just play two grandmasters at once, one
as white and the other as black, and relay the moves between them!

Security Engineering 136 Ross Anderson

4.3. WHO GOES THERE? – SIMPLE AUTHENTICATION

4.3.4 Reflection Attacks

Further interesting problems arise when two principals have to identify each
other. Suppose that a challenge-response IFF system designed to prevent anti-
aircraft gunners attacking friendly aircraft had to be deployed in a fighter-
bomber too. Now suppose that the air force simply installed one of their air
gunners’ challenge units in each aircraft and connected it to the fire-control
radar.

But now when a fighter challenges an enemy bomber, the bomber might just
reflect the challenge back to the fighter’s wingman, get a correct response, and
then send that back as its own response:

F �! B : N

B �! F
0 : N

F
0 �! B : {N}K

B �! F : {N}K

There are a number of ways of stopping this, such as including the names
of the two parties in the exchange. In the above example, we might require a
friendly bomber to reply to the challenge:

F �! B : N

with a response such as:

B �! F : {B,N}K

Thus a reflected response {F 0
, N} from the wingman F

0 could be detected5.

This serves to illustrate the subtlety of the trust assumptions that underlie
authentication. If you send out a challenge N and receive, within 20 millisec-
onds, a response {N}K , then – since light can travel a bit under 3,730 miles in
20 ms – you know that there is someone with the key K within 2000 miles. But
that’s all you know. If you can be sure that the response was not computed
using your own equipment, you now know that there is someone else with the
key K within two thousand miles. If you make the further assumption that all
copies of the key K are securely held in equipment which may be trusted to
operate properly, and you see {B,N}K , you might be justified in deducing that
the aircraft with callsign B is within 2000 miles. A careful analysis of trust
assumptions and their consequences is at the heart of security protocol design.

By now you might think that we understand all the protocol design aspects
of IFF. But we’ve omitted one of the most important problems – and one which
the designers of early IFF systems didn’t anticipate. As radar is passive the
returns are weak, while IFF is active and so the signal from an IFF transmitter
will usually be audible at a much greater range than the same aircraft’s radar
return. The Allies learned this the hard way; in January 1944, decrypts of

5And don’t forget: you also have to check that the intruder didn’t just reflect your own
challenge back at you. You must be able to remember or recognise your own messages!

Security Engineering 137 Ross Anderson

4.4. MANIPULATING THE MESSAGE

Enigma messages revealed that the Germans were plotting British and American
bombers at twice the normal radar range by interrogating their IFF. So more
modern systems authenticate the challenge as well as the response. The NATO
mode XII, for example, has a 32 bit encrypted challenge, and a di↵erent valid
challenge is generated for every interrogation signal, of which there are typically
250 per second. Theoretically there is no need to switch o↵ over enemy territory,
but in practice an enemy who can record valid challenges can replay them as
part of an attack. Relays are made di�cult in mode XII using directionality
and time-of-flight.

Other IFF design problems include the di�culties posed by neutrals, error
rates in dense operational environments, how to deal with equipment failure,
how to manage keys, and how to cope with multinational coalitions. I’ll return to
IFF in Chapter 23. For now, the spurious-challenge problem serves to reinforce
an important point: that the correctness of a security protocol depends on the
assumptions made about the requirements. A protocol that can protect against
one kind of attack (being shot down by your own side) but which increases the
exposure to an even more likely attack (being shot down by the other side)
might not help. In fact, the spurious-challenge problem became so serious in
World War II that some experts advocated abandoning IFF altogether, rather
than taking the risk that one bomber pilot in a formation of hundreds would
ignore orders and leave his IFF switched on while over enemy territory.

4.4 Manipulating the Message

We’ve now seen a number of middleperson attacks that reflect or spoof the in-
formation used to authenticate a participant. However, there are more complex
attacks where the attacker doesn’t just impersonate someone, but manipulates
the message content.

One example we saw already is the prepayment meter that remembers only
the last ticket it saw, so it can be recharged without limit by copying in the
codes from two tickets A and B one after another: ABABAB.... Another is
when dishonest cabbies insert pulse generators in the cable that connects their
taximeter to a sensor in their taxi’s gearbox. The sensor sends pulses as the prop
shaft turns, which lets the meter work out how far the taxi has gone. A pirate
device can insert extra pulses, making the taxi appear to have gone further. A
truck driver who wants to drive faster or further than regulations allow can use
a similar device to discard some pulses, so he seems to have been driving more
slowly or not at all. We’ll discuss such attacks in the chapter on ‘Monitoring
Systems’, in section 14.3.

As well as monitoring systems, control systems often need to be hardened
against message-manipulation attacks. The Intelsat satellites used for interna-
tional telephone and data tra�c have mechanisms to prevent a command being
accepted twice – otherwise an attacker could replay control tra�c and repeat-
edly order the same maneuver to be carried out until the satellite ran out of
fuel [1526]. We will see lots of examples of protocol attacks involving message
manipulation in later chapters on specific applications.

Security Engineering 138 Ross Anderson

4.5. CHANGING THE ENVIRONMENT

4.5 Changing the Environment

A common cause of protocol failure is that the environment changes, so that
the design assumptions no longer hold and the security protocols cannot cope
with the new threats.

A nice example comes from the world of cash machine fraud. In 1993, Hol-
land su↵ered an epidemic of ‘phantom withdrawals’; there was much controversy
in the press, with the banks claiming that their systems were secure while many
people wrote in to the papers claiming to have been cheated. Eventually the
banks noticed that many of the victims had used their bank cards at a certain
filling station near Utrecht. This was staked out and one of the sta↵ was ar-
rested. It turned out that he had tapped the line from the card reader to the
PC that controlled it; his tap recorded the magnetic stripe details from their
cards while he used his eyeballs to capture their PINs [54]. Exactly the same
fraud happened in the UK after the move to ‘chip and PIN’ smartcards in the
mid-2000s; a gang wiretapped perhaps 200 filling stations, collected card data
from the wire, observed the PINs using CCTV cameras, then made up thou-
sands of magnetic-strip clone cards that were used in countries whose ATMs still
used magnetic strip technology. At our local filling station, over 200 customers
suddenly found that their cards had been used in ATMs in Thailand.

Why had the system been designed so badly, and why did the design error
persist for over a decade through a major technology change? Well, when the
standards for managing magnetic stripe cards and PINs were developed in the
early 1980’s by organizations such as IBM and VISA, the engineers had made
two assumptions. The first was that the contents of the magnetic strip – the card
number, version number and expiration date – were not secret, while the PIN
was [1301]. (The analogy used was that the magnetic strip was your name and
the PIN your password.) The second assumption was that bank card equipment
would only be operated in trustworthy environments, such as in a physically
robust automatic teller machine, or by a bank clerk at a teller station. So it was
‘clearly’ only necessary to encrypt the PIN, on its way from the PIN pad to the
server; the magnetic strip data could be sent in clear from the card reader.

Both of these assumptions had changed by 1993. An epidemic of card forgery,
mostly in the Far East in the late 1980’s, drove banks to introduce authenti-
cation codes on the magnetic strips. Also, the commercial success of the bank
card industry led banks in many countries to extend the use of debit cards
from ATMs to terminals in all manner of shops. The combination of these two
environmental changes destroyed the assumptions behind the original system
architecture. Instead of putting a card whose magnetic strip contained no secu-
rity data into a trusted machine, people were putting a card with clear security
data into an untrusted machine. These changes had come about so gradually,
and over such a long period, that the industry didn’t see the problem coming.

4.6 Chosen Protocol Attacks

Governments keen to push ID cards have tried to get them used for many other
transactions; some want a single card to be used for ID, banking and even

Security Engineering 139 Ross Anderson

4.6. CHOSEN PROTOCOL ATTACKS

transport ticketing. Singapore went so far as to experiment with a bank card
that doubled as military ID. This introduced some interesting new risks: if a
Navy captain tries to withdraw some cash from an ATM after a good dinner and
forgets his PIN, will he be unable to take his ship to sea until Monday morning
when they open the bank and give him his card back?

Some firms are pushing multifunction authentication devices that could be
used in a wide range of transactions to save you having to carry around dozens
of di↵erent cards and keys. A more realistic view of the future may be that
people’s phones will be used for most private-sector authentication functions.

But this too may not be as simple as it looks. The idea behind the ‘Chosen
Protocol Attack’ is that given a target protocol, you design a new protocol that
will attack it if the users can be inveigled into reusing the same token or crypto
key. So how might the Mafia design a protocol to attack the authentication of
bank transactions?

Here’s one approach. It used to be common for people visiting a porn website
to be asked for ‘proof of age,’ which usually involves giving a credit card number,
whether to the site itself or to an age checking service. If smartphones are used
to authenticate everything, it would be natural for the porn site to ask the
customer to authenticate a random challenge as proof of age. A porn site might
then mount a ‘Mafia-in-the-middle’ attack as shown in Figure 4.3. They wait
until an unsuspecting customer visits their site, then order something resellable
(such as gold coins) from a dealer, playing the role of the coin dealer’s customer.
When the coin dealer sends them the transaction data for authentication, they
relay it through their porn site to the waiting customer. The poor man OKs it,
the Mafia gets the gold coins, and when thousands of people suddenly complain
about the huge charges to their cards at the end of the month, the porn site has
vanished – along with the gold [1032].

sigK X

Picture 143!

Mafia porn�
site

Customer

Buy 10 gold coins

Prove your age Sign ‘X’�

by signing ‘X’�

BANKsigK X

Figure 4.3: – the Mafia-in-the-middle attack

In the 1990s a vulnerability of this kind found its way into international
standards: the standards for digital signature and authentication could be run
back-to-back in this way. It has since been shown that many protocols, though
secure in themselves, can be broken if their users can be inveigled into reusing
the same keys in other applications [1032]. This is why, if we’re going to use
our phones to authenticate everything, it will be really important to keep the
banking apps and the porn apps separate. That will be the subject of our next
chapter, on Access Control.

In general, using crypto keys (or other authentication mechanisms) in more
than one application is dangerous, while letting other people bootstrap their

Security Engineering 140 Ross Anderson

4.7. MANAGING ENCRYPTION KEYS

own application security o↵ yours can be downright foolish. The classic case is
where a bank relies for two-factor authentication on sending SMSes to customers
as authentication codes. As I discussed in section 3.4.1, the bad guys have
learned to attack that system by SIM-swap fraud – pretending to the phone
company that they’re the target, claiming to have lost their phone, and getting
a replacement SIM card.

4.7 Managing encryption keys

The examples of security protocols that we’ve discussed so far are mostly about
authenticating a principal’s name, or application data such as the impulses
driving a taximeter. There is one further class of authentication protocols that
is very important – the protocols used to manage cryptographic keys.

4.7.1 The resurrecting duckling

In the Internet of Things, keys can sometimes be managed directly and physi-
cally, by local setup and a policy of trust-on-first-use or TOFU.

Vehicles provided an early example. I mentioned above that crooked taxi
drivers used to put interruptors in the cable from their car’s gearbox sensor
to the taximeter, to add additional mileage. The same problem happened in
reverse with tachographs, the devices used by trucks to monitor drivers’ hours
and speed. When tachographs went digital in the late 1990s, we decided to
encrypt the pulse train from the sensor. But how could keys be managed? The
solution was that whenever a new tachograph is powered up after a factory
reset, it trusts the first crypto key it receives over the sensor cable. I’ll discuss
this further in section 14.3.

A second example is Homeplug AV, the standard used to encrypt data com-
munications over domestic power lines, and widely used in LAN extenders. In
the default, ‘just-works’ mode, a new Homeplug device trusts the first key it
sees; and if your new wifi extender mates with the neighbour’s wifi instead,
you just press the reset button and try again. There is also a ‘secure mode’
where you open a browser to the network management node and manually en-
ter a crypto key printed on the device packaging, but when we designed the
Homeplug protocol we realised that most people have no reason to bother with
that.

The TOFU approach is also known as the ‘resurrecting duckling’ after an
analysis that Frank Stajano and I did in the context of the tachograph work.
The idea is that when a baby duckling hatches, it imprints on the first thing it
sees that moves and quacks, even if this is the farmer – who can end up being
followed everywhere by a duck that thinks he’s mummy. If such false imprinting
happens with an electronic device, you need a way to kill it and resurrect it into
a newborn state – which the reset button does [1819].

Security Engineering 141 Ross Anderson

4.7. MANAGING ENCRYPTION KEYS

4.7.2 Remote key management

The more common, and interesting, case is the management of keys in remote
devices. The basic technology was developed from the late 1970s to manage
keys in distributed computer systems, with cash machines being an early ap-
plication. In this section we’ll discuss shared-key protocols such as Kerberos,
leaving public-key protocols such as TLS and SSH until after we’ve discussed
public-key cryptology in Chapter 5.

The basic idea behind key-distribution protocols is that where two principals
want to communicate, they may use a trusted third party to introduce them.
It’s customary to give them human names in order to avoid getting lost in too
much algebra. So we will call the two communicating principals ‘Alice’ and
‘Bob’, and the trusted third party ‘Sam’. Alice, Bob and Sam are likely to be
programs running on di↵erent devices. (For example, in a protocol to let a car
dealer mate a replacement key with a car, Alice might be the car, Bob the key
and Sam the car maker.)

A simple authentication protocol could run as follows.

1. Alice first calls Sam and asks for a key for communicating with Bob.

2. Sam responds by sending Alice a pair of certificates. Each contains a copy
of a key, the first encrypted so only Alice can read it, and the second
encrypted so only Bob can read it.

3. Alice then calls Bob and presents the second certificate as her introduction.
Each of them decrypts the appropriate certificate under the key they share
with Sam and thereby gets access to the new key. Alice can now use the
key to send encrypted messages to Bob, and to receive messages from him
in return.

We’ve seen that replay attacks are a known problem, so in order that both
Bob and Alice can check that the certificates are fresh, Sam may include a
timestamp in each of them. If certificates never expire, there might be serious
problems dealing with users whose privileges have been revoked.

Using our protocol notation, we could describe this as

A ! S : A,B

S ! A : {A,B,KAB , T}KAS , {A,B,KAB , T}KBS

A ! B : {A,B,KAB , T}KBS , {M}KAB

Expanding the notation, Alice calls Sam and says she’d like to talk to Bob.
Sam makes up a message consisting of Alice’s name, Bob’s name, a session key
for them to use, and a timestamp. He encrypts all this under the key he shares
with Alice, and he encrypts another copy of it under the key he shares with
Bob. He gives both ciphertexts to Alice. Alice retrieves the session key from
the ciphertext that was encrypted to her, and passes on to Bob the ciphertext
encrypted for him. She now sends him whatever message she wanted to send,
encrypted using this session key.

Security Engineering 142 Ross Anderson

4.7. MANAGING ENCRYPTION KEYS

4.7.3 The Needham-Schroeder protocol

Many things can go wrong, and here is a famous historical example. Many
existing key distribution protocols are derived from the Needham-Schroeder
protocol, which appeared in 1978 [1426]. It is somewhat similar to the above,
but uses nonces rather than timestamps. It runs as follows:

Message 1 A ! S : A,B,NA

Message 2 S ! A : {NA, B,KAB , {KAB , A}KBS}KAS

Message 3 A ! B : {KAB , A}KBS

Message 4 B ! A : {NB}KAB

Message 5 A ! B : {NB � 1}KAB

Here Alice takes the initiative, and tells Sam: ‘I’m Alice, I want to talk
to Bob, and my random nonce is NA.’ Sam provides her with a session key,
encrypted using the key she shares with him. This ciphertext also contains
her nonce so she can confirm it’s not a replay. He also gives her a certificate to
convey this key to Bob. She passes it to Bob, who then does a challenge-response
to check that she is present and alert.

There is a subtle problem with this protocol – Bob has to assume that the
key KAB he receives from Sam (via Alice) is fresh. This is not necessarily so:
Alice could have waited a year between steps 2 and 3. In many applications this
may not be important; it might even help Alice to cache keys against possible
server failures. But if an opponent – say Charlie – ever got hold of Alice’s key,
he could use it to set up session keys with many other principals. And if Alice
ever got fired, then Sam had better have a list of everyone in the firm to whom
he issued a key for communicating with her, to tell them not to believe it any
more. In other words, revocation is a problem: Sam may have to keep complete
logs of everything he’s ever done, and these logs would grow in size forever unless
the principals’ names expired at some fixed time in the future.

Almost 40 years later, this example is still controversial. The simplistic view
is that Needham and Schroeder just got it wrong; the view argued by Susan
Pancho and Dieter Gollmann (for which I have some sympathy) is that this
is a protocol failure brought on by shifting assumptions [780, 1491]. 1978 was
a kinder, gentler world; computer security then concerned itself with keeping
‘bad guys’ out, while nowadays we expect the ‘enemy’ to be among the users
of our system. The Needham-Schroeder paper assumed that all principals be-
have themselves, and that all attacks came from outsiders [1426]. Under those
assumptions, the protocol remains sound.

4.7.4 Kerberos

The most important practical derivative of the Needham-Schroeder protocol is
Kerberos, a distributed access control system that originated at MIT and is now
one of the standard network authentication tools [1826]. It has become part of
the basic mechanics of authentication for both Windows and Linux, particularly
when machines share resources over a local area network. Instead of a single
trusted third party, Kerberos has two kinds: authentication servers to which

Security Engineering 143 Ross Anderson

4.7. MANAGING ENCRYPTION KEYS

users log on, and ticket granting servers which give them tickets allowing access
to various resources such as files. This enables scalable access management. In
a university, for example, one might manage students through their colleges or
halls of residence but manage file servers by departments; in a company, the
personnel people might register users to the payroll system while departmental
administrators manage resources such as servers and printers.

First, Alice logs on to the authentication server using a password. The client
software in her PC fetches a ticket from this server that is encrypted under her
password and that contains a session key KAS . Assuming she gets the password
right, she now controls KAS and to get access to a resource B controlled by the
ticket granting server S, the following protocol takes place. Its outcome is a
key KAB with timestamp TS and lifetime L, which will be used to authenticate
Alice’s subsequent tra�c with that resource:

A ! S : A,B

S ! A : {TS , L,KAB , B, {TS , L,KAB , A}KBS}KAS

A ! B : {TS , L,KAB , A}KBS , {A, TA}KAB

B ! A : {TA + 1}KAB

Translating this into English: Alice asks the ticket granting server for access
to B. If this is permissible, the ticket {TS , L,KAB , A}KBS is created containing
a suitable key KAB and given to Alice to use. She also gets a copy of the key in a
form readable by her, namely encrypted under KAS . She now verifies the ticket
by sending a timestamp TA to the resource, which confirms it’s alive by sending
back the timestamp incremented by one (this shows it was able to decrypt the
ticket correctly and extract the key KAB).

The revocation issue with the Needham-Schroeder protocol has been fixed
by introducing timestamps rather than random nonces. But, as in most of life,
we get little in security for free. There is now a new vulnerability, namely that
the clocks on our various clients and servers might get out of sync; they might
even be desynchronized deliberately as part of a more complex attack.

What’s more, Kerberos is a trusted third-party (TTP) protocol in that S is
trusted: if the police turn up with a warrant, they can get Sam to turn over
the keys and read the tra�c. Protocols with this feature were favoured during
the ‘crypto wars’ of the 1990s, as I will discuss in section 26.2.7. Protocols that
involve no or less trust in a third party generally use public-key cryptography,
which I describe in the next chapter.

A rather similar protocol to Kerberos is OAuth, a mechanism to allow secure
delegation. For example, if you log into Doodle using Google and allow Doo-
dle to update your Google calendar, Doodle’s website redirects you to Google,
which gets you to log in (or relies on a master cookie from a previous login)
and asks you for consent for Doodle to write to your calendar. Doodle then
gives you an access token for the calendar service [863]. I mentioned in sec-
tion 3.4.9.3 that this poses a cross-site phishing risk. OAuth was not designed
for user authentication, and access tokens are not strongly bound to clients. It’s
a complex framework within which delegation mechanisms can be built, with
both short-term and long-term access tokens; the details are tied up with how
cookies and web redirects operate and optimised to enable servers to be state-

Security Engineering 144 Ross Anderson

4.8. DESIGN ASSURANCE

less, so they scale well for modern web services. In the example above, you want
to be able to revoke Doodle’s access at Google, so behind the scenes Doodle only
gets short-lived access tokens. Because of this complexity, the OpenID Connect
protocol is a ‘profile’ of OAuth which ties down the details for the case where
the only service required is authentication. OpenID Connect is what you use
when you log into your newspaper using your Google or Facebook account.

4.7.5 Practical key management

So we can use a protocol like Kerberos to set up and manage working keys
between users given that each user shares one or more long-term keys with
a server that acts as a key distribution centre. But there may be encrypted
passwords for tens of thousands of sta↵ and keys for large numbers of devices
too. That’s a lot of key material. How is it to be managed?

Key management is a complex and di�cult business and is often got wrong
because it’s left as an afterthought. You need to sit down and think about how
many keys are needed, how they’re to be generated, how long they need to re-
main in service and how they’ll eventually be destroyed. There is a much longer
list of concerns – many of them articulated in the Federal Information Process-
ing Standard for key management [1408]. And things go wrong as applications
evolve; it’s important to provide headroom to support next year’s functionality.
It’s also important to support recovery from security failure. Yet there are no
standard ways of doing either.

Public-key cryptography, which I’ll discuss in Chapter 5, can simplify the
key-management task slightly. In banking the usual answer is to use dedicated
cryptographic processors called hardware security modules, which I’ll describe
in detail later. Both of these introduce further complexities though, and even
more subtle ways of getting things wrong.

4.8 Design assurance

Subtle di�culties of the kind we have seen above, and the many ways in which
protection properties depend on subtle assumptions that may be misunderstood,
have led researchers to apply formal methods to protocols. The goal of this
exercise was originally to decide whether a protocol was right or wrong: it
should either be proved correct, or an attack should be exhibited. We often find
that the process helps clarify the assumptions that underlie a given protocol.

There are several di↵erent approaches to verifying the correctness of proto-
cols. One of the best known is the logic of belief, or BAN logic, named after its
inventors Burrows, Abadi and Needham [357]. It reasons about what a principal
might reasonably believe having seen certain messages, timestamps and so on.
Other researchers have applied mainstream formal methods such as CSP and
verification tools such as Isabelle.

Some history exists of flaws being found in protocols that had been proved
correct using formal methods; I described an example in Chapter 3 of the second
edition, of how the BAN logic was used to verify a bank card used for stored-

Security Engineering 145 Ross Anderson

4.9. SUMMARY

value payments. That’s still used in Germany as the ‘Geldkarte’ but elsewhere
its use has died out (it was Net1 in South Africa, Proton in Belgium, Moneo
in France and a VISA product called COPAC). I’ve therefore decided to drop
the gory details from this edition; the second edition is free online, so you can
download and read the details.

Formal methods can be an excellent way of finding bugs in security protocol
designs as they force the designer to make everything explicit and thus confront
di�cult design choices that might otherwise be fudged. But they have their
limitations, too.

We often find bugs in verified protocols; they’re just not in the part that we
verified. For example, Larry Paulson verified the SSL/TLS protocol using his
Isabelle theorem prover in 1998, and about one security bug has been found every
year since then. These have not been flaws in the basic design but exploited
additional features that had been added later, and implementation issues such
as timing attacks, which we’ll discuss later. In this case there was no failure of
the formal method; that simply told the attackers where they needn’t bother
looking.

For these reasons, people have explored alternative ways of assuring the de-
sign of authentication protocols, including the idea of protocol robustness. Just
as structured programming techniques aim to ensure that software is designed
methodically and nothing of importance is left out, so robust protocol design is
largely about explicitness. Robustness principles include that the interpretation
of a protocol should depend only on its content, not its context; so everything of
importance (such as principals’ names) should be stated explicitly in the mes-
sages. It should not be possible to interpret data in more than one way; so the
message formats need to make clear what’s a name, what’s an address, what’s
a timestamp, and so on; string formats have to be unambiguous and it should
be impossible to use the protocol itself to mount attacks on the software that
handles it, such as by bu↵er overflows. There are other issues concerning the
freshness provided by counters, timestamps and random challenges, and on the
way encryption is used. If the protocol uses public key cryptography or digi-
tal signature mechanisms, there are more subtle attacks and further robustness
issues, which we’ll start to tackle in the next chapter. To whet your appetite,
randomness in protocol often helps robustness at other layers, since it makes
it harder to do a whole range of attacks – from those based on mathematical
cryptanalysis through those that exploit side-channels such as power consump-
tion and timing to physical attacks that involve microprobes or lasers.

4.9 Summary

Passwords are just one example of a more general concept, the security protocol.
Protocols specify the steps that principals use to establish trust relationships in
a system, such as authenticating a claim to identity, demonstrating ownership of
a credential, or establishing a claim on a resource. Cryptographic authentication
protocols are used for a wide range of purposes, from basic entity authentication
to providing infrastructure for distributed systems that allows trust to be taken
from where it exists to where it is needed. Security protocols are fielded in all

Security Engineering 146 Ross Anderson

4.9. SUMMARY

sorts of systems from remote car door locks through military IFF systems to
authentication in distributed computer systems.

Protocols are surprisingly di�cult to get right. They can su↵er from a num-
ber of problems, including middleperson attacks, modification attacks, reflection
attacks, and replay attacks. These threats can interact with implementation
vulnerabilities and poor cryptography. Using mathematical techniques to verify
the correctness of protocols can help, but it won’t catch all the bugs. Some of
the most pernicious failures are caused by creeping changes in the environment
for which a protocol was designed, so that the protection it gives is no longer
relevant. The upshot is that attacks are still found frequently on protocols
that we’ve been using for years, and sometimes even on protocols for which we
thought we had a security proof. Failures have real consequences, including the
rise in car crime worldwide since car makers started adopting passive keyless
entry systems without stopping to think about relay attacks. Please don’t de-
sign your own protocols; get a specialist to help, and ensure that your design is
published for thorough peer review by the research community. Even specialists
get the first versions of a protocol wrong (I have, more than once). It’s a lot
cheaper to fix the bugs before the protocol is actually deployed, both in terms
of cash and in terms of reputation.

Research Problems

At several times during the past 30 years, some people have thought that pro-
tocols had been ‘done’ and that we should turn to new research topics. They
have been repeatedly proved wrong by the emergence of new applications with
a new crop of errors and attacks to be explored. Formal methods blossomed
in the early 1990s, then key management protocols; during the mid-1990’s the
flood of proposals for electronic commerce mechanisms kept us busy. Since
2000, one strand of protocol research has acquired an economic flavour as se-
curity mechanisms are used more and more to support business models; the
designer’s ‘enemy’ is often a commercial competitor, or even the customer. An-
other has applied protocol analysis tools to look at the security of application
programming interfaces (APIs), a topic to which I’ll return later.

Much protocol research is problem-driven, but there are still deep questions.
How much can we get out of formal methods, for example? And how do we
manage the tension between the principle that robust protocols are generally
those in which everything is completely specified and checked and the system
engineering principle that a good specification should not overconstrain the im-
plementer?

Further Reading

Research papers on security protocols are scattered fairly widely throughout the
literature. For the historical background you might read the original Needham-
Schroeder paper [1426], the Burrows-Abadi-Needham authentication logic [357],
papers on protocol robustness [2, 112] and a survey paper by Anderson and

Security Engineering 147 Ross Anderson

4.9. SUMMARY

Needham [113]. Beyond that, there are many papers scattered around a wide
range of conferences; you might also start by studying the protocols used in a
specific application area, such as payments, which we cover in more detail in
Part 2. As for remote key entry and other security issues around cars, a good
starting point is a tech report by Charlie Miller and Chris Valasek on how to
hack a Jeep Cherokee [1316].

Security Engineering 148 Ross Anderson

