
Chapter 18

Tamper Resistance

It is relatively easy to build an encryption system that is secure if it
is working as intended and is used correctly but it is still very hard

to build a system that does not compromise its security in situations
in which it is either misused or one or more of its sub-components
fails (or is ’encouraged’ to misbehave) ... this is now the only area
where the closed world is still a long way ahead of the open world
and the many failures we see in commercial cryptographic systems

provide some evidence for this.
– BRIAN GLADMAN

The amount of careful, critical security thinking that has gone into a
given security device, system or program is inversely proportional to

the amount of high-technology it uses.
– ROGER JOHNSTON

18.1 Introduction

Tamper-resistant devices are everywhere now. Examples we’ve discussed so far
include:

• the EMV chips used in bank cards and the SIMs used in mobile phones
for authentication;

• the contactless cards used as transport tickets and the smartcards used in
pay-TV decoders for service control;

• chips used for accessory control in printer toner cartridges and game-
console accessories;

• the TPM chips in phones, laptops and servers to provide a root of trust to
support secure boot and hard-disk encryption;

• hardware security modules used to encrypt bank PINs, not just in bank
server farms but in ATMs and some point-of-sale terminals;

547

18.1. INTRODUCTION

• the NFC chips used in Android phones to store contactless payment cre-
dentials, and the enclave chips in iPhones that store your fingerprint and
crypto keys;

• cryptographic modules buried in vending machines that sell everything
from railway tickets through postage stamps to the magic numbers that
activate your electricity meter;

• various chips used for manufacturing control by firms who want to have
their products made by low-cost overseas manufacturers but don’t want
to see extra products made without their consent on a ‘third shift’ and
sold on the grey market.

Many of the devices on the market are insecure. In section 4.3.1 I described
how reverse engineering remote key entry devices for cars led to class breaks that
notably increased car theft; in section 13.2.5 I described how reverse engineer-
ing the Mifare card compromised many building locks and transport ticketing
systems; and in section 12.6.1.1, I described card payment terminals that could
be compromised trivially, leading to card counterfeiting and transaction manip-
ulation attacks.

Yet some are pretty good. The best cryptographic modules used in banking
and government withstand all known types of physical attack, and can only be
defeated when people either run insecure software on them or rely on insecure
devices to interface with users. Smartcard tamper resistance has evolved in
a long war between pay-TV pirates cloning subscriber cards and the pay-TV
industry trying to stop them, and was honed in an arms race between firms that
wanted to lock down their products, and others who wanted to unlock them. The
tussles over printer cartridges were important here, as both the printer makers
who were trying to control aftermarkets, and the independent cartridge makers
who were trying to break into these markets, are acting lawfully. Other hackers
work for lawyers, reverse engineering products to prove patent infringements.
There are academics who hack systems for glory, and to push forward the state
of the art. And finally there are lots of grey areas. If you find a way to unlock
a mobile phone, so that it can be used on any network, is that a crime? It
depends on how you do it, and on what country you’re in.

Given the wide range of products and the huge variation in quality, the
security engineer needs to understand what tamper resistance is, and what it
can and can’t do. In this chapter I’m going to take you through the past thirty
years of evolution of attack and defence.

If a computer cannot resist physical tampering, an attacker can simply
change the software. Computers in data centres are protected by physical barri-
ers, sensors and alarms. And an ATM is basically a PC in a safe with banknote
dispensers and alarm sensors, often bolted to a wall or a plinth.

Where tamper resistance is needed purely for integrity and availability, it
can sometimes be implemented using replication on di↵erent servers that per-
form transactions simultaneously and vote on the result; this is being rein-
vented nowadays with blockchains and other consensus protocols. The thresh-
old schemes discussed in section 15.4 can also provide confidentiality for key
material. But tamper-resistant devices can provide confidentiality for the data

Security Engineering 548 Ross Anderson

18.2. HISTORY

too, and the arrival of CPUs that support enclaves such as SGX and TrustZone
hold out the prospect of computing with encrypted data in cloud services.

18.2 History

The use of tamper resistance in cryptography goes back centuries [1001]. Naval
codebooks were weighted so they could be thrown overboard if capture was
imminent; the dispatch boxes used by British government ministers’ aides to
carry state papers were lead-lined to make sure they’d sink. Codes have been
printed in water-soluble ink; Russian one-time pads were printed on cellulose
nitrate, so they’d burn furiously if lit; and one US wartime cipher machine
came with self-destruct thermite charges. But key material was often captured
in surprise attacks, so attempts were made to automate the tamper response
process. Some mechanical cipher machines were built so that opening the case
erased the key settings, and early electronic devices followed suit.

After the notorious Walker family sold US Navy key material to the Russians
for over 20 years [876], engineers paid more attention to the question of how to
protect keys in transit too. The goal was ‘to reduce the street value of key
material to zero’, and this can be achieved either by tamper resistant devices
from which the key cannot be readily extracted, or tamper evident ones from
which key extraction would be obvious.

Paper keys were once carried in ‘tattle-tale containers’, designed to show
evidence of tampering. When electronic key distribution came along, a typical
solution was the ‘fill gun’: a portable device that dispenses crypto keys in a
controlled way. Nowadays the physical transport of crypto key material usually
involves a smartcard, or a similar chip packaged as a key. Your SIM card and
bank card are just the most visible examples. The control of key material also
acquired broader purposes, with both the US and the UK governments using it
to restrict their networks to approved devices. Live key material would only be
supplied once the system had been properly accredited.

Once initial keys have been loaded, further keys may be distributed using
authentication protocols. Our subject here is the physical defenses against tam-
pering.

18.3 Hardware Security Modules

The IBM 4758 (Figures 18.1 and 18.2) was the leading commercial cryptographic
processor in the early 2000s, and is important for four reasons. First, it was
the first commercial product to be evaluated to the highest level of tamper
resistance (FIPS 140-1 level 4) [1399] then set by the US government. Second,
there is an extensive literature about it, including its history, hardware and
software [1795, 1998, 2001]. Third, it was therefore a high profile target, and
from 2000–2005 my students and I put a lot of e↵ort into attacking it and
understanding the residual vulnerabilities. Fourth, the current IBM flagship
product, the 4765, isn’t hugely changed except for fixing some of the bugs we
found.

Security Engineering 549 Ross Anderson

18.3. HARDWARE SECURITY MODULES

Figure 18.1: – the IBM 4758 cryptoprocessor (courtesy of Steve Weingart)

The back story starts in the 1970s, when Mikhail Atalla had the idea of
a black-box cryptographic module to manage bank PINs. As early crypto-
graphic schemes for ATMs were rather weak, IBM developed a better block
cipher which became the Data Encryption Standard, as described in Chapter 5.
There followed a period of intense research about precisely how block ciphers
could be used to manage PINs in a single bank, and then in a network of many
banks [1301]. The banking community realised that commercial operating sys-
tems were likely to remain insu�cient to protect PINs, particularly from bank
insiders, and decided to use separate hardware to manage them.

This led to the development of standalone cryptographic modules or hard-
ware security modules (HSMs), as fintech people call them. These are micro-
computers encased in robust metal enclosures, with encryption hardware and
special key memory, static RAM that is zeroized when the enclosure is opened.
Initially, this just involved wiring the power supply to the key memory through
a number of lid switches. So whenever the maintenance crew came to replace
batteries, they’d open the lid and destroy the keys. Once they’d finished, the
HSM custodians would reload the key material. In this way, the HSM’s owner
could hope that its keys were under the unique control of its own trustworthy
sta↵.

How to hack a cryptoprocessor (1)

The obvious attack is just to steal the keys. In early HSMs, the master keys
were kept in PROMs that were loaded into a special socket in the device to
be read during initialization, or as strings of numbers that were typed in at a
console. The PROMs could be pocketed, taken home and read out. Cleartext

Security Engineering 550 Ross Anderson

18.3. HARDWARE SECURITY MODULES

Figure 18.2: – the 4758 partially opened showing (from top left downward)
the circuitry, aluminium electromagnetic shielding, tamper-sensing mesh and
potting material (courtesy of Frank Stajano)

paper keys were even easier: just scribble down a copy.

The fix was shared control – to have two or three master key components,
and make the actual master key by combining them. The PROMs (or paper
keys) would be kept in di↵erent safes under the control of di↵erent departments.
This taught us that shared control is a serious security usability hazard. The
manual may tell the custodians to erase the live keys, let the engineer fix the
device, and then re-load the keys afterwards. But many senior men used to
think that touching keyboards was women’s work, and even today they think
that technical work is beneath them. And who reads the manual anyway? So
managers often give both keys to the engineer to save the bother. In one case,
a dishonest engineer got them to enter the keys using a laptop that acted as a
terminal but had logging switched on [54]. I’ve even come across cases of paper
master keys for an automatic teller machine being kept in the correspondence
file in a bank branch, where any of the sta↵ could look them up.

How to hack a cryptoprocessor (2)

Early devices were vulnerable to attackers cutting through the casing. Second-
generation devices made physical attacks harder by adding photocells and tilt
switches. But the di�cult opponent is the maintenance engineer – who could
disable the sensors on one visit and extract the keys on the next.

By about 2000, the better products separated all the components that can
be serviced (such as batteries) from the core of the device (such as the tamper
sensors, cryptoprocessor, key memory and alarm circuits). The core was then
potted into a solid block of a hard, opaque substance such as epoxy. The idea

Security Engineering 551 Ross Anderson

18.3. HARDWARE SECURITY MODULES

was that any physical attack would involve cutting or drilling, which could be
detected by the guard who accompanies the engineer into the bank computer
room1. At least it should leave evidence of tampering after the fact. This
is the level of protection needed for medium-level evaluations under the FIPS
standard.

How to hack a cryptoprocessor (3)

However, if a competent attacker can get unsupervised access to the device
for even a short period of time – and, to be realistic, that’s what the maintenance
engineer probably has, as the guard doesn’t understand what’s going on – then
potting the device core is inadequate. For example, you might scrape away
the potting with a knife and drop the probe from a logic analyzer on to one of
the chips. In theory, scraping the sticky epoxy should damage the components
inside; in practice, it’s just a matter of patience. Cryptographic algorithms such
as RSA, DES and AES have the property that an attacker who can monitor any
bitplane during the computation can recover the key [860].

So the high-end products acquired a tamper-sensing barrier. An early exam-
ple appeared in IBM’s µABYSS system in the mid-1980s, which used loops of
40-gauge nichrome wire wound loosely around the device as it was embedded in
epoxy, and then connected to a sensing circuit [1998]. The theory was that tech-
niques such as milling, etching and laser ablation would break the wire, erasing
the keys. But the wire-in-epoxy technique can be vulnerable to slow erosion
using sand blasting; when the sensing wires become visible at the surface of
the potting, shunts can be connected round them. In 2018 Sergei Skoroboga-
tov managed to use a combination of acid etching and masking to expose a
battery-powered chip, on the Vasco Digipass 270, showing that given decent lab
technique you can indeed attack live circuits protected by wires in epoxy [1781].

The next major product from IBM, the 4753, used a metal shield combined
with a membrane printed with a pattern of conductive ink and surrounded by a
more durable material of similar chemistry. The idea was that any attack would
break the membrane with high probability. The 4758 had an improved tamper-
sensing membrane in which four overlapping zig-zag conducting patterns were
doped into a urethane sheet, which was potted in a chemically similar substance
so that an attacker cutting into the device had di�culty even detecting the
conductive path, let alone connecting to it. This potting surrounds the metal
shielding which in turn contains the cryptographic core. The design is described
in more detail in [1795].

How to hack a cryptoprocessor (4)

The next class of attack exploited memory remanence, the fact that many
kinds of computer memory retain some trace of data that have been stored
there. Once a certain security module had run for some years using the same
master keys, their values burned in to the device’s static RAM. On power-up,
about 90% of the relevant memory bits would assume the values of the previ-
ously stored secret keybits, which was quite enough to recover the keys [107].

1That at least was the theory; experience suggests it’s a bit much to ask a minimum-wage
guard to ensure that a specialist in some exotic piece of equipment repairs it using some tools
but not others.

Security Engineering 552 Ross Anderson

18.3. HARDWARE SECURITY MODULES

Memory remanence a↵ects not just static and dynamic RAM, but other storage
media too. The relevant engineering and physics issues are discussed in [837]
and [840], and in 2005 Sergei Skorobogatov discovered how to extract data
from Flash memory in microcontrollers, even after it had been ‘erased’ several
times [1770]; like it or not, the wear-levelling processors in Flash chips become
part of your trusted computing base. RAM contents can also be burned in by
ionising radiation, so radiation sensing or hardening might make sense too.

How to hack a cryptoprocessor (5)

Computer memory can also be frozen by low temperatures. By the 1980s it
was realized that below about -20o C, static RAM contents can persist for several
seconds after power is removed. This extends to minutes at the temperatures
of liquid nitrogen. So an attacker might freeze a device, remove the power, cut
through the tamper sensing barrier, extract the RAM chips containing the keys,
and power them up again in a test rig.

In 2008, Alex Halderman and colleagues developed this into the cold boot
attack on encryption keys in PCs and phones [854]. Modern DRAM retains
memory contents for several seconds after power is removed, and even longer at
low temperatures; by chilling memory with a freezing spray, then rebooting the
device with a lightweight operating system, keys can often be read out. Software
encryption of disk contents can be defeated unless there are mechanisms to
zeroise the keys on power-down. Even keeping keys in special hardware such
as a TPM isn’t enough if all it’s doing is limiting the number of times you can
guess the hard disk encryption password, but then copying the master key to
main memory once you get the password right so that the CPU can do the rest
of the work. You need to really understand what guarantees the crypto chip is
giving you – a matter we’ll discuss at greater length in the chapter on Advanced
Cryptographic Engineering.

Anyway, the better cryptographic devices have temperature and radiation
alarms. But modern RAM chips exhibit a wide variety of memory remanence
behaviors; remanence seems to have got longer as feature sizes have shrunk,
and in unpredictable ways even within standard product lines. So although
your product might pass a remanence test using a given make of SRAM chip, it
might fail the same test with the same make of chip purchased a year later [1768].
This shows the dangers of relying on a property of some component to whose
manufacturer this property is unimportant.

The main constraints on the HSM alarms are similar to those we encoun-
tered with more general alarms. There’s a trade-o↵ between the false alarm
rate and the missed alarm rate, and thus between security and robustness. Vi-
bration, power transients and electromagnetic interference can be a problem,
but temperature is the worst. A device that self-destructs if frozen can’t be sent
reliably through normal distribution channels, as aircraft holds can get as low as
-40oC. (We’ve bought crypto modules on eBay and found them dead on arrival.)
Military equipment makers have the converse problem: their kit must be rated
from -55o to +155o C. Some military devices use protective detonation; mem-
ory chips are potted in steel cans with a thermite charge precisely calculated to
destroy the chip without causing gas release from the can. Meeting simultane-
ous targets for tamper resistance, temperature tolerance, radiation hardening,

Security Engineering 553 Ross Anderson

18.3. HARDWARE SECURITY MODULES

shipping safety, weight and cost can be nontrivial.

How to hack a cryptoprocessor (6)

The next set of attacks on cryptographic hardware involve monitoring the
RF and other electromagnetic signals emitted by the device, or even injecting
signals into it and measuring their externally visible e↵ects. This technique,
which is variously known as ‘Tempest’, ‘power analysis,’ ‘side-channel attacks’
or ‘emission security’, is such a large subject that I devote the next chapter to
it.

As far as the 4758 was concerned, the strategy was to have solid aluminium
shielding and to low-pass filter the power supply to block the egress of any signals
at the frequencies used internally for computation. This shielding is inside the
tamper-sensing membrane, to prevent an opponent cutting a slot that could
function as an antenna.

How to hack a cryptoprocessor (7)

We never figured out how to attack the hardware of the 4758. The attacks we
have seen on high-end systems have involved the exploitation of logical rather
than physical flaws. One hardware security module, the Chrysalis-ITS Luna
CA3, had its key token’s software reverse engineered by Mike Bond, Daniel
Cvrček and Steven Murdoch who found code that enabled an unauthenticated
“Customer Verification Key” to be introduced and used to certify the export
of live keys [283]. Most recently, in 2019, Gabriel Campana and Jean-Baptiste
Bédrune found a bu↵er overflow attack on the Gemalto Safenet Protect Server
PSI-E2/PSE2 by fuzzing the HSM emulator that came with its software devel-
opment kit, then checked this on a real HSM, and wrote code to upload arbitrary
firmware, which is persistent and can download all the secrets [203].

This did not happen to IBM’s 4758, which had a formally verified operating
system. But most of its users ran a banking crypto application called CCA
that is described in [915]. Mike Bond and I discovered that the application pro-
gramming interface (API) that CCA exposed to the host contained a number
of exploitable flaws. The e↵ect was that a programmer with access to the host
could send the security module a series of commands that would cause it to leak
PINs or keys. These vulnerabilities were largely the legacy of previous encryp-
tion devices with which 4758 users needed to be backward compatible, and in
fact most other security modules were worse. Such attacks were hard to stop, as
from time to time Visa would mandate new cryptographic operations to support
new payment network features and these would introduce new systemic vulner-
abilities across the whole fleet of security modules [22]. Some HSMs now have
two APIs: an internal one which the vendor tries to keep clean (but which needs
to have the ability to import and export keys) and an external one which im-
plements the standards of whatever industry the HSM is being used to support.
The software between the two APIs may be trusted, but can be hard to make
trustworthy if the external API is insecure. In e↵ect, it has to anticipate and
block API attacks. So many banks pay top dollar for secure HSMs which they
use for formal compliance while actually relying on other access control mecha-
nisms to shield the devices from attack. There are even specialist firms selling
firewalls to shield HSMs from software-based harm. I’ll discuss API attacks in

Security Engineering 554 Ross Anderson

18.4. EVALUATION

detail in the chapter on Advanced Cryptographic Engineering.

18.4 Evaluation

A few comments about the evaluation of HSMs are in order before we go on
to discuss cheaper devices. When IBM launched the 4753 they proposed the
following classification of attackers in the associated white paper [9]:

1. Class 1 attackers – ‘clever outsiders’ – are often very intelligent but may
have insu�cient knowledge of the system. They may have access to only
moderately sophisticated equipment. They often try to take advantage of
an existing weakness in the system, rather than try to create one.

2. Class 2 attackers – ‘knowledgeable insiders’ – have substantial specialized
technical education and experience. They have varying degrees of under-
standing of parts of the system but potential access to most of it. They
often have highly sophisticated tools and instruments for analysis.

3. Class 3 attackers – ‘funded organizations’ – are able to assemble teams of
specialists with related and complementary skills backed by great funding
resources. They are capable of in-depth analysis of the system, designing
sophisticated attacks, and using the most advanced analysis tools. They
may use Class 2 adversaries as part of the attack team.

Within this scheme, the typical microcontroller is aimed at blocking clever
outsiders; the early 4753 aimed at stopping knowledgeable insiders, and the 4758
was aimed at (and certified for) blocking funded organizations. By the way, this
classification is becoming a bit dated; we see class 1 attackers renting access to
class 3 equipment. And class 3 attackers nowadays are not just national labs,
but your commercial competitors and even university security teams. In our
case, we have people with backgrounds in maths, physics, software and banking,
and we’ve had friendly manufacturers giving us samples of their competitors’
products for us to break.

The FIPS certification scheme is operated by laboratories licensed by the
US government. The original 1994 standard, FIPS 140-1, set out four levels of
protection, with level 4 being the highest, and this remained in the next version,
FIPS 140-2, which was introduced in 2001. There was a huge gap between level
4 and level 3; devices at that level were often easy for experts to attack. In fact,
the original paper on evaluation by IBM engineers proposed six levels [2001];
the FIPS standard adopted the first three of these as its levels 1–3, and the
proposed level 6 as its level 4 (the 4758 designer Steve Weingart tells the story
in [2000]). The gap, commonly referred to as level 3.5 or 3+, is where many of
the better commercial systems were aimed from the 1990s through 2019. Such
equipment attempts to keep out the class 1 attack community, while making life
hard for class 2 and expensive for class 3.

There was about a decade of consultation about whether to abandon FIPS
140 in favour of ISO 19790 – a move supported by vendors, particularly those

Security Engineering 555 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

outside the USA. Critics of the FIPS approach noted that it didn’t cover non-
invasive security such as bu↵er overflows and API attacks; that its concept of
roles was tied to human actors in companies, rather than other system com-
ponents; that it failed to cover some methods of side-channel analysis; that it
was generally aimed at outdated technology; that the FIPS standard includes
the dual elliptic curve deterministic random bit generator, known to contain
an NSA backdoor; and that it was changed too often by NIST issuing im-
plementation guidelines, rather than by updating the standard regularly [1410].
Eventually, the US Department of Commerce gave up and approved an updated
version, FIPS 140-3, which simply refers to the ISO standards 19790:2012 and
24759:2017, and specifies some refinements. This came into force in September
2019 and in 2021 testing under FIPS 140-2 will cease.

18.5 Smartcards and other security chips

While there are tens of thousands of HSMs in use, there are billions of self-
contained one-chip crypto modules containing nonvolatile memory, I/O, usually
a CPU, often some specialised logic, and mechanisms to protect memory from
being read out. Most are packaged as cards, while some look like physical keys.
They range from transport tickets at the low end, through smartcards and the
TPMs that now ship with most computers and phones, up to pay-TV cards
and accessory control chips designed to withstand attack by capable motivated
opponents for as long as possible.

Many attacks have been developed; we already discussed the consequences
of the breaks of the Mifare cards and car keys. Pay-TV subscriber cards in
particular have been subjected to intensive attacks as they often have a universal
shared secret key, so a compromise enables an attacker to make lots of counterfeit
cards, while a break of a bank smartcard only lets the attacker loot that specific
bank account. The accessory control chips in printer cartridges also protect a
lot of ‘value’, and have driven real innovation in both attack and defence. In
this section, I’ll tell the story of how chip-level security evolved.

18.5.1 History

Smartcards were developed in France from the mid-70s to mid-80s; for the early
history, see [832]. From the late 1980s, they started to be used at scale, initially
as the subscriber identity modules (SIMs) in GSM mobile phones and as sub-
scriber cards for satellite-TV stations. They started being used as bank cards
in France and South Africa in 1994, followed by trials in the UK and Norway;
this led to the EMV standard I mentioned in the chapter on banking and book-
keeping, with deployment in the rest of Europe from 2003 and the USA from
about 2015.

A smartcard is a self-contained microcontroller, with a microprocessor, mem-
ory and a serial interface integrated in a single chip and packaged in a plastic
card. Smartcards used in banking use a standard-size bank card, while in mod-
ern mobile phones a much smaller size is used. Smartcard chips are also packaged
in other ways. In the STU-III secure telephones used in the US government from

Security Engineering 556 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

1987–2009, each user had a ‘crypto ignition key’, packaged to look and feel like
a physical key; some prepayment electricity meters and pay-TV set-top boxes
used the same approach. The TPM chips built into computer motherboards
to support trusted boot are basically smartcard chips with an added parallel
port, so the TPM can verify that the right software is being used to start up
the computer. Contactless smartcards contain a smartcard chip plus a wire-
loop antenna; most car keys are a slightly more complex version of the same
idea, with an added battery to give greater range. In what follows I’ll mostly
disregard the packaging form factor and just refer to single-chip cryptographic
modules as ‘smartcards’ or ‘chipcards’.

Apart from bank cards, the single most widespread application is the mobile
phone SIM. The handsets are personalized for each user by the SIM, which
contains the key with which you authenticate yourself to the network. The
strategy of using a cheap card to personalise a more expensive electronic device
is found in other applications from pay-TV set-top boxes to smart meters. The
device can be manufactured in bulk for global markets, while each subscriber
gets a card to pay for service. The cards can also be replaced relatively quickly
and cheaply in the event of a successful attack.

18.5.2 Architecture

The typical smartcard consists of a single die of up to 25 square millimeters of
silicon containing a microprocessor (larger dies are more likely to break as the
card is flexed). Cheap products have an 8-bit processor such as an 8051 or 6805,
and the more expensive products have either a modular multiplication circuit
to do public-key cryptography, or a 32-bit processor such as an Arm, or indeed
both (hardware crypto is easier to protect against side-channel attacks). The
high-end ones also tend to have a hardware random number generator. There’s
also serial I/O and a hierarchy of memory – ROM or Flash to hold the program
and immutable data, Flash or EEPROM to hold customer data such as the
user’s account number, crypto keys, PIN retry counters and value counters; and
RAM to hold transient data during computation.

The memory is limited by the standards of normal computers; outside the
device, the only connections are for power, reset, a clock and a serial port. The
physical, electrical and low-level logical connections, together with a file-system-
like access protocol, are specified in ISO 7816. There are several main software
architectures on o↵er, including at the bottom end the Application Programming
Data Units (APDUs) defined by ISO 7816 which allow a reader to invoke specific
applications directly, through the Multos operating system to JavaCard, where
the card can run apps written in a subset of the Java language, and which you
(and your opponents in the underground) can use to code up custom apps2.
You can even buy overlay SIMs – smartcards 160 microns thick, with contacts
top and bottom, which you can program in JavaCard to carry out middleperson
attacks on other smartcards (you stick the overlay on top of the target device).

2JavaCard has quietly become one of the most widely deployed operating systems in the
world with over 6 billion cards sold [1250].

Security Engineering 557 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

18.5.3 Security evolution

When I first heard a sales pitch from a smartcard vendor – in 1986 when I was
working as a banker – I asked how come the device was secure. I was assured
that since the machinery needed to make the card cost $20m, just as for making
banknotes, the system must be secure. I didn’t believe this but didn’t have
the time or the tools to prove the claim wrong. I later learned from industry
executives that none of their customers were prepared to pay for serious security
until about 1995, and so until then they relied on the small size of the devices,
the obscurity of their design, and the inaccessibility of chip testing tools to make
attacks more di�cult. In any case, so long as they were only used for SIM cards,
there were no capable motivated opponents. All I can achieve by hacking my
SIM card is the ability to charge calls to my own account.

The application that changed this was satellite TV. TV operators broadcast
their signals over a large footprint – such as all of Europe – and give each
subscriber a card to compute the keys needed to decipher the channels they’ve
paid for. Since the operators had usually only bought the rights to the movies
for one or two countries, they couldn’t sell subscriber cards elsewhere. This
created a black market, into which forged cards could be sold. A critical factor
was that ‘Star Trek’, which people in Europe had picked up from UK satellite
broadcasts for years, was suddenly encrypted in 1993. In some countries, such
as Germany, it wasn’t available legally at any price. This motivated a lot of keen
young computer science and engineering students to look for vulnerabilities. A
further factor was that some countries, notably Ireland and Canada, didn’t have
laws yet against selling forged pay-TV cards; Canada didn’t do this until 2002.
So hackers could sell their wares openly.

This rapidly had knock-on e↵ects. The first large financial fraud reported
to involve a cloned smartcard was about a year later, in February/March 1995.
The perpetrator targeted a card used to give Portuguese farmers rebates on
fuel, conspiring with petrol stations who registered other fuel sales to the bogus
cards in return for a share of the proceeds. The proceeds were reported to have
been about $30m [1330].

How to hack a smartcard (1)

The earliest hacks targeted the protocols rather than the cards themselves.
For example, some early pay-TV systems gave each customer a card with access
to all channels, and then sent messages over the air to cancel those channels
to which the customer hadn’t subscribed after an introductory period. This
opened an attack in which a device was inserted between the smartcard and
the decoder to intercept and discard any messages addressed to the card. So
you could cancel your subscription without the vendor being able to cancel your
service. The same kind of attack was launched on the German phone card
system, with handmade chip cards sold in brothels and in hostels for asylum
seekers [1813, 184].

How to hack a smartcard (2)

As smartcards use an external power supply, and store security state such as
crypto keys and value counters in EEPROM, an attacker could freeze the EEP-

Security Engineering 558 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

ROM contents by removing the programming voltage, VPP . Early smartcards
received VPP from the card reader on a dedicated contact. So by covering this
contact with sticky tape, cardholders could prevent a value counter from being
decremented. With some payphone chipcards, this gave infinite units.

The fix was to generate VPP internally from the supply voltage VCC using a
voltage multiplier. However, this isn’t foolproof as the circuit can be destroyed
by an attacker, for example with a laser shot. As well as bypassing value controls,
they can also bypass a PIN retry counter and try every possible PIN, one after
another. So a prudent programmer won’t just ask for a customer PIN and
decrement the counter if it fails. You decrement the counter, check it, get the
PIN, verify it, and if it’s correct then increment the counter again3.

How to hack a smartcard (3)

Another early attack was to read the voltages on the chip surface using a
scanning electron microscope (SEM). The low-cost SEMs found in universities
back then couldn’t do voltage contrast microscopy at more than a few tens of
kilohertz, so attackers would slow down the clock. In one card, attackers found
they read out RAM contents with a suitable transaction after reset, as working
memory wasn’t zeroized.

Modern smartcard processors have a watchdog timer or other circuit to de-
tect low clock frequency and reset the card, or else use dynamic logic. And the
attacker could sometimes single-step the program by repeatedly resetting the
card and clocking it n times, then n+1 times, and so on. But as with burglar
alarms, there’s a trade-o↵ between false alarms and missed alarms. Cheap card
readers can have wild fluctuations in clock frequency when a card is powered
up, causing many false alarms. Eventually, cards acquired an internal clock.

How to hack a smartcard (4)

Once pay-TV operators had blocked the easy attacks, pirates turned to phys-
ical probing. Early smartcards had no protection against physical tampering
except the microscopic scale of the circuit, a thin glass passivation layer on the
surface of the chip, and potting which is typically some kind of epoxy. Tech-
niques for depackaging chips are well known, and discussed in detail in standard
works on semiconductor testing, such as [197]. In most cases, a milliliter of
fuming nitric acid is more than enough to dissolve the epoxy.

Probing stations consist of microscopes with micromanipulators attached for
landing fine probes on the surface of the chip. They are used in the semiconduc-
tor industry for testing production-line samples, and can be bought second-hand
(see Figure 18.4). They may have specialized accessories, such as a laser to shoot
holes in the chip’s passivation layer.

The usual target of a probing attack is the processor’s bus. If the bus tra�c
can be recorded, this gives a trace of the program’s operation. (It was once a
recommended industry practice for the card to compute a checksum on memory
immediately after reset – giving a complete listing of all code and data.) So

3Such defensive programming was common in the early days of computing, when computers
used valves rather than transistors and used to break down every few hours. Back then, if
you masked o↵ three bits, you’d check the result was no more than seven, just to make sure.

Security Engineering 559 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

Figure 18.4: – our probing station

the attacker will find the bus and expose it for probing (see Figure 18.5). If the
chip is using algorithms like AES and RSA, then unless there’s some defense
mechanism that masks the computation, a trace from even a single bus line will
be enough to reconstruct the key [860].

The first defense used by the pay-TV card industry was to endow each card
with multiple keys or algorithms, and arrange things so that only those in current
use would appear on the processor bus. Whenever pirate cards appeared on the
market, a command would be issued over the air to cause legitimate cards to
activate new keys or algorithms from previously unused memory. In this way,
the pirates’ customers would su↵er a loss of service until the attack could be
repeated and new pirate cards or updates could be distributed [2064].

How to hack a smartcard (5)

This strategy was defeated by Oliver Kömmerling’s memory linearization
attack in which the analyst damages the chip’s instruction decoder in such a
way that instructions such as jumps and calls – which change the program
address other than by incrementing it – are broken [1078]. One way to do this
is to drop a grounded microprobe needle on the control line to the instruction
latch, so that whatever instruction happens to be there on power-up is executed
repeatedly. The memory contents can now be read o↵ the bus. In fact, once

Security Engineering 560 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

Figure 18.5: – the data bus of an ST16 smartcard prepared for probing by
excavating eight trenches through the passivation layer with laser shots (Photo
courtesy Oliver Kömmerling)

some of the device’s ROM and EEPROM is understood, the attacker can skip
over unwanted instructions and cause the device to execute only instructions of
their choice. So with a single probing needle, they can get the card to execute
arbitrary code, and in theory could get it to output its secret key material on
the serial port. This can be thought of as an early version of the return-oriented
programming attack. But probing the memory contents o↵ the bus is usually
more convenient.

There are often several places in the instruction decoder where a grounded
needle will prevent programmed changes in the control flow. So even if it isn’t
fully understood, memory linearization can often be achieved by trial and error.
One particularly vulnerable smartcard family was the Hitachi H8/300 architec-
ture, which had a 16-bit bus with the property that if the most significant bit
equals 1 then the CPU will always execute single-cycle instructions without any
branches. So by shooting the MSB bus line with a laser, the memory could be
easily read out [1781]. Other CPUs based on RISC cores also tend to su↵er from
this. Some of the more modern processors have traps which prevent memory
linearization, such as watchdog timers that reset the card unless they themselves
are reset every few thousand instructions.

Memory linearization is an example of a fault induction attack. There are
many other examples. Faults can be injected into processors in many ways,
from hardware probing through power transients and laser illumination. One
common target is the test circuitry. A typical chip has a self-test routine in
ROM that is executed in the factory and allows all the memory contents to

Security Engineering 561 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

be read and verified. In some cases, a fuse is blown in the chip to stop an
attacker using the facility. But the attacker can cause a fault in this mechanism
– whether by flipping a bit in Flash memory [1776], or just finding the fuse and
bridging it with two probing needles [302]. In other cases, the test routine is
protected with a password, which can be found [1775].

We noted in section 5.7.1 that the RSA algorithm is fragile in the presence
of failure; one laser shot is all it takes to cause a signature to be right modulo
p and wrong modulo q, enabling the attacker to factor the key pq. Adi Shamir
pointed out that if a CPU has an error in its multiply unit – even just a single
computation ab = c whose result is returned consistently wrong in a single bit –
then you can design an RSA ciphertext for decryption (or an RSA plaintext for
signature) so that the computation will be done correctly mod p but incorrectly
mod q, again enabling you to factor the key [1705]. So a careful programmer will
always check the results of critical computations, and think hard about what
error messages might disclose.

How to hack a smartcard (6)

The next thing the pay-TV card industry tried was to incorporate hardware
cryptographic processors, in order to force attackers to reconstruct hardware
circuits rather than simply clone software, and to force them to use more ex-
pensive processors in their pirate cards. In the first such implementation, the
crypto processor was a separate chip packaged into the card, and it had an inter-
esting protocol failure: it would always work out the key needed to decrypt the
current video stream, and then pass it to the CPU which would decide whether
or not to pass it on to the outside world. Hackers just tapped the wire between
the two chips.

The next version had the crypto hardware built into the CPU itself. Where
this consists of just a few thousand gates, an attacker can trace the circuit
manually from micrographs. But with larger gate counts and deep submicron
processes, a successful attack needs serious tools: you need to etch or grind away
the layers of the chip, take electron micrographs, and use image processing
software to reconstruct the circuit [269]. Equipment can now be rented and
circuit-reconstruction software can be bought; the short resource now is skilled
reverse engineers.

By the late 1990s, some pirates had started to get commercial reverse-
engineering labs to reconstruct chips for them. Such labs get much of their
business from analyzing integrated circuits on behalf of chip makers’ competi-
tors, looking for patent infringements. They also reverse chips used for accessory
control, as doing this for compatibility rather than piracy is lawful. Many labs
were located in Canada, where copying pay-TV cards wasn’t a crime until 2002
(though there were at least two cases where these labs were sued by pay-TV op-
erators). Some labs are now in China, whose legal system is harder for outsiders
to navigate.

How to hack a smartcard (7)

In 1995 STM pioneered a new defence, a protective shield on the chip surface.
This was a serpentine sensor line, zig-zagging round ground lines in a top metal

Security Engineering 562 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

layer. Any break or short would be sensed as soon as the chip was powered up,
whereupon the chip would overwrite the keys.

Sensor mesh shields can really push up the cost of an attack. One bypass
is to hold the sensor line to VDD with a needle, but this can be fragile; and
other vendors have multiple sensor lines with real signals on them. So if you
cut them, you have to repair them, and the tool for the job is the Focused
Ion Beam Workstation (FIB). This is a device similar to a scanning electron
microscope but which uses a beam of ions instead of electrons. By varying the
beam current, it can be used either as a microscope or as a milling machine, with
a useful resolution under 10 nanometers. By introducing a gas that’s broken
down by the ion beam, you can lay down either conductors or insulators with
a precision of a few tens of nanometers. For a detailed description of FIBs and
other semiconductor test equipment that can be used in reverse engineering,
see [1233].

FIBs are so useful in all sorts of applications, from semiconductor testing
through metallurgy and forensics to nanotechnology, that they are widely avail-
able in physics and material-science labs, and can be rented for about a hundred
dollars an hour.

Given such a tool, it is straightforward to attack a shield that is not powered
up. The direct approach is to drill a hole through the mesh to the metal line that
carries the desired signal, fill it up with insulator, drill another hole through the
center of the insulator, fill it with metal, and plate a contact on top – typically
a platinum ‘X’ a few microns wide, which you then contact with a needle from
your probing station (see Figure 18.6). There are many more tricks, such as
using the voltage contrast and backscatter modes of your electron microscope
to work out exactly where to cut, so you can disable a whole section of the mesh.
John Walker has a video tutorial on how to use these tricks to defeat a shield
at [1975]

Many other defenses can force the attacker to do more work. Some chips
have protective coatings of silicon carbide or boron nitride, which can force the
FIB operator to go slowly rather than damage the chip through a build-up of
electrical charge. Chips with protective coatings are on display at the NSA
Museum at Fort Meade, Maryland.

How to hack a smartcard (8)

In 1998, the smartcard industry was shaken when Paul Kocher announced a
new attack known as di↵erential power analysis (DPA). This relies on the fact
that di↵erent instructions consume di↵erent amounts of power, so by measuring
the current drawn by a chip it was possible to extract the key. Smartcard makers
had known since the 1980s that this was theoretically possible, and had even
patented some crude countermeasures. But Paul came up with e�cient signal
processing techniques that made it easy, and which I’ll describe in the following
chapter. He came up with even simpler attacks based on timing; if cryptographic
operations don’t take the same number of clock cycles, this can leak key material
too4. Power and timing attacks are examples of side-channel attacks, where the

4On larger processors, it can be even worse; a number of researchers developed attacks on
crypto algorithms such as AES based on cache misses during the 2000s, and in 2018 we had
the Spectre and Meltdown attacks that exploit transient execution. See the chapter on side

Security Engineering 563 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

Figure 18.6: – the protective mesh of an ST16 smartcard with a FIB cross for
probing the bus line visible underneath (Photo courtesy Oliver Kömmerling)

opponent can observe some extra information about the processor’s state during
a cryptographic computation. All the smartcards on the market in 1998 turned
out to be highly vulnerable to DPA, and this held up the industry’s development
for a couple of years while countermeasures were developed.

Attacks were traditionally classed as either invasive attacks such as mechan-
ical probing, which involves penetrating the passivation layer, and noninvasive
attacks such as power analysis, which leaves the card untouched. Noninvasive
attacks can be further classified into local attacks where the opponent needs ac-
cess to the device, as with power analysis; and remote attacks where she could
be anywhere, such as timing attacks. But that was not the whole story.

How to hack a smartcard (9)

Mechanical probing techniques have been getting steadily harder because
of shrinking feature sizes. The next attack technology to develop was optical
probing. The first report was from Sandia National Laboratories who in 1995
described a way to read out a voltage directly using a laser [32]. Since 2001
optical probing has been developed into an e↵ective and low-cost technology,
largely by my Cambridge colleague Sergei Skorobogatov. In 2002 Sergei and I
reported using a photographic flashgun, mounted on the microscope of a probing
station, to induce transient faults in selected transistors of an IC [1782]. The
light ionises the silicon, causing transistors to conduct. Once you understand
photoconductivity and learn to focus the light on single transistors, by upgrad-
ing from a flashgun to a laser, this enables many direct attacks. For example,

channels.

Security Engineering 564 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

microcontrollers can be opened by toggling the flip-flop that latches their pro-
tection state. This gave a new way of causing not just transient fault attacks,
as on fragile cryptosystems such as RSA, but faults that are precisely directed
and controlled in both space and time.

Later in 2002, Sergei reported using a laser mounted on the same cheap
microscope to read out a microcontroller’s memory directly. The basic idea is
simple: if you shine a laser on a transistor, that will induce a photocurrent and
increase the device’s power consumption – unless it was conducting already. So
by scanning the laser across the device, you map which transistors are o↵ and
which are on. We developed this into a reasonably dependable way of reading
out flip-flops and RAM memory [1648]. We named our attack semi-invasive
analysis as it lies between the existing categories of invasive and non-invasive.
It’s not invasive, as we don’t break the passivation; but we do remove the epoxy,
so it doesn’t count as non-invasive either.

Optical probing from the front side of the chip remained the state of the art
for about five years. By the time of this book’s second edition (2007), smartcard
vendors were using 0.18 and 0.13 micron processes, typically with seven metal
layers. Direct optical probe attacks from the chip surface had become di�cult,
not so much because of the feature size but because the metal layers get in
the way. In addition, the sheer size and complexity of the chips was making
it di�cult to know where to aim. The di�culty was increased by glue logic –
essentially randomised place-and-route.

Older chips have clearly distinguishable blocks, and quite a lot can be learned
about their structure and organisation just by looking. Bus lines could be picked
out and targeted for attack. However, the SX28 in Figure 18.7 just looks like a
random sea of gates. The only easily distinguishable features are the EEPROM
(at top left) and the RAM (at top right). It takes some work to find the CPU,
the instruction decoder and the bus.

I wrote in the second edition, “The two current windows of vulnerability are
the memory and the rear side.” These have provided our Tamper Lab’s main
research targets during the decade since.

How to hack a smartcard (10)

Rear-side attacks are the practical semi-invasive option once you get below
0.35µ. You go through the back of the chip using an infrared laser at a wave-
length around 1.1µ where silicon is transparent. For feature sizes below 65nm,
you need to thin down the chip to 2–5µ using some combination of mechanical
polishing and chemical etching; and there are now special methods to improve
the resolution, such as silicon immersion lenses. One physical limit is you can’t
get a bandwidth of much over a few MHz because of the time taken for the
charge carriers to recombine.

Rear-side attacks can sometimes be used to extract ROM contents by direct
observation, but the main technique is optical fault induction (OFI), which has
now become a standard security test procedure. Silicon immersion lenses have
enabled OFI attacks to continue to create single-event upsets down to 28nm
silicon, even though the laser spot size is about a micron [593]. Most smartcards
current in 2019 tend to use about 90nm with the smallest about 65nm [1862].
The three big vendors have all announced 40nm products. So OFI will continue

Security Engineering 565 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

Figure 18.7: – SX28 microcontroller with ‘glue logic’ (courtesy of Sergei Sko-
robogatov)

to be practical for some time.

With the smaller feature sizes, you have to accept that your aim in both
space and time will often be fuzzy, and you may use the laser in combination
with another more precise technique. One starting point here was optically-
enhanced position-locked power analysis. By illuminating the n channels of
a memory cell, the signal observed from a state change by power analysis is
increased; with higher light levels, even read accesses can be detected. This
enables much more selective analysis [1771].

How to hack a smartcard (11)

By 2010, the logic in most security chips was glue logic with few discernible
features, but since Flash memory needs high voltages and large charge pumps,
Flash arrays are large and easily identifiable. Chipmakers worried that the
attacks that targeted chips with a separate VPP programming voltage might be
reinvented by using a laser to interfere with the charge pumps. So they tried to
stop both memory corruption and the exploitation of memory readback access
by making secure Flash with a per-block verify-only operation when memory is
written. Sergei’s bumping attack was inspired by the bumping attacks on locks
described in chapter 13. Just as lock bumping forces cylinders into a desired
state, so Flash bumping forces bus lines into a desired state as they report the
results of memory verification [1774].

Security Engineering 566 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

But perhaps the most significant recent breakthrough was in 2016, when
Franck Courbon, Sergei Skorobogatov and Chris Woods discovered how to use
the latest generation of scanning electron microscopes to automate the direct
read-out of Flash and EEPROM. As the memory cells store a bit by the presence
or absence of a few hundred electrons in a floating gate, it’s tricky to read them
out without using the circuits designed for the purpose – especially when using
a beam consisting of billions of electrons, aimed through the rear side of the
chip. (We used to compare this with reading a palimpsest with a blowlamp.)
Making it work requires very careful sample preparation, a SEM that supports
passive voltage contrast (PVC), fine-tuned scan acquisition and e�cient image
processing [480]. Using such tools and techniques, it’s now possible to read out
the 256K of Flash or EEPROM from a typical smartcard or other security chip
with perhaps half a dozen single-bit errors. This had been predicted as long
ago as 2000 by Steve Weingart, the 4758 designer [1999]; PVC made it a reality.
The e↵ect on the smartcard industry is that the entire memory of the chip can
now be read out. Reverse engineering is a matter of figuring out the CPU’s
instruction set, how the memory is encrypted, and so on.

How to hack a smartcard (12)

Reverse engineering services in China now charge 30c per gate, so the brute-
force approach is to just reverse the whole chip and drop it in a simulator without
trying to understand it in detail. Given that a typical smartcard has 100,000
gates, this means you can get a simulator for $30,000. Then you have all sorts
of options. Once you have su�ciently understood one card of a particular type,
the per-card cloning cost is now the cost of memory extraction. You can also
use the simulation to look for side-channel attacks, to plan FIB edits, or to fuzz
the device and look for other vulnerabitities.

As smartcards are computers, they can sometimes fall to the usual computer
attacks, such as stack overwriting by sending too long a string of parameters. As
early as 1996, the Mondex card, used in a payment trial by the UK’s NatWest
Bank, boasted a formally verified operating system. Yet as late as 2019, software
attacks worked against at least one SIM card. Malicious SMSes were used by
nation-state attackers to download malware into the SIMs of target users so
that their location could be tracked [575].

18.5.4 Random number generators and PUFs

Many crypto chips are o↵ered with a random number generator, a physical
unclonable function, or both.

Hardware random number generators (RNGs) are used to produce proto-
col nonces and session keys. Weak generators have led to many catastrophic
security failures, of which a number pop up in this book. Poor nonces lead
to replay attacks, while weak session keys can compromise long-term signing
keys in cryptographic algorithms such as ECDSA. During the 1990s, the fash-
ion was for algorithmic random number generation; this is properly known as
a pseudorandom number generator (PRNG). A crypto chip might have had a
special key-generation key that was used in counter encryption mode; operating
systems often had something similar. However, if the counter is reset, then the

Security Engineering 567 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

output is repeated; there have been several variants on this theme. I also men-
tioned the NIST Dual-EC-DRBG, which was built into Windows and seemed to
have contained an NSA trapdoor [1734]; Ed Snowden later confirmed that the
NSA paid RSA $10m to use this standard in tools that many tech companies
licensed [1290].

Hardware random number generators typically quantise jitter or use some
source of metastability such as a cross-coupled inverter pair. Such generators
are notoriously di�cult to test; faults can be induced by external noise such
as temperature, supply voltage and radiation. Standards such as NIST SP800-
A/B/C call for RNG output to be run through test circuits. Crypto products
often mix together the randomness from a number of sources both environmental
and internal [838], and this is a requirement for the highest levels of certification.
The way these sources are combined is often the critical thing and one should
beware of designs that try to be too clever [1033]. One must also beware that
hardware RNGs are usually proprietary, obscure designs, sometimes specific to
a single fab, so it’s hard to check that the design is sound, let alone that it
doesn’t contain a subtle backdoor. An example of conservative design may be
that used in Intel chips since 2012, which combines both a hardware RNG and
a software PRNG that follows it [856].

The manufacture of crypto chips typically involves a personalisation stage
where serial numbers and crypto keys are loaded into Flash or EEPROM. This
is another attack point: Ed Snowden reported that GCHQ had hacked the
mechanisms used by Gemalto to personalise cards, and got copies of the keys in
millions of SIMs. So one might ask whether chips could be manufactured with
an intrinsic key that would never leave the device. Each chip would create a
private key and export the public key, which the vendor would certify during
personalisation. But this takes time, and also seems to need an RNG on the
chip. Is there another way?

A physical unclonable function (PUF) is a means of identifying a device
from variations that occur naturally during manufacture. In the 1980s, Sandia
National Laboratories were asked by the US Federal Reserve whether it was
possible to make unforgeable banknote paper, and they came up with the idea
of chopping up optical fibre into the mash, so you could recognise each note by
a unique speckle pattern [1746]. Such a mechanism should be unclonable, and
its behaviour should change detectably if it’s tampered with. Could something
similar be devised for integrated circuits? In 2000, Oliver and Fritz Kömmerling
proposed loading chip packaging with metal fibres and measuring its properties
to generate a key with which the chip contents would be encrypted, so that
drilling through the packaging would destroy the key [1079]. In 2002 Blaise
Gassend, Dwaine Clarke, Marten Van Dijk and Srini Devadas proposed using
process variability in the silicon itself, suggesting that a collection of ring os-
cillators might be chaotic enough to be unique [754]. There followed the usual
coevolution of attack and defence as people proposed designs and others broke
them.

Through the 2010s we’ve started to see PUFs appearing in significant num-
bers of low-cost chips as well as in higher-value products such as FPGAs. The
typical ‘weak PUF’ generates a consistent random number on power-up from
process variability; an SRAM PUF reads the initial state of some SRAM cells

Security Engineering 568 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

and is used, with error correction, as a stable random ID or as an AES key to
encrypt memory or to drive a PRNG. If your opponent is capable of reversing
your circuit and scanning your Flash memory, a PUF may at least force them
to go to the trouble of probing the key o↵ the bus, or inducing faults one bus
line at a time to read it out using di↵erential fault analysis.

PUF marketing often claims much more, and one claim (as well as a research
goal) is a ‘strong PUF’ which would act as a hardware challenge-response mech-
anism. Given an input, it would return an output that would be su�ciently
di↵erent for each chip (and each input) to be usable as a cryptographic primi-
tive in itself. For example, one might send a thousand challenges to the chip at
personalisation and store the responses for later key updating. Note that this
would not of itself have stopped the NSA attack on Gemalto, as they hacked the
personalisation files and if PUFs had been used they’d have got the challenge-
response pair files too.

The state of the art in 2020 appears to be XOR arbiter PUFs, which consist
of a chain of multiplexers followed by an arbiter. The challenge to the PUF is
input to the address lines of the multiplexers which select a route for signals
to race through them to get to the arbiter. To make it harder for an attacker
to work out the relative delay on each circuit path, the outputs of a number of
arbiters are XORed together. However Fatemeh Ganji, Shahin Tajik and Jean-
Pierre Seifert have shown that suitable machine-learning techniques can be used
to model the underlying circuits [745]. The same authors worked with Heiko
Lohrke and Christian Boit to develop laser fault induction attacks, guided by the
chip’s optical emissions, that disable some arbiters so that others can be learned
more quickly, and thus significantly reduce the PUFs’ entropy [1859]. There are
always probing attacks, as some routine on the chip has to be able to read
the PUF for it to do any work, and this means the bootloader or the monitor.
As these are often left open to parts of the supply chain for personalisation,
warranty and upgrade purposes, it’s hard to see what extra protection such
devices would give, even if we could invent one that works properly. Also, using
such devices at scale would tend to make personalisation slower and protocols
more complex. Finally, the strength of a PUF depends on variation that the
fab tries its best to eliminate, so a change in silicon process can suddenly make
a PUF design insecure.

18.5.5 Larger chips

There’s a growing number of larger chips with embedded security functions, typ-
ically aimed at manufacturing control or accessory control. The granddaddy of
these products may be the Clipper chip, which the Clinton administration pro-
posed in 1993 as a replacement for DES. Also known as the Escrowed Encryption
Standard (EES), this was a tamper-resistant chip containing the Skipjack block
cipher and a protocol designed to allow the FBI to decrypt any tra�c encrypted
using it. When a user supplied Clipper with some plaintext and a key to encrypt
it, the chip returned not just the ciphertext but also a Law Enforcement Access
Field (LEAF) which contained the user-supplied key encrypted under an FBI
key embedded in the device. To prevent people cheating by sending the wrong
LEAF with a message, the LEAF had a MAC computed with a ‘family key’

Security Engineering 569 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

shared by all Clipper chips – which had to be tamper-resistant to keep both the
Skipjack block cipher and the LEAF family key secret.

As often happens, it wasn’t the tamper-resistance that failed, but the proto-
col. Almost as soon as Clipper hit the market, Matt Blaze found a vulnerability:
as the MAC used to bind the LEAF to the message was only 16 bits long, it
was possible to feed message keys into the device until you got one with a given
LEAF, so a message could be sent with a LEAF that would reveal nothing to
the government [258]. Clipper was replaced with the Capstone chip, the crypto
wars continued by other means, and the Skipjack block cipher was placed in the
public domain [1400].

Of interest in this chapter are the tamper protection mechanisms used, which
were claimed at the time to be su�cient to withstand a ‘very sophisticated, well
funded adversary’ [1398]. Although it was claimed that the Clipper chip would
be unclassified and exportable, I was never able to get hold of a sample despite
repeated attempts. It used Vialink read only memory (VROM) in which bits
are set by blowing antifuses between the metal 1 and metal 2 layers on the
chip. A high-voltage programming pulse is used to melt a conducting path
through the polysilicon between two metal layers. This technology was also
used in the QuickLogic FPGA, which was advertised as a way for firms to
conceal proprietary algorithms, and claimed to be ‘virtually impossible to reverse
engineer’; further details and micrographs appeared in its data book [801]. A
recent variant is the spot breakdown PUF where a high enough voltage is applied
to a bank of transistors for just long enough that about half of them su↵er
breakdown of the gate oxide, creating random failures that can be read as ones
and zeros [422].

Fusible links are used on other devices too; recent iPhones, for example,
have an AES key burned into the system-on-chip. There are basically three
approaches to reverse engineering an antifuse device.

• The first thing to look at is the programming circuitry. All such chips
have a test circuit used to read back and verify the bitstream during
programming, and many disabled this by melting a single fuse afterwards.
If you can get sample devices and a programmer, you can maybe find this
fuse using di↵erential optical probing [1772]. You then use a FIB to repair
it, or bridge it with two probe needles, and read out the bitstream. This
attack technique works not just for antifuse FPGAs but also for the Flash
and EEPROM varieties.

• Where you need to read out many fuses, as where they’re used to store
an AES key, the brute-force approach is to strip the chip down one layer
at a time and read the fuses directly; they turn out to be visible under
a suitable chemical stain. As this attack is destructive it is typically of
limited interest against keys that are di↵erent in each device (as in the
iPhone, or a spot breakdown PUF).

• Where the device implements a cryptographic algorithm, a side-channel
attack may be the fastest way in. Most devices manufactured before
about 2000 are rather vulnerable to power analysis, and while smartcard
chipmakers have incorporated defences, the makers of larger chips may

Security Engineering 570 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

have preferred to avoid paying royalties to Cryptography Research, which
patented many of the best ones. You can always try optical fault induction
to read the key one bit at a time, and since the late 2000s we also know
how to work with optical emissions, which I’ll discuss later.

Secure FPGAs became big business in the 21st century as firms outsource
the manufacture of electronic goods to the Far East but want to control at least
one critical component to prevent overbuild and counterfeiting. Most FPGAs
sold now have conventional memory rather than antifuse, so they can be made
reprogrammable. If you use a volatile FPGA that stores the bitstream in SRAM,
you will want one or more embedded keys kept in nonvolatile memory, so the
bitstream is uploaded and then decrypted on power-up. For faster power-up
you might choose a non-volatile device that stores the whole bitstream in Flash.
In both cases, there may be fuses to protect the key material and the security
state [583]. But do watch out for service denial attacks via the upgrade mecha-
nism. For example, a Flash FPGA may only have enough memory for one copy
of the bitstream, not two; so the näıve approach is to read in the bitstream once
to decrypt it and verify the MAC, and then a second time to reprogram the
part. But if the bitstream supplied the second time is corrupt, will you have a
dead product? And if you allow rollback, your customers can perhaps escape
upgrades by replaying old bitstreams. And if an attacker gets your products
to load a random encrypted bitstream, this could cause short circuits and brick
the part. So stop and think whether anyone might try to destroy your product
base via a corrupt upgrade; if so, you might consider a secure bitstream loader.
You might also consider a more expensive FPGA with enough on-chip memory
to support old and new bitstreams at the same time.

The second type of large-chip security product is the system-on-chip (SoC)
with inbuilt authentication logic. The pioneer may have been Sony’s Playstation
2 in 2000, which fielded MagicGate, a cryptographic challenge-response protocol
run between the device’s graphics chip and small authentication chips embedded
in legitimate accessories. The business model of games console manufacturers
included charging premium prices for software and additional memory cards,
whose sellers had to use copy-control technology and pay the console vendor
a royalty; this was used to subsidise the initial cost of the console. Of course,
aftermarket operators would then hack their copy-control mechanisms, so Sony
set out to dominate its aftermarket with a better copy-control technology. This
used some interesting protection tricks; the MagicGate protocol was both simple
(so protocol attacks couldn’t be found) and randomised (so attackers couldn’t
learn anything from repeating transactions). It took several years and millions
of dollars for the aftermarket firms to catch up. While the authentication logic
in a small chip may need a top metal shield, copy traps and layout obfuscation
to hide it, the same logic in a large chip can hide among the billions of other
transistors.

By the mid-to-late 2000s, similar logic was appearing in system-on-chip prod-
ucts in other industries – sometimes for accessory control, and sometimes to en-
able one product be sold with several di↵erent levels of performance as a means
of price discrimination. This practice has led to some interesting edge cases.
For example, in 2017 Tesla temporarily ‘upgraded’ the batteries of its model S
and X cars so that owners could get out of the path of Hurricane Irma [1930].

Security Engineering 571 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

So how can you hack the magic devices that we find everywhere nowadays?
Memory readout can be the most dependable attack path. As an example,
Sergei Skorobogatov used the new PVC Flash / EEPROM readout technique to
reverse the OmniPod insulin pump. Diabetics who know how to program prefer
to control their own insulin pumps but vendors try to stop them, for both
market control and liability reasons. The OmniPod’s system-on-chip therefore
runs an authentication protocol with the device’s authorised controller, and the
Nightscout Foundation, an NGO that supports diabetics, wanted to extract the
keys so patients could optimise the control for their own health needs rather
than following the treatment protocols devised by Omnipod. The analysis is
described in [1778].

A second attack path is to look to see whether the device computes with
encrypted data, and if so look for a protocol failure or side-channel that gives
a way in. An early example was the cipher instruction search attack invented
by Markus Kuhn on the DS5002 processor [1102]. This device pioneered bus
encryption with hardware that encrypts memory addresses and contents on the
fly as data are loaded and stored, so it was not limited to the small amount of
RAM that could be fitted into a low-cost tamper-sensing package at the time
(1995). Markus noticed that some of the processor’s instructions have a visible
external e↵ect; one instruction in particular caused the next byte in memory
to be output to the device’s parallel port. So if you intercept the bus between
the processor and memory using a test clip, you can feed in all possible 8-bit
instruction bytes at some point in the instruction stream until you see a one-
byte output. After using this technique to tabulate the encryption function
for a few bytes, you can encipher and execute a short program to dump the
entire memory contents. Similar tricks are still used today, and variants on the
attack still work. In 2017 Sergei Skorobogatov demonstrated an active attack
on a system-on-chip used in the car industry, which used memory encryption to
make bus probing harder. By selectively injecting wrong opcodes into the bus,
he was able to reverse the encryption function [1779].

A tougher problem was presented by the iPhone. In March 2016 FBI director
James Comey demanded that Apple produce a law-enforcement ‘upgrade’ to its
iOS operating system to enable access to locked iPhones, claiming that the FBI
would otherwise be unable to unlock the phone of the San Bernardino shooter.
Sergei set out to prove him wrong and by August had a working attack. The
phone in question, the Apple 5c, has an SoC with an embedded AES key, set
up by burning fusible links; as these can be seen under an electron microscope,
read-out may be possible but would destroy the SoC. AES isn’t vulnerable to
cryptanalysis, and the encryption appears to work one cache line at a time,
so cipher instruction search won’t work. But no matter, as there’s a NAND
mirroring attack. The phone’s non-volatile memory is a NAND Flash chip whose
the contents are encrypted, one cache line, by the embedded device key, so that
the chip from one phone can’t be read in another. The attack is to desolder the
memory chip, mount it in a socket, and copy its contents. You then make half
a dozen PIN guesses, and the phone starts to slow down (it locks after ten).
Next, you remove the memory chip and restore its original contents. You can
now make half a dozen more attempts. With a bit more work, you can clone the
chip or build a circuit board to emulate it, so you can guess faster. The details
can be found in [1777]. In the end, the FBI used a service from Cellebrite, a

Security Engineering 572 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

forensics company, which later turned out to be exploiting the Checkm8 bug in
the iPhone ROM [793].

The third type of attack I’ll mention is optical emission analysis, which is
strictly speaking a side channel but which I’ll introduce here as it’s becoming
one of the main ways of attacking high-grade crypto chips. Photons are emitted
when semiconductor junctions switch, and photon emission microscopy is an
established failure analysis technique, with silicon emitting mostly in the near
infrared near the drain area of n-MOS transistors. This was first used to attack
a crypto implementation in 2008 by Julie Ferrigno and Martin Hlavac, who used
an expensive single-photon counting photomultiplier to read out AES keys from
an outdated 0.8µ microcontroller, but worried that their technique would not
work for technologies smaller than 0.12µ [681]. By the following year, Sergei
Skorobogatov found that a photomultiplier sold to hobby astronomers was near
ideal and discovered a voltage boost trick: increasing the chip supply voltage
from 1.5V to 2V increases the photon output sixfold. He found he was almost
able to read out the AES keys from the internal crypto engine of a modern chip,
the Actel ProASIC3 FGPA. Then, once the AES algorithm timing had been
established, and he knew each round key took 1.6µs, he further increased the
voltage to 2.5V for the 0.2µs of an individual bus write, giving a further fourfold
increase in the photon output plus temporal resolution, which enabled him to
read each word of round key clearly o↵ the bus. This was all rather embarrass-
ing as I’d consulted on the design to Actel back in 2001. The ProASIC3 was
fabricated in a 0.13µ technology with 7 metal layers and flash memory, and we
had built in all sorts of countermeasures to block the attacks we knew about at
the time; reading it out invasively would have been tedious. That was a sharp
reminder that it’s hard to block the attacks that haven’t been invented yet, and
that attacks can improve very quickly once experts start to hone them. Optical
emission analysis is now used in combination attacks: if you want to attack a
chip that’s too big to reverse engineer, you observe the emissions as it does the
cryptography and this tells you where to aim your laser as you try a fault attack
or optically-enhanced power analysis. It can also suggest where you might lay
down a few probe points with your FIB.

18.5.6 The state of the art

How well can you protect a single-chip product against a capable motivated
opponent? In the late 1990s, everything got broken, and in the 2001 edition of
this book, I wrote, “there isn’t any technology, or combination of technologies,
known to me which can make a smartcard resistant to penetration by a skilled
and determined attacker.” During the 2000s, the defence improved because of
the e↵orts of the pay-TV firms and the banking industry, so in the second edition
I wrote “This is still almost true, but ... you can be looking at a year’s delay, a
budget of over a million dollars, and no certainty of success.”

Now, in 2019, Moore’s law has run out of steam; crypto chips are mostly
stuck at about 100nm, while the semiconductor test equipment industry is aim-
ing to support 9nm processing and still turning out innovations such as passive
voltage contrast microscopy; and researchers are finding innovative ways to use
their products. So the attackers are starting to catch up. The scope of the

Security Engineering 573 Ross Anderson

18.5. SMARTCARDS AND OTHER SECURITY CHIPS

industry is also increasing. In 2007, we had a handful of smartcard OEMs,
a handful of reversing labs and a handful of interested academics; now many
chipmakers are being asked by their customers for some tamper-resistance, as
products from routers to the Raspberry Pi acquire some kind of secure boot
capability to defeat persistent malware. So there are ever more medium-grade
products that are suitable for grad students to learn the art and craft of hard-
ware reverse engineering5. And the growing demand, particularly in China, to
reverse devices for compatibility drives the growth of commercial reversing labs.
The market’s now big enough for people to make a living selling specialist tools
such as layout-reconstruction software and optical fault induction workstations.
As a result, attackers are getting more numerous and more e�cient. I suspect
that the cost of cloning a smartcard will steadily come down through the tens
of thousands and perhaps into the single thousands.

Security economics remains a big soft spot, with security chips being in many
ways a market for lemons. A banker buying HSMs probably won’t be aware
of the huge gap between FIPS level 3 and level 4, and understand that level
3 can sometimes be defeated with a Swiss army knife. The buying incentive
there is compliance, and where real security clashes with operations it’s not
surprising to see weaker standards designed to make compliance easier. API
security is too hard, and the di↵erence between HSMs’ internal and external
APIs makes it too confusing. The near-abdication of FIPS in favour of ISO
19790 and various protection profiles touted under the Common Criteria will
confuse things further, as will the UK’s move away from the Criteria. Confusion
marketing and liability games appear set to continue. But does this matter?

First, most of the HSM business is moving to the cloud, with Azure and
AWS each having of the order of 2,000 HSMs, and Google playing catchup.
Instead of having a few thousand banks each running a few, or a few dozen,
HSMs we’ll have three companies running a few thousand. As the prices are
driven down, the HSM vendor engineers’ expertise will be lost; and as the cloud
service providers guard their datacentres, HSMs are likely to be replaced by
crypto chips.

Second, most of the volume smartcard markets – SIM cards and EMV cards
– have only moderate physical protection requirements as a full compromise
enables the attacker to exploit one account only. You don’t want a bad terminal
to be able to do production power-analysis attacks on every EMV card it sees,
but even if that were to happen it’s not the end of the world, as that’s how mag-
stripe cards got cloned, and we know how to limit the damage. The pay-TV
markets used to lead innovation and customise the chips they used, as a single
break can enable a pirate to sell hundreds of thousands of clone cards. But
pay-TV is now moving to wireline broadband, and the companies learned that
more secure chips aren’t the only way to cut losses: more complex smartcards
played a role, but much of the improvement came from legal action against
pirates, and from making technical and legal measures work together e�ciently.
Gadget makers nowadays lock their products into ecosystems with cloud services
and apps, which makes manufacturing control less dependent on tamper-proof
FPGAs.

5My colleagues Franck Courbon, Markus Kuhn and Sergei Skorobogatov now run just such
a course for our graduate students.

Security Engineering 574 Ross Anderson

18.6. THE RESIDUAL RISK

I therefore expect that although the number and variety of crypto chips will
continue to increase, the quality of physical protection will remain indi↵erent.
Vendors will spend only as much money as they need to in order to meet cer-
tification requirements, which will remain slippery and will be gamed. Security
engineers will have to get used to building systems out of grey-box components
– chips from which keys and algorithms can be extracted, given some e↵ort.

I suspect that accessory control will remain the toughest hardware battle-
field. Aftermarket control isn’t just about printer cartridges nowadays but ex-
tends to vehicles, medical devices and other high-value products. But where at
least one of the two devices that authenticate each other goes online at least
occasionally, the protection requirements are much less severe than for satellite
TV. The real question will be how to stop attacks scaling.

18.6 The Residual Risk

The security engineer will therefore have to pay attention to the many failure
modes of systems involving tamper-resistant processors that are more or less
independent of the price or technical tamper-resistance of the device.

18.6.1 The trusted interface problem

None of the devices described in the above sections has a really trustworthy user
interface6. Some of the bank security modules have a physical lock (or two) on
the front to ensure that only the person with a given metal key (or smartcard)
can perform privileged transactions. But whether you use a $2000 4765 or a $2
smartcard to do digital signatures, you still trust the PC that drives them. If it
shows you a text saying“Please pay amazon.com $47.99 for a copy of Anderson’s
Security Engineering”while the message it actually sends for signature is“Please
remortgage my house at 13 Acacia Avenue and pay the proceeds to Mafia Real
Estate Inc”, then the tamper resistance hasn’t bought you much.

Indeed, it probably makes your situation worse. Nick Bohm, Ian Brown and
Brian Gladman pointed out that when you use a qualifying electronic signature
device, you’re saying ‘I agree to be unreservedly liable for all signatures that
are verified by the key that I now present to you and I will underwrite all the
risks taken by anyone as a result of relying on it’ [277]. I will discuss the history
and politics of this later in Section 26.5.2. The EU eIDAS regulation requires
all EU governments to accept qualifying electronic signatures for transactions
where they previously required ink on paper, and set standards for technical
certification of signature devices. The industry has duly produced dozens of
certified products. Given the liability shift compared with ink-on-paper sig-
natures, no sensible person would use a qualifying electronic signature device
unless they had to. So the lobbyists have been at work, and some countries
now insist you use them to file your taxes. This has led researchers in Germany
to look closely at how signatures, signature verification services and pdf files

6The iPhone secure enclave processor (SEP) has a direct link to the fingerprint reader but
relies on the main application processor for everything else including FaceID.

Security Engineering 575 Ross Anderson

18.6. THE RESIDUAL RISK

interact; as you might expect, the results are somewhat shocking. Vladislav
Mladenov, Christian Mainka, Kersten Mayer zu Selhausen, Martin Grothe and
Jörg Schwenk created a document signed by Amazon in Germany and backed
by all the o�cial machinery, certifying that you are due a refund of one trillion
dollars. They found three new attacks on pdf signatures, worked out how to
bypass signature validation in 21 out of 22 viewers, and cheated 6 of 8 online
validation services [1326]. It’s a fair bet that this is just the tip of an iceberg.

Another example comes from the hardware wallets that some people use
to store cryptocurrency. Early products had no trusted display and were thus
vulnerable to malware. Some later ones combined a smartcard chip acting as a
secure element, with a less secure microcontroller driving a display. This opens
a number of possibilities – including an evil maid attack described by Saleem
Rashid where someone with temporary access to the device, such as a hotel maid,
reflashes the microcontroller software [1580]. In this case the secure element had
no idea whether the main processor was running compromised code.

Trustworthy interfaces aren’t always needed, as tamper-resistant processors
are often able to do useful work without having to authenticate users. Recall
the example of prepayment electricity metering, in Chapter 14: there, tamper-
resistant processors can maintain a value counter, enforcing a credit limit on
each operator and limiting the loss when a vending machine is stolen. Postal
meters work the same way. In other applications from printer ink cartridges
through games consoles to prepaid phone cards, the vendor mainly cares about
use control.

18.6.2 Conflicts

A further set of issues is that where an application is implemented on devices
under the control of di↵erent parties, you have to consider what happens when
each party attacks the others. In banking, the card issuer, the terminal owner
and the customer are di↵erent; all the interactions of cloned cards, bogus ter-
minals, gangland merchants and cheating banks need to be thought through.

A particular source of conflict and vulnerability is that many of the users of
tamper resistance have business models that make their customers the enemy
– such as rights management and accessory control. Their customers may own
the product, but have the incentive to tamper with it if they can. In the case
of accessory control, they may also have a legal right to try to break it; and
where the mechanisms are used to limit device lifetime and thus contribute to
environmental pollution, they may even feel they have a moral duty.

18.6.3 The lemons market, risk dumping and evaluation
games

Each of the product categories discussed here, from HSMs down through FPGAs
to smartcards, has a wide range of o↵erings with wide variability in the quality
of protection. Many products have evaluations, but interpreting them is hard.

First, there are relatively few o↵erings at high levels of assurance – whether

Security Engineering 576 Ross Anderson

18.6. THE RESIDUAL RISK

FIPS-140 level 4 or Common Criteria levels above 4. There are many at lower
levels, where the tests are fairly easy to pass, and where vendors can shop around
for a lab that will give them an easy ride. This leads to a lemons market in
which all but the best informed buyers will be tempted to go for the cheapest
FIPS level 3 or CC EAL4 product.

Second, evaluation certificates don’t mean what they seem. Someone buying
a 4758 in 2001 might have interpreted its level 4 evaluation to mean that it
was unbreakable – and then been startled when we broke it. In fact, the FIPS
certificate referred only to the hardware, and we found vulnerabilities in the
software. It’s happened the other way too: there’s been a smartcard with a
Common Criteria level 6 evaluation, but that referred only to the operating
system – which ran on a chip with no real defences against microprobing. I’ll
discuss the failings of evaluation systems at greater length in Part III.

Third, while HSMs tend to be evaluated under FIPS, smartcard vendors
tend to use the Common Criteria. There the tussles are about which protection
profile to use; vendors naturally want the labs to evaluate the aspects of security
they think they’re good at.

Finally, many firms use secure processors to dump risk rather than minimise
it. Banks love to be able to say ‘your chip and PIN card was used, so it’s your
fault’ and in many countries the regulators let them get away with it. There are
many environments, from medicine to defense, where buyers want a certificate
of security rather than real protection, and this interacts in many ways with the
flaws in the evaluation system. Indeed, the main users of evaluated products
are precisely those system operators whose focus is on due diligence rather than
risk reduction.

18.6.4 Security-by-obscurity

Many designers have tried hard to keep their cryptoprocessor secret. You have
almost always had to sign an NDA to get smartcard development tools. The
protection profiles still used for evaluating many smartcards under the Common
Criteria emphasise design obscurity. Chip masks have to be secret, instruction
set architectures are proprietary, sta↵ have to be vetted, developers have to
sign NDAs – these all pushed up industry’s costs [650]. Obscurity was also a
common requirement for export approval, leading to a suspicion that it covers up
deliberate vulnerabilities. For example, a card we tested would always produce
the same value when instructed to generate a private / public keypair and output
the public part. Many products that incorporate encryption have been broken
because their random number generators weren’t random enough [775, 576] and
as we discussed, the NSA got NIST to standardise a weak one.

Some HSM vendors have been an honourable exception; IBM’s Common
Cryptographic Architecture has been well documented from the beginning, as
has Intel’s SGX and the core mechanisms of Arm’s TrustZone. This openness
has facilitated the discovery of API attacks on IBM’s product, as well as side-
channel and ROP attacks on Intel’s and more recently Arm’s. But most such
attacks have been disclosed responsibly and the learning process has improved
their products.

Security Engineering 577 Ross Anderson

18.7. SO WHAT SHOULD ONE PROTECT?

One tussle in 2020 is over whether the development environment needs to be
air-gapped. This has been common practice for years in smartcard OEMs; one
lab we visited had only a single PC connected to the Internet (painted red, on
a pedestal) so sta↵ could book flights and hotels. These firms are now pushing
evaluators to emphasise the risk that an attacker ends up owning the entire
company infrastructure using an advanced persistent threat. That would make
life inconvenient for firms that have always operated online, as they would have
to rebuild toolchains and change their workflows.

A smart evaluator would not be taken in by such gamesmanship. Almost
none of the actual attacks on smartcards used inside information; most of them
started out with a probing attack or side-channel attack on a card bought at
retail. As the industry did not do hostile attacks on its own products in the
early years, its products were weak and were eventually broken by others. Since
the late 1990s some organisations, such as VISA, have specified penetration
testing [1963]. But the incentives are still wrong; a sensible vendor will go to
whatever evaluation lab o↵ers the easiest ride. We’ll discuss the underlying
economics and politics of evaluation in Section 28.2.7.2.

18.6.5 Changing environments

We’ve already seen examples of how function creep, and changes in the environ-
ment, have broken systems by undermining their design assumptions. A general
problem is ‘leverage’ – where firms try to exploit infrastructure maintained by
others, without negotiating proper contracts. We’ve seen how the SIM card that
was previously just a means of identifying people to the phone company became
a token that controls access to their bank accounts. In the second edition of
this book, I wrote “Does this matter? ... I’d say it probably doesn’t; using text
messages to confirm bank transactions gives a valuable second authentication
channel at almost zero marginal cost to both the bank and the customer.” At
that time, we had one reported case of a SIM swap attack, in South Africa.

In the following paragraph, I wrote: “But what will happen in five or ten
years’ time, once everyone is doing it? What if the iPhone takes o↵ as Apple
hopes, so that everyone uses an iPhone not just as their phone, but as their web
browser? All of a sudden the two authentication channels have shrunk to one.”
And so it is; SIM swap is now going mainstream in the USA.

This is actually tied up with local law and regulation. In most countries,
phone companies are not liable to banks for failing to authenticate their cus-
tomers properly. After all, phone companies just sell minutes, and the marginal
cost of stolen minutes is near zero. But one country with little SIM swap fraud
is India, where regulators decided that phone companies must share liability for
SIM swap fraud, and where the phone company is required to check a customer’s
fingerprint against the national Aadhar database before selling them a SIM.

18.7 So What Should One Protect?

In such a complex world, what value can tamper-resistant chips add?

Security Engineering 578 Ross Anderson

18.7. SO WHAT SHOULD ONE PROTECT?

First, they can tie information processing to a single physical token. A pay-
TV subscriber card can be bought and sold in a grey market, but so long as it
isn’t copied the station operator isn’t losing much revenue. This also applies to
accessory control, where a printer vendor wants their product to work with any
genuine ink cartridge, just not with a cheap competitor.

Second, they can maintain value counters, as with the postal metering dis-
cussed in Chapter 13. Even if the device is stolen, the total value of the service
it can vend is limited. In printers, ink cartridges can be programmed to dispense
only so much ink and then declare themselves dry.

Third, they can reduce the need to trust human operators. Their main pur-
pose in some government systems was ‘reducing the street value of key material
to zero’. A crypto ignition key for a secure phone should allow a thief only
to masquerade as the rightful owner, and only if they have access to an actual
device, and only so long as neither the key nor the phone has been reported
stolen. The same general considerations applied in ATM networks, which not
only implement a separation-of-duty policy, but transfer a lot of the trust from
people to things.

Fourth, they can protect a physical root of trust that monitors secure boot,
and thus make it hard for malware to be persistent. This mission of its own does
not require high-grade physical protection; security against capable motivated
software attackers is the key. One question is whether activists who want to
run their own favoured version of Linux on their devices actually have to break
the TPM, or whether they can just ignore it and manage the malware risk
themselves.

Fifth, they can control the risk of overproduction by untrusted hardware
contractors: sometimes called the ‘third shift’ problem, where the factory you
hire runs two shifts to make devices for you and a third shift to make some more
for grey-market sale. This can involve embedding part of the design in an FPGA
that’s hard to reverse engineer, or by having a TPM to control the credentials
necessary for the device to work in your ecosystem. As things acquire cloud
services and apps, firms are moving from the former strategy to the latter,
which has lower hardware costs and is easier to manage. You just release as
many credentials as the factory ships you products.

Sixth, such techniques can control some of the more general risk from coun-
terfeit electronic parts. This covers a multitude of sins, from cheap knock-o↵s
that cause early product failure through to sophisticated supply-chain attacks
by state adversaries. For a survey, see Guin et al [833]. The techniques described
in this chapter also find use in the fight against counterfeiting, as do many of
the tools. As for supply-chain attacks, the most pernicious may be hardware
trojans. One national-security concern is that as defence systems increasingly
depend on chips fabricated overseas, the fabs might introduce extra circuitry
to facilitate later attack. For example, some extra logic might cause a 64-bit
multiply with two specific inputs to function as a kill switch. This has been
the subject of significant research since about 2010, and mechanisms have been
developed for Trojan detection both pre-silicon and post-silicon; for example,
you can do a di↵erential side-channel analysis of a ‘golden’ reference chip and
a target of evaluation [1775]. This of course assumes that you can produce

Security Engineering 579 Ross Anderson

18.8. SUMMARY

a reference chip in a trustworthy fab. For a survey of this field, see Xiao et
al [2053].

This is an incomplete list. But what these applications have in common is
that a security property can be provided independently of the trustworthiness
of the surrounding environment. But beware: the actual protection properties
that are required and provided can be quite subtle, and tamper-resistant devices
are more often a useful component than a full solution. Generic mechanisms fail
again and again; security is not some kind of magic pixie dust that you sprinkle
on a system to cause bad things to not happen. You need to work out what
bad things you want to stop. If you’re not careful you can find yourself paying
for smartcards and crypto modules in applications where they add rather little;
and if you’re really unlucky you may find that the industry lobbied for legal
mandates or industry standards to force you to use their products.

18.8 Summary

Tamper-resistant devices and systems have a long history. Computers can be
protected against physical tampering in a number of ways, from keeping them
locked up in a guarded room, through putting them in tamper-sensing boxes, to
making them into single chips with shields against probing and defences against
side-channel attacks.

I’ve told the story of how hardware tamper-resistance developed through a
series of cycles of attack and defence, and given examples of applications. Secu-
rity processors are typically vulnerable to attacks on interfaces (human, sensor
or system) but can often deliver value in applications where we need to link pro-
cessing to physical objects and to protect security state against scalable threats,
particularly in environments where any online service may be intermittent.

Research Problems

There are basically two strands of research in tamper-resistant processor design.
The first concerns itself with making ‘faster, better, cheaper, more secure’ pro-
cessors: how can the protection o↵ered by a high-end device be brought to chips
that cost under a dollar? The second concerns itself with pushing forward the
state of the attack art. How can the latest chip testing technologies be used to
make ‘faster, better, cheaper, novel’ attacks? The best guide for the second may
be Sergei Skorobogatov’s 2018 talk, “Hardware Security: Present challenges and
Future directions” [1780].

A broader area of research is how to build more secure systems out of less
secure components. How can moderately protected chips be used e↵ectively to
stop various kinds of attack scaling?

Security Engineering 580 Ross Anderson

18.8. SUMMARY

Further Reading

I’m not aware of any up-to-date systematisation of knowledge paper on hardware
tamper resistance. Colleagues and I wrote a survey of security processors in
2005 [100] which might serve as a more detailed starting point, if slightly dated;
of the same vintage are a summer school on attack techniques [1772] as well
as reviews of FPGA security [583] and microcontroller security [1767, 1769].
Bunnie Huang’s book on hacking the Xbox is still a good read [930]. A slightly
later summary, from an industry perspective, is by Randy Torrance and Dick
James of Chipworks in 2009 [1897].

As for the last decade of research, the best current papers often appear at
conferences such as CHES (for the crypto), HOST (Trojans and backdoors),
FDTC (fault attacks) and Cardis (smartcards). Failure analysis research tends
to appear at ISTFA and IPFA.

For the early history – the weighted codebooks and water-soluble inks – read
David Kahn’s book ‘The Code Breakers’ [1001]. For a handbook on the chip
card technology of the mid-to-late 1990s, see [1578], while the gory details of how
we started tampering with those generations of cards can be found in [106, 107,
1078]. The IBM products mentioned have extensive documentation online [951],
where you can also find the US FIPS documents [1397].

For modern chip testing techniques, I recommend the video of a keynote
talk by John Walker at Hardwear.IO 2019 on how to use FIBs in reverse engi-
neering [1975] as well as the talks at the same event by Chris Tarnovsky on the
evolution of chip defense technology [1862].

Security Engineering 581 Ross Anderson

