
Chapter 6

Access Control

Microsoft could have incorporated e↵ective security measures as
standard, but good sense prevailed. Security systems have a nasty

habit of backfiring and there is no doubt they would cause
enormous problems.

– RICK MAYBURY

Optimisation consists of taking something that works
and replacing it with something that almost works

but is cheaper.
– ROGER NEEDHAM

6.1 Introduction

I first learned to program on an IBM mainframe whose input was punched cards
and whose output was a printer. You queued up with a deck of cards, ran the
job, and went away with printout. All security was physical. Then along came
machines that would run more than one program at once, and the protection
problem of preventing one program from interfering with another. You don’t
want a virus to steal the passwords from your browser, or patch a banking
application so as to steal your money. And many reliability problems stem from
applications misunderstanding each other, or fighting with each other. But it’s
tricky to separate applications when the customer wants them to share data.
It would make phishing much harder if your email client and browser ran on
separate machines, so you were unable to just click on URLs in emails, but that
would make life too hard.

From the 1970s, access control became the centre of gravity of computer
security. It’s where security engineering meets computer science. Its function is
to control which principals (persons, processes, machines, . . .) have access to
which resources in the system – which files they can read, which programs they
can execute, how they share data with other principals, and so on. It’s become
horrendously complex. If you start out by leafing through the 7000-plus pages
of Arm’s architecture reference manual or the equally complex arrangements for

205

6.1. INTRODUCTION

Windows at the O/S level, your first reaction might be ‘I wish I’d studied music
instead!’ In this chapter I try to help you make sense of it all.

Access control works at a number of di↵erent levels, including at least:

1. Access controls at the application level may express a very rich, domain-
specific security policy. The call centre sta↵ in a bank are typically not
allowed to see your account details until you have answered a couple of
security questions; this not only stops outsiders impersonating you, but
also stops the bank sta↵ looking up the accounts of celebrities, or their
neighbours. Some transactions might also require approval from a super-
visor. And that’s nothing compared with the complexity of the access
controls on a modern social networking site, which will have a thicket of
rules about who can see, copy, and search what data from whom, and
privacy options that users can set to modify these rules.

2. The applications may be written on top of middleware, such as a web
browser, a bank’s bookkeeping system or a social network’s database man-
agement system. These enforce a number of protection properties. For
example, bookkeeping systems ensure that a transaction that debits one
account must credit another, with the debits and credits balancing so that
money cannot be created or destroyed; they must also allow the system’s
state to be reconstructed later.

3. As the operating system constructs resources such as files and commu-
nications ports from lower level components, it has to provide ways to
control access to them. Your Android phone treats apps written by di↵er-
ent companies as di↵erent users and protects their data from each other.
The same happens when a shared server separates the VMs, containers or
other resources belonging to di↵erent users.

4. Finally, the operating system relies on hardware protection provided by
the processor and its associated memory-management hardware, which
control which memory addresses a given process or thread can access.

As we work up from the hardware through the operating system and middle-
ware to the application layer, the controls become progressively more complex
and less reliable. And we find the same access-control functions being imple-
mented at multiple layers. For example, the separation between di↵erent phone
apps that is provided by Android is mirrored in your browser which separates
web page material according to the domain name it came from (though this
separation is often less thorough). And the access controls built at the appli-
cation layer or the middleware layer may largely duplicate access controls in
the underlying operating system or hardware. It can get very messy, and to
make sense of it we need to understand the underlying principles, the common
architectures, and how they have evolved.

I will start o↵ by discussing operating-system protection mechanisms that
support the isolation of multiple processes. These came first historically – being
invented along with the first time-sharing systems in the 1960s – and they re-
main the foundation on which many higher-layer mechanisms are built, as well
as inspiring similar mechanisms at higher layers. They are often described as

Security Engineering 206 Ross Anderson

6.2. OPERATING SYSTEM ACCESS CONTROLS

discretionary access control (DAC) mechanisms, which leave protection to the
machine operator, or mandatory access control (MAC) mechanisms which are
typically under the control of the vendor and protect the operating system itself
from being modified by malware. I’ll give an introduction to software attacks
and techniques for defending against them – MAC, ASLR, sandboxing, virtuali-
sation and what can be done with hardware. Modern hardware not only provides
CPU support for virtualisation and capabilities, but also hardware support such
as TPM chips for trusted boot to stop malware being persistent. These help us
tackle the toxic legacy of the old single-user PC operating systems such as DOS
and Win95/98 which let any process modify any data, and constrain the many
applications that won’t run unless you trick them into thinking that they are
running with administrator privileges.

6.2 Operating system access controls

The access controls provided with an operating system typically authenticate
principals using a mechanism such as passwords or fingerprints in the case of
phones, or passwords or security protocols in the case of servers, then authorise
access to files, communications ports and other system resources.

Access controls can often be modeled as a matrix of access permissions, with
columns for files and rows for users. We’ll write r for permission to read, w for
permission to write, x for permission to execute a program, and - for no access
at all, as shown in Figure 6.1.

Operating Accounts Accounting Audit
System Program Data Trail

Sam rwx rwx rw r
Alice x x rw –
Bob rx r r r

Fig. 6.1 – naive access control matrix

In this simplified example, Sam is the system administrator and has universal
access (except to the audit trail, which even he should only be able to read).
Alice, the manager, needs to execute the operating system and application, but
only through the approved interfaces – she mustn’t have the ability to tamper
with them. She also needs to read and write the data. Bob, the auditor, can
read everything.

This is often enough, but in the specific case of a bookkeeping system it’s
not quite what we need. We want to ensure that transactions are well-formed
– that each debit is balanced by credits somewhere else – so we don’t want
Alice to have uninhibited write access to the account file. We would also rather
that Sam didn’t have this access. So we would prefer that write access to the
accounting data file be possible only via the accounting program. The access
permissions might now look like in Figure 6.2:

Security Engineering 207 Ross Anderson

6.2. OPERATING SYSTEM ACCESS CONTROLS

User Operating Accounts Accounting Audit
System Program Data Trail

Sam rwx rwx r r
Alice rx x – –
Accounts program rx rx rw w
Bob rx r r r

Fig. 6.2 – access control matrix for bookkeeping

Another way of expressing a policy of this type would be with access triples
of (user, program, file). In the general case, our concern isn’t with a program
so much as a protection domain which is a set of processes or threads that share
access to the same resources.

Access control matrices (whether in two or three dimensions) can be used to
implement protection mechanisms as well as just model them. But they don’t
scale well: a bank with 50,000 sta↵ and 300 applications would have a matrix of
15,000,000 entries, which might not only impose a performance overhead but also
be vulnerable to administrators’ mistakes. We will need a better way of storing
and managing this information, and the two main options are to compress the
users and to compress the rights. With the first, we can use groups or roles
to manage large sets of users simultaneously, while with the second we may
store the access control matrix either by columns (access control lists) or rows
(capabilities, also known as ‘tickets’ to protocol engineers and ‘permissions’ on
mobile phones) [1639, 2020].

6.2.1 Groups and Roles

When we look at large organisations, we usually find that most sta↵ fit into one
of a small number of categories. A bank might have 40 or 50: teller, call centre
operator, loan o�cer and so on. Only a few dozen people (security manager,
chief foreign exchange dealer, ...) will need personally customised access rights.

So we need to design a set of groups, or functional roles, to which sta↵ can
be assigned. Some vendors (such as Microsoft) use the words group and role
almost interchangeably, but a more careful definition is that a group is a list
of principals, while a role is a fixed set of access permissions that one or more
principals may assume for a period of time. The classic example of a role is
the o�cer of the watch on a ship. There is exactly one watchkeeper at any one
time, and there is a formal procedure whereby one o�cer relieves another when
the watch changes. In most government and business applications, it’s the role
that matters rather than the individual.

Groups and roles can be combined. The o�cers of the watch of all ships
currently at sea is a group of roles. In banking, the manager of the Cambridge
branch might have their privileges expressed by membership of the group man-
ager and assumption of the role acting manager of Cambridge branch. The
group manager might express a rank in the organisation (and perhaps even a
salary band) while the role acting manager might include an assistant accoun-
tant standing in while the manager, deputy manager, and branch accountant
are all o↵ sick.

Security Engineering 208 Ross Anderson

6.2. OPERATING SYSTEM ACCESS CONTROLS

Whether we need to be careful about this distinction is a matter for the
application. In a warship, even an ordinary seaman may stand watch if everyone
more senior has been killed. In a bank, we might have a policy that “transfers
over $10m must be approved by two sta↵, one with rank at least manager and
one with rank at least assistant accountant”. If the branch manager is sick, then
the assistant accountant acting as manager might have to get the regional head
o�ce to provide the second signature on a large transfer.

6.2.2 Access control lists

The traditional way to simplify the management of access rights is to store the
access control matrix a column at a time, along with the resource to which the
column refers. This is called an access control list or ACL (pronounced ‘ackle’).
In the first of our above examples, the ACL for file 3 (the account file) might
look as shown here in Figure 6.3.

User Accounting
Data

Sam rw
Alice rw
Bob r

Fig. 6.3 – access control list (ACL)

ACLs have a number of advantages and disadvantages as a means of man-
aging security state. They are a natural choice in environments where users
manage their own file security, and became widespread in Unix systems from
the 1970s. They are the basic access control mechanism in Unix-based systems
such as Linux and Apple’s macOS, as well as in derivatives such as Android and
iOS. The access controls in Windows were also based on ACLs, but have become
more complex over time. Where access control policy is set centrally, ACLs are
suited to environments where protection is data-oriented; they are less suited
where the user population is large and constantly changing, or where users want
to be able to delegate their authority to run a particular program to another
user for some set period of time. ACLs are simple to implement, but are not
e�cient for security checking at runtime, as the typical operating system knows
which user is running a particular program, rather than what files it has been
authorized to access since it was invoked. The operating system must either
check the ACL at each file access, or keep track of the active access rights in
some other way.

Finally, distributing the access rules into ACLs makes it tedious to find all
the files to which a user has access. Verifying that no files have been left world-
readable or even world-writable could involve checking ACLs on millions of user
files; this is a real issue for large complex firms. Although you can write a script
to check whether any file on a server has ACLs that breach a security policy,
you can be tripped up by technology changes; the move to containers has led to
many corporate data exposures as admins forgot to check the containers’ ACLs
too. (The containers themselves are often dreadful as it’s a new technology being
sold by dozens of clueless startups.) And revoking the access of an employee

Security Engineering 209 Ross Anderson

6.2. OPERATING SYSTEM ACCESS CONTROLS

who has just been fired will usually have to be done by cancelling their password
or authentication token.

Let’s look at an important example of ACLs – their implementation in Unix
(plus its derivatives Android, MacOS and iOS).

6.2.3 Unix operating system security

In traditional Unix systems, files are not allowed to have arbitrary access control
lists, but simply rwx attributes that allow the file to be read, written and exe-
cuted. The access control list as normally displayed has a flag to show whether
the file is a directory, then flags r, w and x for owner, group and world respec-
tively; it then has the owner’s name and the group name. A directory with all
flags set would have the ACL:

drwxrwxrwx Alice Accounts

In our first example in Figure 6.1, the ACL of file 3 would be:

-rw-r----- Alice Accounts

This records that the file is simply a file rather than a directory; that the
file owner can read and write it; that group members (including Bob) can read
it but not write it; that non-group members have no access at all; that the file
owner is Alice; and that the group is Accounts.

The program that gets control when the machine is booted (the operating
system kernel) runs as the supervisor, and has unrestricted access to the whole
machine. All other programs run as users and have their access mediated by the
supervisor. Access decisions are made on the basis of the userid associated with
the program. However if this is zero (root), then the access control decision is
‘yes’. So root can do what it likes – access any file, become any user, or whatever.
What’s more, there are certain things that only root can do, such as starting
certain communication processes. The root userid is typically made available to
the system administrator in systems with discretionary access control.

This means that the system administrator can do anything, so we have dif-
ficulty implementing an audit trail as a file that they cannot modify. In our
example, Sam could tinker with the accounts, and have di�culty defending
himself if he were falsely accused of tinkering; what’s more, a hacker who man-
aged to become the administrator could remove all evidence of his intrusion.
The traditional, and still the most common, way to protect logs against root
compromise is to keep them separate. In the old days that meant sending the
system log to a printer in a locked room; nowadays, it means sending it to an-
other machine, or even to a third-party service. Increasingly, it may also involve
mandatory access control, as we discuss later.

Second, ACLs only contain the names of users, not of programs; so there
is no straightforward way to implement access triples of (user, program, file).
Instead, Unix provides an indirect method: the set-user-id (suid) file attribute.
The owner of a program can mark the file representing that program as suid,
which enables it to run with the privilege of its owner rather than the privilege
of the user who has invoked it. So in order to achieve the functionality needed
by our second example above, we could create a user ‘account-package’ to own

Security Engineering 210 Ross Anderson

6.2. OPERATING SYSTEM ACCESS CONTROLS

file 2 (the accounts package), make the file suid and place it in a directory to
which Alice has access. This special user can then be given the access that the
accounts program needs.

But when you take an access control problem that has three dimensions –
(user, program, data) – and implement it using two-dimensional mechanisms,
the outcome is much less intuitive than triples and people are liable to make
mistakes. Programmers are often lazy or facing tight deadlines; so they just
make the application suid root, so it can do anything. This practice leads
to some shocking security holes. The responsibility for making access control
decisions is moved from the operating system environment to the application
program, and most programmers are insu�ciently experienced to check every-
thing they should. (It’s hard to know what to check, as the person invoking
a suid root program controls its environment and could manipulate this in
unexpected ways.)

Third, ACLs are not very good at expressing mutable state. Suppose we
want a transaction to be authorised by a manager and an accountant before
it’s acted on; we can either do this at the application level (say, by having
queues of transactions awaiting a second signature) or by doing something fancy
with suid. Managing stateful access rules is di�cult; they can complicate the
revocation of users who have just been fired, as it can be hard to track down
the files they’ve opened, and stu↵ can get stuck.

Fourth, the Unix ACL only names one user. If a resource will be used by
more than one of them, and you want to do access control at the OS level, you
have a couple of options. With older systems you had to use groups; newer
systems implement the Posix system of extended ACLs, which may contain
any number of named user and named group entities. In theory, the ACL and
suid mechanisms can often be used to achieve the desired e↵ect. In practice,
programmers are often in too much of a hurry to figure out how to do this, and
security interfaces are usually way too fiddly to use. So people design their code
to require much more privilege than it strictly ought to have, as that seems to
be the only way to get the job done.

6.2.4 Capabilities

The next way to manage the access control matrix is to store it by rows. These
are called capabilities, and in our example in Figure 6.1 above, Bob’s capabilities
would be as in Figure 6.4 here:

User Operating Accounts Accounting Audit
System Program Data Trail

Bob rx r r r

Fig. 6.4 – a capability

The strengths and weaknesses of capabilities are roughly the opposite of
ACLs. Runtime security checking is more e�cient, and we can delegate a right
without much di�culty: Bob could create a certificate saying ‘Here is my capa-
bility and I hereby delegate to David the right to read file 4 from 9am to 1pm,

Security Engineering 211 Ross Anderson

6.2. OPERATING SYSTEM ACCESS CONTROLS

signed Bob’. On the other hand, changing a file’s status becomes more tricky
as it can be hard to find out which users have access. This can be tiresome
when we have to investigate an incident or prepare evidence. In fact, scalable
systems end up using de-facto capabilities internally, as instant system-wide re-
vocation is just too expensive; in Unix, file descriptors are really capabilities,
and continue to grant access for some time even after ACL permissions or even
file owners change. In a distributed Unix, access may persist for the lifetime of
Kerberos tickets.

Could we do away with ACLs entirely then? People built experimental ma-
chines in the 1970s that used capabilities throughout [2020]; the first commercial
product was the Plessey System 250, a telephone-switch controller [1575]. The
IBM AS/400 series systems brought capability-based protection to the main-
stream computing market in 1988, and enjoyed some commercial success. The
public key certificates used in cryptography are in e↵ect capabilities, and became
mainstream from the mid-1990s. Capabilities have started to supplement ACLs
in operating systems, including more recent versions of Windows, FreeBSD and
iOS, as I will describe later.

In some applications, they can be the natural way to express security policy.
For example, a hospital may have access rules like ‘a nurse shall have access
to all the patients who are on his or her ward, or who have been there in the
last 90 days’. In early systems based on traditional ACLs, each access control
decision required a reference to administrative systems to find out which nurses
and which patients were on which ward, when – but this made both the HR
system and the patient administration system safety-critical, which hammered
reliability. Matters were fixed by giving nurses ID cards with certificates that
entitle them to access the files associated with a number of wards or hospital
departments [535, 536]. If you can make the trust relationships in systems mirror
the trust relationships in that part of the world you’re trying to automate, you
should. Working with the grain can bring advantages at all levels in the stack,
making things more usable, supporting safer defaults, cutting errors, reducing
engineering e↵ort and saving money too.

6.2.5 DAC and MAC

In the old days, anyone with physical access to a computer controlled all of it:
you could load whatever software you liked, inspect everything in memory or on
disk and change anything you wanted to. This is the model behind discretionary
access control (DAC): you start your computer in supervisor mode and then,
as the administrator, you can make less-privileged accounts available for less-
trusted tasks – such as running apps written by companies you don’t entirely
trust, or giving remote logon access to others. But this can make things hard
to manage at scale, and in the 1970s the US military started a huge computer-
security research program whose goal was to protect classified information: to
ensure that a file marked ‘Top Secret’ would never be made available to a user
with only a ‘Secret’ clearance, regardless of the actions of any ordinary user or
even of the supervisor. In such a multilevel secure (MLS) system, the sysadmin
is no longer the boss: ultimate control rests with a remote government authority
that sets security policy. The mechanisms started to be described as mandatory

Security Engineering 212 Ross Anderson

6.2. OPERATING SYSTEM ACCESS CONTROLS

access control (MAC). The supervisor, or root access if you will, is under remote
control. This drove development of technology for mandatory access control –
a fascinating story, which I tell in Part 2 of the book.

From the 1980s, safety engineers also worked on the idea of safety integrity
levels; roughly, that a more dependable system must not rely on a less depend-
able one. They started to realise they needed something similar to multilevel
security, but for safety. Military system people also came to realise that the
tamper-resistance of the protection mechanisms themselves was of central im-
portance. In the 1990s, as computers and networks became fast enough to
handle audio and video, the creative industries lobbied for digital rights man-
agement (DRM) in the hope of preventing people undermining their business
models by sharing music and video. This is also a form of mandatory access
control – stopping a subscriber sharing a song with a non-subscriber is in many
ways like stopping a Top Secret user sharing an intelligence report with a Secret
user.

In the early 2000s, these ideas came together as a number of operating-system
vendors started to incorporate ideas and mechanisms from the MAC research
programme into their products. The catalyst was an initiative by Microsoft
and Intel to introduce cryptography into the PC platform to support DRM.
Intel believed the business market for PCs was saturated, so growth would
come from home sales where, they believed, DRM would be a requirement.
Microsoft started with DRM and then realised that o↵ering rights management
for documents too might be a way of locking customers tightly into Windows
and O�ce. They set up an industry alliance, now called the Trusted Computing
Group, to introduce cryptography and MAC mechanisms into the PC platform.
To do this, the operating system had to be made tamper-resistant, and this
is achieved by means of a separate processor, the Trusted Platform Module
(TPM), basically a smartcard chip mounted on the PC motherboard to support
trusted boot and hard disk encryption. The TPM monitors the boot process,
and at each stage a hash of everything loaded so far is needed to retrieve the
key needed to decrypt the next stage. The real supervisor on the system is now
no longer you, the machine owner – it’s the operating-system vendor.

MAC, based on TPMs and trusted boot, was used in Windows 6 (Vista)
from 2006 as a defence against persistent malware1. The TPM standards and
architecture were adapted by other operating-system vendors and device OEMs,
and there is now even a project for an open-source TPM chip, OpenTitan, based
on Google’s product. However the main purpose of such a design, whether its
own design is open or closed, is to lock a hardware device to using specific
software.

1Microsoft had had more ambitious plans; its project Palladium would have provided a
new, more trusted world for rights-management apps, alongside the normal one for legacy
software. They launched Information Rights Management – DRM for documents – in 2003
but corporates didn’t buy it, seeing it as a lock-in play. A two-world implementation turned out
to be too complex for Vista and after two separate development e↵orts it was was abandoned;
but the vision persisted from 2004 in Arm’s TrustZone, which I discuss below.

Security Engineering 213 Ross Anderson

6.2. OPERATING SYSTEM ACCESS CONTROLS

6.2.6 Apple’s macOS

Apple’s macOS operating system (formerly called OS/X or Mac OS X) is based
on the FreeBSD version of Unix running on top of the Mach kernel. The BSD
layer provides memory protection; applications cannot access system memory
(or each others’) unless running with advanced permissions. This means, for
example, that you can kill a wedged application using the ‘Force Quit’ command
without having to reboot the system. On top of this Unix core are a number of
graphics components, including OpenGL, Quartz, Quicktime and Carbon, while
at the surface the Aqua user interface provides an elegant and coherent view to
the user.

At the file system level, macOS is almost a standard Unix. The default
installation has the root account disabled, but users who may administer the
system are in a group ‘wheel’ that allows them to su to root. If you are such a
user, you can install programs (you are asked for the root password when you do
so). Since version 10.5 (Leopard), it has been based on TrustedBSD, a variant
of BSD that incorporates mandatory access control mechanisms, which are used
to protect core system components against tampering by malware.

6.2.7 iOS

Since 2008, Apple has led the smartphone revolution with the iPhone, which
(along with other devices like the iPad) uses the iOS operating system – which
is now (in 2020) the second-most popular. iOS is based on Unix; Apple took
the Mach kernel from CMU and fused it with the FreeBSD version of Unix,
making a number of changes for performance and robustness. For example,
in vanilla Unix a filename can have multiple pathnames that lead to an inode
representing a file object, which is what the operating system sees; in iOS, this
has been simplified so that files have unique pathnames, which in turn are the
subject of the file-level access controls. Again, there is a MAC component, where
mechanisms from Domain and Type Enforcement (DTE) are used to tamper-
proof core system components (we’ll discuss DTE in more detail in chapter 9).
Apple introduced this because they were worried that apps would brick the
iPhone, leading to warranty claims.

Apps also have permissions, which are capabilities; they request a capability
to access device services such as the mobile network, the phone, SMSes, the
camera, and the first time the app attempts to use such a service. This is
granted if the user consents2. The many device services open up possible side-
channel attacks; for example, an app that’s denied access to the keyboard could
deduce keypresses using the accelerometer and gyro. We’ll discuss side channels
in Part 2, in the chapter on that subject.

The Apple ecosystem is closed in the sense that an iPhone will only run apps

2The trust-on-first-use model goes back to the 1990s with the Java standard J2ME, popu-
larised by Symbian, and the Resurrecting Duckling model from about the same time. J2ME
also supported trust-on-install and more besides. When Apple and Android came along, they
initially made di↵erent choices. In each case, having an app store was a key innovation; Nokia
failed to realise that this was important to get a two-sided market going. The app store does
some of the access control by deciding what apps can run. This is hard power in Apple’s case,
and soft power in Android’s; we’ll discuss this in the chapter on phones.

Security Engineering 214 Ross Anderson

6.2. OPERATING SYSTEM ACCESS CONTROLS

that Apple has signed3. This enables the company to extract a share of app
revenue, and also to screen apps for malware or other undesirable behaviour,
such as the exploitation of side channels to defeat access controls.

The iPhone 5S introduced a fingerprint biometric and payments, adding
a secure enclave (SE) to the A7 processor to give them separate protection.
Apple decided to trust neither iOS nor TrustZone with such sensitive data,
since vulnerabilities give transient access until they’re patched. Its engineers
also worried that an unpatchable exploit might be found in the ROM (this
eventually happened, with Checkm8). While iOS has access to the system
partition, the user’s personal data are encrypted, with the keys managed by
the SE. Key management is bootstrapped by a unique 256-bit AES key burned
into fusible links on the system-on-chip. when the device is powered up, the
user has ten tries to enter a passcode; only then are file keys derived from the
master key and made available4. When the device is locked, some keys are still
usable so that iOS can work out who sent an incoming message and notify you;
the price of this convenience is that forensic equipment can get some access to
user data. The SE also manages upgrades and prevents rollbacks. Such public
information as there is can be found in the iOS Security white paper [128].

The security of mobile devices is a rather complex issue, involving not just
access controls and tamper resistance, but the whole ecosystem – from the
provision of SIM cards through the operation of app stores to the culture of how
people use devices, how businesses try to manipulate them and how government
agencies spy on them. I will discuss this in detail in the chapter on phones in
Part 2.

6.2.8 Android

Android is the world’s most widely used operating system, with 2.5 billion active
Android devices in May 2019, according to Google’s figures. Android is based
on Linux; apps from di↵erent vendors run under di↵erent userids. The Linux
mechanisms control access at the file level, preventing one app from reading
another’s data and exhausting shared resources such as memory and CPU. As
in iOS, apps have permissions, which are in e↵ect capabilities: they grant access
to device services such as SMSes, the camera and the address book.

Apps come in signed packages, as .apk files, and while iOS apps are signed
by Apple, the verification keys for Android come in self-signed certificates and
function as the developer’s name. This supports integrity of updates while
maintaining an open ecosystem. Each package contains a manifest that demands
a set of permissions, and users have to approve the ‘dangerous’ ones – roughly,
those that can spend money or compromise personal data. In early versions of
Android, the user would have to approve the lot on installation or not run the
app. But experience showed that most users would just click on anything to get
through the installation process, and you found even flashlight apps demanding
access to your address book, as they could sell it for money. So Android 6 moved

3There are a few exceptions: corporates can get signing keys for internal apps, but these
can be blacklisted if abused.

4I’ll discuss fusible links in the chapter on tamper resistance, and iPhone PIN retry defeats
in the chapter on surveillance and privacy.

Security Engineering 215 Ross Anderson

6.2. OPERATING SYSTEM ACCESS CONTROLS

to the Apple model of trust on first use; apps compiled for earlier versions still
demand capabilities on installation.

Since Android 5, SELinux has been used to harden the operating system
with mandatory access controls, so as not only to protect core system functions
from attack but also to separate processes strongly and log violations. SELinux
was developed by the NSA to support MAC in government systems; we’ll discuss
it further in chapter 9. The philosophy is actions require the consent of three
parties: the user, the developer and the platform.

As with iOS (and indeed Windows), the security of Android is a matter of
the whole ecosystem, not just of the access control mechanisms. The new phone
ecosystem is su�ciently di↵erent from the old PC ecosystem, but inherits enough
of the characteristics of the old wireline phone system, that it merits a separate
discussion in the chapter on Phones in Part II. We’ll consider other aspects in
the chapters on Side Channels and Surveillance.

6.2.9 Windows

The current version of Windows (Windows 10) appears to be the third-most
popular operating system, having achieved a billion monthly active devices in
March 2020 (until 2016, Windows was the leader). Windows has a scarily com-
plex access control system, and a quick canter through its evolution may make
it easier to understand what’s going on.

Early versions of Windows had no access control. A break came with Win-
dows 4 (NT), which was very much like Unix, and was inspired by it, but with
some extensions. First, rather than just read, write and execute there were sep-
arate attributes for take ownership, change permissions and delete, to support
more flexible delegation. These attributes apply to groups as well as users, and
group permissions allow you to achieve much the same e↵ect as suid programs
in Unix. Attributes are not simply on or o↵, as in Unix, but have multiple
values: you can set AccessDenied, AccessAllowed or SystemAudit. These are
parsed in that order: if an AccessDenied is encountered in an ACL for the
relevant user or group, then no access is permitted regardless of any conflicting
AccessAllowed flags. The richer syntax lets you arrange matters so that ev-
eryday configuration tasks, such as installing printers, don’t have to require full
administrator privileges.

Second, users and resources can be partitioned into domains with distinct
administrators, and trust can be inherited between domains in one direction or
both. In a typical large company, you might put all the users into a personnel
domain administered by HR, while assets such as servers and printers may be in
resource domains under departmental control; individual workstations may even
be administered by their users. Things can be arranged so that the departmental
resource domains trust the user domain, but not vice versa – so a hacked or
careless departmental administrator can’t do too much external damage. The
individual workstations would in turn trust the department (but not vice versa)
so that users can perform tasks that require local privilege (such as installing
software packages). Limiting the damage a hacked administrator can do still
needs careful organisation. The data structure used to manage all this, and hide

Security Engineering 216 Ross Anderson

6.2. OPERATING SYSTEM ACCESS CONTROLS

the ACL details from the user interface, is called the Registry. Its core used to
be the Active Directory which managed remote authentication – using either
a Kerberos variant or TLS, encapsulated behind the Security Support Provider
Interface (SSPI) which enables administrators to plug in other authentication
services. Active Directory is essentially a database that organises users, groups,
machines, and organisational units within a domain in a hierarchical namespace.
It lurked behind Exchange, but is now being phased out as Microsoft becomes
a cloud-based company and moves its users to O�ce365.

Windows has added capabilities in two ways which can override or comple-
ment ACLs. First, users or groups can be either allowed or denied access by
means of profiles. Security policy is set by groups rather than for the system
as a whole; group policy overrides individual profiles, and can be associated
with sites, domains or organisational units, so it can start to tackle complex
problems. Policies can be created using standard tools or custom coded.

The second way in which capabilities insinuate their way into Windows is
that in many applications, people use TLS for authentication, and TLS certifi-
cates provide another, capability-oriented, layer of access control outside the
purview of the Active Directory.

I already mentioned that Windows Vista introduced trusted boot to make
the operating system itself tamper-resistant, in the sense that it always boots
into a known state, limiting the persistence of malware. It added three further
protection mechanisms to get away from the previous default of all software
running as root. First, the kernel was closed o↵ to developers; second, the
graphics subsystem and most drivers were removed from the kernel; and third,
User Account Control (UAC) replaced the default administrator privilege with
user defaults instead. Previously, so many routine tasks needed administrative
privilege that many enterprises made all their users administrators, which made
it di�cult to contain malware; and many developers wrote their software on the
assumption that it would have access to everything (for a hall of shame, see [?]).
According to Microsoft engineers, this was a major reason for Windows’ lack of
robustness: applications monkey with system resources in incompatible ways.
So they added an Application Information Service that launches applications
which require elevated privilege and uses virtualisation to contain them: if they
modify the registry, for example, they don’t modify the ‘real’ registry but simply
the version of it that they can see.

Since Vista, the desktop acts as the parent process for later user processes,
so even administrators browse the web as normal users, and malware they down-
load can’t overwrite system files unless given later authorisation. When a task
requires admin privilege, the user gets an elevation prompt asking them for an
admin password. (Apple’s macOS is similar although the details under the hood
di↵er somewhat.) As admin users are often tricked into installing malicious soft-
ware, Vista added mandatory access controls in the form of file integrity levels.
The basic idea is that low-integrity processes (such as code you download from
the Internet) should not be able to modify high-integrity data (such as system
files) in the absence of some trusted process (such as verification of a signature
by Microsoft on the code in question).

In 2012, Windows 8 added dynamic access control which lets you control

Security Engineering 217 Ross Anderson

6.2. OPERATING SYSTEM ACCESS CONTROLS

user access by context, such as their work PC versus their home PC and their
phone; this is done via account attributes in Active Directory, which appear as
claims about a user, or in Kerberos tickets as claims about a domain. In 2016,
Windows 8.1 added a cleaner abstraction with principals, which can be a user,
computer, process or thread running in a security context or a group to which
such a principal belongs, and security identifiers (SIDs) which represent such
principals. When a user signs in, they get tickets with the SIDs to which they
belong. Windows 8.1 also prepared for the move to cloud computing by adding
Microsoft accounts (formerly LiveID), whereby a user signs in to a Microsoft
cloud service rather than to a local server. Where credentials are stored locally,
it protects them using virtualisation. Finally, Windows 10 added a number
of features to support the move to cloud computing with a diversity of client
devices, ranging from certificate pinning (which we’ll discuss in the chapter on
Network Security) to the abolition of the old secure attention sequence ctrl-
alt-del (which is hard to do on touch-screen devices and which users didn’t
understand anyway).

To sum up, Windows evolved to provide a richer and more flexible set of
access control tools than any system previously sold in mass markets. It was
driven by corporate customers who need to manage tens of thousands of sta↵
performing hundreds of di↵erent job roles across hundreds of di↵erent sites, pro-
viding internal controls to limit the damage that can be done by small numbers
of dishonest sta↵ or infected machines. (How such controls are actually designed
will be our topic in the chapter on Banking and Bookkeeping.) The driver for
this development was the fact that Microsoft made over half of its revenue from
firms that licensed more than 25,000 seats; but the cost of the flexibility that
corporate customers demanded is complexity. Setting up access control for a
big Windows shop is a highly skilled job.

6.2.10 Middleware

Doing access control at the level of files and programs was fine in the early days
of computing, when these were the resources that mattered. Since the 1980s,
growing scale and complexity has led to access control being done at other
levels instead of (or as well as) at the operating system level. For example,
bookkeeping systems often run on top of a database product such as Oracle,
which looks to the operating system as one large file. So most of the access
control has to be done in the database; all the operating system supplies may
be an authenticated ID for each user who logs on. And since the 1990s, a lot of
the work at the client end has been done by the web browser.

6.2.10.1 Database access controls

Before people started using websites for shopping, database security was largely
a back-room concern. But enterprises now have critical databases to handle
inventory, dispatch and e-commerce, fronted by web servers that pass transac-
tions to the databases directly. These databases now contain much of the data
that matter to our lives – bank accounts, vehicle registrations and employment
records – and failures sometimes expose them to random online users.

Security Engineering 218 Ross Anderson

6.2. OPERATING SYSTEM ACCESS CONTROLS

Database products, such as Oracle, DB2 and MySQL, have their own access
control mechanisms, which are modelled on operating-system mechanisms, with
privileges typically available for both users and objects (so the mechanisms are
a mixture of access control lists and capabilities). However, the typical database
access control architecture is comparable in complexity with Windows; modern
databases are intrinsically complex, as are the things they support – typically
business processes involving higher levels of abstraction than files or domains.
There may be access controls aimed at preventing any user learning too much
about too many customers; these tend to be stateful, and may deal with possible
statistical inference rather than simple yes-no access rules. I devote a whole
chapter in Part 2 to exploring the topic of Inference Control.

Ease of administration is often a bottleneck. In companies I’ve advised, the
operating-system and database access controls have been managed by di↵erent
departments, which don’t talk to each other; and often IT departments have to
put in crude hacks to make the various access control systems seem to work as
one, but which open up serious holes.

Some products let developers bypass operating-system controls. For exam-
ple, Oracle has both operating system accounts (whose users must be authen-
ticated externally by the platform) and database accounts (whose users are
authenticated directly by the Oracle software). It is often convenient to use
the latter, to save the e↵ort of synchronising with what other departments are
doing. In many installations, the database is accessible directly from the out-
side; and even where it’s shielded by a web service front-end, this often contains
loopholes that let SQL code be inserted into the database.

Database security failures can thus cause problems directly. The Slammer
worm in 2003 propagated itself using a stack-overflow exploit against Microsoft
SQL Server 2000 and created large amounts of tra�c as compromised machines
sent floods of attack packets to random IP addresses.

Just as Windows is tricky to configure securely, because it’s so complicated,
the same goes for the typical database system. If you ever have to lock one down
– or even just understand what’s going on – you had better read a specialist
textbook, such as [1174], or get in an expert.

6.2.10.2 Browsers

The web browser is another middleware platform on which we rely for access
control and whose complexity often lets us down. The main access control rule
is the same-origin policy whereby JavaScript or other active content on a web
page is only allowed to communicate with the IP address that it originally came
from; such code is run in a sandbox to prevent it altering the host system, as I’ll
describe in the next section. But many things can go wrong.

In previous editions of this book, we considered web security to be a matter
of how the servers were configured, and whether this led to cross-site vulnerabil-
ities. For example a malicious website can include links or form buttons aimed
at creating a particular side-e↵ect:

https://mybank.com/transfer.cgi?amount=10000USD&recipient=thief

Security Engineering 219 Ross Anderson

6.2. OPERATING SYSTEM ACCESS CONTROLS

The idea is that if a user clicks on this who is logged into mybank.com, there
may be a risk that the transaction will be executed, as there’s a valid session
cookie. So payment websites deploy countermeasures such as using short-lived
sessions and an anti-CSRF token (an invisible MAC of the session cookie), and
checking the Referer: header. There are also issues around web authentication
mechanisms; I described OAuth briefly in section 4.7.4. If you design web pages
for a living you had better understand the mechanics of all this in rather more
detail (see for example [119]); but many developers don’t take enough care.
For example, as I write in 2020, Amazon Alexa has just turned out to have a
misconfigured policy on cross-origin resource sharing, which meant that anyone
who compromised another Amazon subdomain could replace the skills on a
target Alexa with malicious ones [1481].

By now there’s a realisation that we should probably have treated browsers
as access control devices all along. After all, the browser is the place on your
laptop were you run code written by people you don’t want to trust and who
will occasionally be malicious; as we discussed earlier, mobile-phone operating
systems run di↵erent apps as di↵erent users to give even more robust protection.
Even in the absence of malice, you don’t want to have to reboot your browser
if it hangs because of a script in one of the tabs. (Chrome tries to ensure this
by running each tab in a separate operating-system process.)

Bugs in browsers are exploited in drive-by download attacks, where visiting
an attack web page can infect your machine, and even without this the modern
web environment is extremely di�cult to control. Many web pages are full
of trackers and other bad things, supplied by multiple ad networks and data
brokers, which make a mockery of the intent behind the same-origin policy.
Malicious actors can even use web services to launder origin: for example, the
attacker makes a mash-up of the target site plus some evil scripts of his own, and
then gets the victim to view it through a proxy such as Google Translate [1854].
A prudent person will go to their bank website by typing in the URL directly,
or using a bookmark; unfortunately, the marketing industry trains everyone to
click on links in emails.

6.2.11 Sandboxing

The late 1990s saw the emergence of yet another type of access control: the
software sandbox, introduced by Sun with its Java programming language. The
model is that a user wants to run some code that she has downloaded as an
applet, but is concerned that the applet might do something nasty, such as
stealing her address book and mailing it o↵ to a marketing company, or just
hogging the CPU and running down the battery.

The designers of Java tackled this problem by providing a ‘sandbox’ – a
restricted environment in which the code has no access to the local hard disk
(or at most only temporary access to a restricted directory), and is only allowed
to communicate with the host it came from (the same-origin policy). This
is enforced by having the code executed by an interpreter – the Java Virtual
Machine (JVM) – with only limited access rights [783]. This idea was adapted to
JavaScript, the main scripting language used in web pages, though it’s actually
a di↵erent language; and other active content too. A version of Java is also used

Security Engineering 220 Ross Anderson

6.2. OPERATING SYSTEM ACCESS CONTROLS

on smartcards so they can support applets written by di↵erent firms.

6.2.12 Virtualisation

Virtualisation is what powers cloud computing; it enables a single machine to
emulate a number of machines independently, so that you can rent a virtual ma-
chine (VM) in a data centre for a few tens of dollars a month rather than having
to pay maybe a hundred for a whole server. Virtualisation was invented in the
1960s by IBM [496]; a single machine could be partitioned using VM/370 into
multiple virtual machines. Initially this was about enabling a new mainframe to
run legacy apps from several old machine architectures; it soon became normal
for a company that bought two computers to use one for its production environ-
ment and the other as a series of logically separate machines for development,
testing, and minor applications. It’s not enough to run a virtual machine mon-
itor (VMM) on top of a host operating system, and then run other operating
systems on top; you have to deal with sensitive instructions that reveal proces-
sor state such as absolute addresses and the processor clock. Working VMMs
appeared for Intel platforms with VMware ESX Server in 2003 and (especially)
Xen in 2003, which accounted for resource usage well enough to enable AWS
and the cloud computing revolution. Things can be done more cleanly with
processor support, which Intel has provided since 2006 with VT-x, and whose
details I’ll discuss below. VM security claims rest to some extent on the argu-
ment that a VMM hypervisor’s code can be much smaller than an operating
system and thus easier to code-review and secure; whether there are actually
fewer vulnerabilities is of course an empirical question [1575].

At the client end, virtualisation allows people to run a guest operating system
on top of a host (for example, Windows on top of macOS), which o↵ers not just
flexibility but the prospect of better containment. For example, an employee
might have two copies of Windows running on their laptop – a locked-down
version with the o�ce environment, and another for use at home. Samsung
o↵ers Knox, which creates a virtual machine on a mobile phone that an employer
can lock down and manage remotely, while the user enjoys a normal Android as
well on the same device.

But using virtualisation to separate security domains on clients is harder
than it looks. People need to share data between multiple VMs and if they use
ad-hoc mechanisms, such as USB sticks and webmail accounts, this undermines
the separation. Safe data sharing is far from trivial. For example, Bromium5

o↵ers VMs tailored to specific apps on corporate PCs, so you have one VM for
O�ce, one for Acrobat reader, one for your browser and so on. This enables
firms to work reasonably securely with old, unsupported software. So how do you
download an O�ce document? Well, the browser exports the file from its VM
to the host hard disc, marking it ‘untrusted’, so when the user tries to open it
they’re given a new VM which holds that document plus O�ce and nothing else.
When they then email this untrusted document, there’s an Outlook plugin that
stops it being rendered in the ‘sent mail’ pane. Things get even more messy with
network services integrated into apps; the rules on what sites can access which
cookies are complicated, and it’s hard to deal with single signon and workflows

5Now owned by HP

Security Engineering 221 Ross Anderson

6.3. HARDWARE PROTECTION

that cross multiple domains. The clipboard also needs a lot more rules to control
it. Many of the rules change from time to time, and are heuristics rather than
hard, verifiable access logic. In short, using VMs for separation at the client
requires deep integration with the OS and apps if it’s to appear transparent to
the user, and there are plenty of tradeo↵s made between security and usability.
In e↵ect, you’re retrofitting virtualisation on to an existing OS and apps that
were not built for it.

Containers have been the hot new topic in the late 2010s. They evolved
as a lightweight alternative to virtualisation in cloud computing and are often
confused with it, especially by the marketing people. My definition is that while
a VM has a complete operating system, insulated from the hardware by a hy-
pervisor, a container is an isolated guest process that shares a kernel with other
containers. Container implementations separate groups of processes by virtu-
alising a subset of operating-system mechanisms, including process identifiers,
interprocess communication, and namespaces; they also use techniques such as
sandboxing and system call filtering. The business incentive is to minimise the
guests’ size, their interaction complexity and the costs of managing them, so
they are deployed along with orchestration tools. Like any other new technol-
ogy, there are many startups with more enthusiasm than experience. A 2019
survey by Jerry Gamblin disclosed that of the top 1000 containers available to
developers on Docker Hub, 194 were setting up blank root passwords [743]. If
you’re going to use cloud systems, you need to pay serious attention to your
choice of tools, and also learn yet another set of access control mechanisms –
those o↵ered by the service provider, such as the Amazon AWS Identity and
Access Management (IAM). This adds another layer of complexity, which people
can get wrong. For example, in 2019 a security firm providing biometric iden-
tification services to banks and the police left its entire database unprotected;
two researchers found it using Elasticsearch and discovered millions of people’s
photos, fingerprints, passwords and security clearance levels on a database that
they could not only read but write [1864].

But even if you tie down a cloud system properly, there are hardware limits
on what the separation mechanisms can achieve. In 2018, two classes of powerful
side-channel attacks were published: Meltdown and Spectre, which I discuss in
the following section and at greater length in the chapter on side channels. Those
banks that use containers to deploy payment processing rely, at least implicitly,
on their containers being di�cult to target in a cloud the size of Amazon’s or
Google’s. For a comprehensive survey of the evolution of virtualisation and
containers, see Randal [1575].

6.3 Hardware Protection

Most access control systems set out not just to control what users can do, but
to limit what programs can do as well. In many systems, users can either write
programs, or download and install them, and these programs may be buggy or
even malicious.

Preventing one process from interfering with another is the protection prob-
lem. The confinement problem is that of preventing programs communicating

Security Engineering 222 Ross Anderson

6.3. HARDWARE PROTECTION

outward other than through authorized channels. There are several flavours of
each. The goal may be to prevent active interference, such as memory over-
writing, or to stop one process reading another’s memory directly. This is what
commercial operating systems set out to do. Military systems may also try to
protect metadata – data about other data, or subjects, or processes – so that,
for example, a user can’t find out what other users are logged on to the system
or what processes they’re running.

Unless one uses sandboxing techniques (which are too restrictive for general
programming environments), solving the protection problem on a single proces-
sor means, at the very least, having a mechanism that will stop one program
from overwriting another’s code or data. There may be areas of memory that are
shared to allow interprocess communication; but programs must be protected
from accidental or deliberate modification, and must have access to memory
that is similarly protected.

This usually means that hardware access control must be integrated with
the processor’s memory management functions. A classic mechanism is segment
addressing. Memory is addressed by two registers, a segment register that points
to a segment of memory, and an address register that points to a location within
that segment. The segment registers are controlled by the operating system,
often by a component of it called the reference monitor which links the access
control mechanisms with the hardware.

The implementation has become more complex as processors themselves
have. Early IBM mainframes had a two-state CPU: the machine was either
in authorized state or it was not. In the latter case, the program was restricted
to a memory segment allocated by the operating system; in the former, it could
write to segment registers at will. An authorized program was one that was
loaded from an authorized library.

Any desired access control policy can be implemented on top of this, given
suitable authorized libraries, but this is not always e�cient; and system security
depended on keeping bad code (whether malicious or buggy) out of the autho-
rized libraries. So later processors o↵ered more complex hardware mechanisms.
Multics, an operating system developed at MIT in the 1960s and which inspired
Unix, introduced rings of protection which express di↵ering levels of privilege:
ring 0 programs had complete access to disk, supervisor states ran in ring 2,
and user code at various less privileged levels [1684]. Many of its features have
been adopted in more recent processors.

There are a number of general problems with interfacing hardware and soft-
ware security mechanisms. For example, it often happens that a less privileged
process such as application code needs to invoke a more privileged process (e.g.
a device driver). The mechanisms for doing this need to be designed with care,
or security bugs can be expected. Also, performance may depend quite drasti-
cally on whether routines at di↵erent privilege levels are called by reference or
by value [1684].

Security Engineering 223 Ross Anderson

6.3. HARDWARE PROTECTION

6.3.1 Intel processors

The Intel 8088/8086 processors used in early PCs had no distinction between
system and user mode, and thus any running program controlled the whole
machine6. The 80286 added protected segment addressing and rings, so for the
first time a PC could run proper operating systems. The 80386 had built-in
virtual memory, and large enough memory segments (4 Gb) that they could be
ignored and the machine treated as a 32-bit flat address machine. The 486 and
Pentium series chips added more performance (caches, out of order execution
and additional instructions such as MMX).

The rings of protection are supported by a number of mechanisms. The
current privilege level can only be changed by a process in ring 0 (the ker-
nel). Procedures cannot access objects in lower-level rings directly but there are
gates that allow execution of code at a di↵erent privilege level and manage the
supporting infrastructure, such as multiple stack segments.

From 2006, Intel added hardware support for x86 virtualisation, known as
Intel VT, which helped drive the adoption of cloud computing. Some pro-
cessor architectures such as S/370 and PowerPC are easy to virtualise, and
the theoretical requirements for this had been established in 1974 by Gerald
Popek and Robert Goldberg [1532]; they include that all sensitive instructions
that expose raw processor state be privileged instructions. The native Intel
instruction set, however, has sensitive user-mode instructions, requiring messy
workarounds such as application code rewriting and patches to hosted operat-
ing systems. Adding VMM support in hardware means that you can run an
operating system in ring 0 as it was designed; the VMM has its own copy of
the memory architecture underneath. You still have to trap sensitive opcodes,
but system calls don’t automatically require VMM intervention, you can run
unmodified operating systems, things go faster and systems are generally more
robust. Modern Intel CPUs now have nine rings: ring 0–3 for normal code,
under which is a further set of ring 0–3 VMM root mode for the hypervisor, and
at the bottom is system management mode (SMM) for the BIOS. In practice,
the four levels that are used are SMM, ring 0 of VMX root mode, the normal
ring 0 for the operating system, and ring 3 above that for applications.

In 2015, Intel released Software Guard eXtensions (SGX), which lets trusted
code run in an enclave – an encrypted section of the memory – while the rest of
the code is executed as usual. The company had worked on such architectures
in the early years of the Trusted Computing initiative, but let things slide until
it needed an enclave architecture to compete with TrustZone, which I discuss
in the next section. The encryption is performed by a Memory Encryption En-
gine (MEE), while SGX also introduces new instructions and memory-access
checks to ensure non-enclave processes cannot access enclave memory (not even
root processes). SGX has been promoted for DRM and securing cloud VMs,
particularly those containing crypto keys, credentials or sensitive personal in-
formation; this is under threat from Spectre and similar attacks, which I discuss
in detail in the chapter on side channels. Since SGX’s security perimeter is the
CPU, its software is encrypted in main memory, which imposes real penalties

6They had been developed on a crash programme to save market share following the advent
of RISC processors and the market failure of the iAPX432.

Security Engineering 224 Ross Anderson

6.3. HARDWARE PROTECTION

in both time and space. Another drawback used to be that SGX code had to
be signed by Intel. The company has now delegated signing (so bad people can
get code signed) and from SGXv2 will open up the root of trust to others. So
people are experimenting with SGX malware, which can remain undetectable by
anti-virus software. As SGX apps cannot issue syscalls, it had been hoped that
enclave malware couldn’t do much harm, yet Michael Schwarz, Samuel Weiser
and Daniel Gruss have now worked out how to mount stealthy return-oriented
programming (ROP) attacks from an enclave on a host app; they argue that
the problem is a lack of clarity about what enclaves are supposed to do, and
that any reasonable threat model must include untrusted enclaves [1688]. This
simple point may force a rethink of enclave architectures; Intel says ‘In the
future, Intel’s control-flow enforcement technology (CET) should help address
this threat inside SGX’7. As for what comes next, AMD released full system
memory encryption in 2016, and Intel announced a competitor. This aimed to
deal with cold-boot and DMA attacks, and protect code against an untrusted
hypervisor; it might also lift space and performance limits on next-generation
enclaves. However, Jan Werner and colleagues found multiple inference and
data-injection attacks on AMD’s o↵ering when it’s used in a virtual environ-
ment. [2010]. There’s clearly some way to go.

As well as the access-control vulnerabilities, there are crypto issues, which
I’ll discuss in the chapter on Advanced Cryptographic Engineering.

6.3.2 Arm processors

The Arm is the processor core most commonly used in phones, tablets and IoT
devices; billions have been used in mobile phones alone, with a high-end device
having several dozen Arm cores of various sizes in its chipset. The original Arm
(which stood for Acorn Risc Machine) was the first commercial RISC design; it
was released in 1985, just before MIPS. In 1991, Arm became a separate firm
which, unlike Intel, does not own or operate any fabs: it licenses a range of
processor cores, which chip designers include in their products. Early cores had
a 32-bit datapath and contained fifteen registers, of which seven were shadowed
by banked registers for system processes to cut the cost of switching context on
interrupt. There are multiple supervisor modes, dealing with fast and normal
interrupts, the system mode entered on reset, and various kinds of exception
handling. The core initially contained no memory management, so Arm-based
designs could have their hardware protection extensively customized; there are
now variants with memory protection units (MPUs), and others with memory
management units (MMUs) that handle virtual memory as well.

In 2011, Arm launched version 8, which supports 64-bit processing and en-
ables multiple 32-bit operating systems to be virtualised. Hypervisor support
added yet another supervisor mode. The cores come in all sizes, from large
64-bit superscalar processors with pipelines over a dozen stages deep, to tiny
ones for cheap embedded devices.

TrustZone is a security extension that supports the ‘two worlds’ model men-

7The best defence against ROP attacks in 2019 appears to be Apple’s mechanism, in the
iPhone X3 and later, for signing pointers with a key that’s kept in a register; this stops ROP
attacks as the attacker can’t guess the signatures.

Security Engineering 225 Ross Anderson

6.4. WHAT GOES WRONG

tioned above; it was made available to mobile phone makers in 2004 [44]. Phones
were the ‘killer app’ for enclaves as operators wanted to lock subsidised phones
and regulators wanted to make the baseband software that controls the RF
functions tamper-resistant [1239]. TrustZone supports an open world for a nor-
mal operating system and general-purpose applications, plus a closed enclave
to handle sensitive operations such as cryptography and critical I/O (in a mo-
bile phone, this can include the SIM card and the fingerprint reader). Whether
the processor is in a secure or non-secure state is orthogonal to whether it’s in
user mode or a supervisor mode (though it must choose between secure and hy-
pervisor mode). The closed world hosts a single trusted execution environment
(TEE) with separate stacks, a simplified operating system, and typically runs
only trusted code signed by the OEM – although Samsung’s Knox, which sets
out to provide ‘home’ and ‘work’ environments on your mobile phone, allows
regular rich apps to execute in the secure environment.

Although TrustZone was released in 2004, it was kept closed until 2015;
OEMs used it to protect their own interests and didn’t open it up to app devel-
opers, except occasionally under NDA. As with Intel SGX, there appears to be
no way yet to deal with malicious enclave apps, which might come bundled as
DRM with gaming apps or be mandated by authoritarian states; and, as with
Intel SGX, enclave apps created with TrustZone can raise issues of transparency
and control, which can spill over into auditability, privacy and much else. Again,
company insiders mutter ‘wait and see’; no doubt we shall.

Arm’s latest o↵ering is CHERI8 which adds fine-grained capability support
to Arm CPUs. At present, browsers such as Chrome put tabs in di↵erent pro-
cesses, so that one webpage can’t slow down the other tabs if its scripts run
slowly. It would be great if each object in each web page could be sandboxed
separately, but this isn’t possible because of the large cost, in terms of CPU
cycles, of each inter-process context switch. CHERI enables a process spawning
a subthread to allocate it read and write accesses to specific ranges of memory,
so that multiple sandboxes can run in the same process. This was announced
as a product in 2018 and we expect to see first silicon in 2021. The long-term
promise of this technology is that, if it were used thoroughly in operating sys-
tems such as Windows, Android and iOS, it would have prevented most of the
zero-day exploits of recent years. Incorporating a new protection technology at
scale costs real money, just like the switch from 32-bit to 64-bit CPUs, but it
could save the cost of lots of patches.

6.4 What Goes Wrong

Popular operating systems such as Android, Linux and Windows are very large
and complex, with their features tested daily by billions of users under very
diverse circumstances. Many bugs are found, some of which give rise to vulner-
abilities, which have a typical lifecycle. After discovery, a bug is reported to a
CERT or to the vendor; a patch is shipped; the patch is reverse-engineered, and
an exploit may be produced; and people who did not apply the patch in time

8Full disclosure: this was developed by a team of my colleagues at Cambridge and else-
where, led by Robert Watson.

Security Engineering 226 Ross Anderson

6.4. WHAT GOES WRONG

may find that their machines have been compromised. In a minority of cases,
the vulnerability is exploited at once rather than reported – called a zero-day
exploit as attacks happen from day zero of the vulnerability’s known existence.
The economics, and the ecology, of the vulnerability lifecycle are the subject of
intensive study by security economists; I’ll discuss this in Part III.

The traditional goal of an attacker was to get a normal account on the system
and then become the system administrator, so they could take over the system
completely. The first step might have involved guessing, or social-engineering,
a password, and then using an operating-system bug to escalate from user to
root [1129].

The user/root distinction became less important in the twenty-first century
for two reasons. First, Windows PCs were the most common online devices
(until 2017 when Android overtook them) so they were the most common attack
targets; and as they ran many applications as administrator, any application
that could be compromised gave administrator access. Second, attackers come
in two basic types: targeted attackers, who want to spy on a specific individual
and whose goal is typically to acquire access to that person’s accounts; and
scale attackers, whose goal is typically to compromise large numbers of PCs,
which they can organise into a botnet in order to make money. This, too,
doesn’t require administrator access. Even if your mail client does not run as
administrator, it can still be useful to a spammer who takes control.

However, botnet herders do prefer to install rootkits which, as their name
suggests, run as root; they are also known as remote access trojans or RATs.
The user/root distinction does still matter in business environments, where you
do not want such a kit installed as an advanced persistent threat by a hostile
intelligence agency, or corporate espionage firm, or by a crime gang doing re-
connaissance to set you up for a large fraud.

A separate distinction is whether an exploit is wormable – whether it can
be used to spread malware quickly online from one machine to another without
human intervention. The Morris worm was the first large-scale case of this, and
there have been many since. I mentioned Wannacry and NotPetya in chapter 2;
these used a vulnerability developed by the NSA and then leaked to other state
actors. Operating system vendors react quickly to wormable exploits, typically
releasing out-of-sequence patches, because of the scale of the damage they can
do. The most troublesome wormable exploits at the time of writing are variants
of Mirai, a worm used to take over IoT devices that use known root passwords.
This appeared in October 2016 to exploit CCTV cameras, and hundreds of
versions have been produced since, adapted to take over di↵erent vulnerable
devices and recruit them into botnets. Wormable exploits often use root access
but don’t have to; it is su�cient that the exploit be capable of automatic onward
transmission9.

In any case, the basic types of technical attack have not changed hugely in
a generation and I’ll now consider them briefly.

9In rare cases even human transmission can make malware spread quickly: an example
was the ILoveYou worm which spread itself in 2000 via an email with that subject line, which
caused enough people to open it, running a script that caused it to be sent to everyone in the
new victim’s address book.

Security Engineering 227 Ross Anderson

6.4. WHAT GOES WRONG

6.4.1 Smashing the stack

The classic software exploit is the memory overwriting attack, colloquially known
as ‘smashing the stack’, as used by the Morris worm in 1988; this infected so
many Unix machines that it disrupted the Internet and brought malware force-
fully to the attention of the mass media [1806]. Attacks involving violations
of memory safety accounted for well over half the exploits against operating
systems in the late 1990s and early 2000s [487] but the proportion has been
dropping slowly since then.

Programmers are often careless about checking the size of arguments, so an
attacker who passes a long argument to a program may find that some of it gets
treated as code rather than data. The classic example, used in the Morris worm,
was a vulnerability in the Unix finger command. A common implementation
of this would accept an argument of any length, although only 256 bytes had
been allocated for this argument by the program. When an attacker used the
command with a longer argument, the trailing bytes of the argument ended up
overwriting the stack and being executed by the system.

The usual exploit technique was to arrange for the trailing bytes of the
argument to have a landing pad – a long space of no-operation (NOP) commands,
or other register commands that didn’t change the control flow, and whose task
was to catch the processor if it executed any of them. The landing pad delivered
the processor to the attack code which will do something like creating a shell
with administrative privilege directly (see Figure 6.5).

Figure 6.5: – stack smashing attack

Stack-overwriting attacks were around long before 1988. Most of the early
1960s time-sharing systems su↵ered from this vulnerability, and fixed it [804].
Penetration testing in the early ’70s showed that one of the most frequently-
used attack strategies was still “unexpected parameters” [1165]. Intel’s 80286
processor introduced explicit parameter checking instructions – verify read, ver-
ify write, and verify length – in 1982, but they were avoided by most software
designers to prevent architecture dependencies. Stack overwriting attacks have
been found against all sorts of programmable devices – even against things like
smartcards and hardware security modules, whose designers really should have
known better.

Security Engineering 228 Ross Anderson

6.4. WHAT GOES WRONG

6.4.2 Other technical attacks

Many vulnerabilities are variations on the same general theme, in that they
occur when data in grammar A is interpreted as being code in grammar B. A
stack overflow is when data are accepted as input (e.g. a URL) and end up
being executed as machine code. These are failures of type safety. In fact, a
stack overflow can be seen either as a memory safety failure or as a failure to
sanitise user input, but there are purer examples of each type.

The use after free type of safety failure is now the most common cause of
remote execution vulnerabilities and has provided a lot of attacks on browsers
in recent years. It can happen when a chunk of memory is freed and then still
used, perhaps because of confusion over which part of a program is responsible
for freeing it. If a malicious chunk is now allocated, it may end up taking its
place on the heap, and when an old innocuous function is called a new, malicious
function may be invoked instead. There are many other variants on the memory
safety theme; bu↵er overflows can be induced by improper string termination,
passing an inadequately sized bu↵er to a path manipulation function, and many
other subtle errors. See Gary McGraw’s book ‘Software Security [1266] for a
taxonomy.

SQL injection attacks are the most common attack based on failure to sani-
tise input, and arise when a careless web developer passes user input to a back-
end database without checking to see whether it contains SQL code. The game
is often given away by error messages, from which a capable and motivated user
may infer enough to mount an attack. There are similar command-injection
problems a✏icting other languages used by web developers, such as PHP. The
usual remedy is to treat all user input as suspicious and validate it. But this
can be harder than it looks, as it’s di�cult to anticipate all possible attacks and
the filters written for one shell may fail to be aware of extensions present in
another. Where possible, one should only act on user input in a safe context,
by designing such attacks out; where it’s necessary to blacklist specific exploits,
the mechanism needs to be competently maintained.

Once such type-safety and input-sanitisation attacks are dealt with, race
conditions are probably next. These occur when a transaction is carried out
in two or more stages, where access rights are verified at the first stage and
something sensitive is done at the second. If someone can alter the state in
between the two stages, this can lead to an attack. A classic example arose
in early versions of Unix, where the command to create a directory, ‘mkdir’,
used to work in two steps: the storage was allocated, and then ownership was
transferred to the user. Since these steps were separate, a user could initiate
a ‘mkdir’ in background, and if this completed only the first step before being
suspended, a second process could be used to replace the newly created directory
with a link to the password file. Then the original process would resume, and
change ownership of the password file to the user.

A more modern example arises with the wrappers used in containers to
intercept system calls made by applications to the operating system, parse them,
and modify them if need be. These wrappers execute in the kernel’s address
space, inspect the enter and exit state on all system calls, and encapsulate only
security logic. They generally assume that system calls are atomic, but modern

Security Engineering 229 Ross Anderson

6.4. WHAT GOES WRONG

operating system kernels are highly concurrent. System calls are not atomic
with respect to each other; there are many possibilities for two system calls to
race each other for access to shared memory, which gives rise to time-of-check-to-
time-of-use (TOCTTOU) attacks. An early (2007) example calls a path whose
name spills over a page boundary by one byte, causing the kernel to sleep while
the page is fetched; it then replaces the path in memory [1992]. There have
been others since, and as more processors ship in each CPU chip as time passes,
and containers become an ever more common way of deploying applications,
this sort of attack may become more and more of a problem. Some operating
systems have features specifically to deal with concurrency attacks, but this field
is still in flux.

A di↵erent type of timing attack can come from backup and recovery sys-
tems. It’s convenient if you can let users recover their own files, rather than
having to call a sysadmin – but how do you protect information assets from a
time traveller? People can reacquire access rights that were revoked, and play
even more subtle tricks.

One attack that has attracted a lot of research e↵ort recently is return-
oriented programming (ROP) [1708]. Many modern systems try to prevent type
safety attacks by data execution prevention – marking memory as either code
or data, a measure that goes back to the Burroughs 5000; and if all the code is
signed, surely you’d think that unauthorised code cannot be executed? Wrong!
An attacker can look for gadgets – sequences of instructions with some use-
ful e↵ect, ending in a return. By collecting enough gadgets, it’s possible to
assemble a machine that’s Turing powerful, and implement our attack code
as a chain of ROP gadgets. Then all one has to do is seize control of the call
stack. This evolved from the return-to-libc attack which uses the common shared
library libc to provide well-understood gadgets; many variants have been de-
veloped since, including an attack that enables malware in an SGX enclave to
mount stealthy attacks on host apps [1688]. The latest attack variant, block-
oriented programming (BOP), can often generate attacks automatically from
crashes discovered by program fuzzing, defeating current control-flow integrity
controls [964]. This coevolution of attack and defence will no doubt continue.

Finally there are side channels. The most recent major innovation in attack
technology targets CPU pipeline behaviour. In early 2018, two game-changing
attacks pioneered the genre: Meltdown, which exploits side-channels created by
out-of-order execution on Intel processors [1172], and Spectre, which exploits
speculative execution on Intel, AMD and Arm processors [1068]. The basic idea
is that large modern CPUs’ pipelines are so long and complex that they look
ahead and anticipate the next dozen instructions, even if these are instructions
that the current process wouldn’t be allowed to execute (imagine the access
check is two instructions in the future and the read operation it will forbid is
two instructions after that). The path not taken can still load information into a
cache and thus leak information in the form of delays. With some cunning, one
process can arrange things to read the memory of another. I will discuss Spectre
and Meltdown in more detail in the chapter on side channels in the second part
of this book. Although mitigations have been published, further attacks of the
same general kind keep on being discovered, and it may take several years and
a new generation of processors before they are brought entirely under control.

Security Engineering 230 Ross Anderson

6.4. WHAT GOES WRONG

It all reminds me of the saying by Roger Needham at the head of this chapter.
Optimisation consists of replacing something that works with something that
almost works, but is cheaper; and modern CPUs are so heavily optimised that
we’re bound to see more variants on the Spectre theme. Such attacks limit
the protection that can be o↵ered not just by containers and VMs, but also
by enclave mechanisms such as TrustZone and SGX. In particular, they may
stop careful firms from entrusting high-value cryptographic keys to enclaves
and prolong the service life of old-fashioned hardware cryptography.

6.4.3 User interface failures

A common way to attack a fortress is to trick the guards into helping you,
and operating systems are no exception. One of the earliest attacks was the
Trojan Horse, a program the administrator is invited to run but which contains
a nasty surprise. People would write games that checked whether the player was
the system administrator, and if so would create another administrator account
with a known password. A variant was to write a program with the same name
as a common system utility, such as the ls command which lists all the files
in a Unix directory, and design it to abuse the administrator privilege (if any)
before invoking the genuine utility. You then complain to the administrator that
something’s wrong with the directory. When they enter the directory and type
ls to see what’s there, the damage is done. This is an example of the confused
deputy problem: if A does some task on behalf of B, and its authority comes
from both A and B, and A’s authority exceeds B, things can go wrong. The fix
in this particular case was simple: an administrator’s ‘PATH’ variable (the list
of directories to be searched for a suitably-named program when a command is
invoked) should not contain ‘.’ (the symbol for the current directory). Modern
Unix versions ship with this as a default. But it’s still an example of how you
have to get lots of little details right for access control to be robust, and these
details aren’t always obvious in advance.

Perhaps the most serious example of user interface failure, in terms of the
number of systems historically attacked, consists of two facts: first, Windows is
forever popping up confirmation dialogues, which trained people to click boxes
away to get their work done; and second, that until 2006 a user needed to be
the administrator to install anything. The idea was that restricting software in-
stallation to admins enabled Microsoft’s big corporate customers, such as banks
and government departments, to lock down their systems so that sta↵ couldn’t
run games or other unauthorised software. But in most environments, ordinary
people need to install software to get their work done. So hundreds of millions
of people had administrator privileges who shouldn’t have needed them, and
installed malicious code when a website simply popped up a box telling them to
do something. This was compounded by the many application developers who
insisted that their code run as root, either out of laziness or because they wanted
to collect data that they really shouldn’t have had. Windows Vista started to
move away from this, but a malware ecosystem is now well established in the PC
world, and one is starting to take root in the Android ecosystem as businesses
pressure people to install apps rather than using websites, and the apps demand
access to all sorts of data and services that they really shouldn’t have. We’ll

Security Engineering 231 Ross Anderson

6.4. WHAT GOES WRONG

discuss this later in the chapter on phones.

6.4.4 Remedies

Software security is not all doom and gloom; things got substantially better
during the 2000s. At the turn of the century, 90% of vulnerabilties were bu↵er
overflows; by the time the second edition of this book came out in 2008, it was
just under half, and now it’s even less. Several things made a di↵erence.

1. The first consists of specific defences. Stack canaries are a random num-
ber inserted by the compiler next to the return address on the stack.
If the stack is overwritten, then with high probability the canary will
change [487]. Data execution prevention (DEP) marks all memory as ei-
ther data or code, and prevents the former being executed; it appeared
in 2003 with Windows XP. Address space layout randomisation (ASLR)
arrived at the same time; by making the memory layout di↵erent in each
instance of a system, it makes it harder for an attacker to predict target
addresses. This is particularly important now that there are toolkits to
do ROP attacks, which bypass DEP. Control flow integrity mechanisms
involve analysing the possible control-flow graph at compile time and en-
forcing this at runtime by validating indirect control-flow transfers; this
appeared in 2005 and was incorporated in various products over the follow-
ing decade [348]. However the analysis is not precise, and block-oriented
programming attacks are among the tricks that have evolved to exploit
the gaps [964].

2. The second consists of better general-purpose tools. Static-analysis pro-
grams such as Coverity can find large numbers of potential software bugs
and highlight ways in which code deviates from best practice; if used from
the start of a project, they can make a big di↵erence. (If added later, they
can throw up thousands of alerts that are a pain to deal with.) The rad-
ical solution is to use a better language; my colleagues increasingly write
systems code in Rust rather than in C or C++10.

3. The third is better training. In 2002, Microsoft announced a security ini-
tiative that involved every programmer being trained in how to write se-
cure code. (The book they produced for this, ‘Writing Secure Code’ [927],
is still worth a read.) Other companies followed suit.

4. The latest approach is DevSecOps, which I discuss in Part 3. Agile de-
velopment methodology is extended to allow very rapid deployment of
patches and response to incidents; it may enable the e↵ort put into de-
sign, coding and testing to be aimed at the most urgent problems.

Architecture matters; having clean interfaces that evolve in a controlled way,
under the eagle eye of someone experienced who has a long-term stake in the
security of the product, can make a huge di↵erence. Programs should only have

10Rust emerged from Mozilla research in 2010 and has been used to redevelop Firefox; it’s
been voted the favourite language in the Stack Overflow annual survey from 2016–2019.

Security Engineering 232 Ross Anderson

6.4. WHAT GOES WRONG

as much privilege as they need: the principle of least privilege [1639]. Software
should also be designed so that the default configuration, and in general, the
easiest way of doing something, should be safe. Sound architecture is critical
in achieving safe defaults and using least privilege. However, many systems are
shipped with dangerous defaults and messy code, exposing all sorts of interfaces
to attacks like SQL injection that just shouldn’t happen. These involve failures
of incentives, personal and corporate, as well as inadequate education and the
poor usability of security tools.

6.4.5 Environmental creep

Many security failures result when environmental change undermines a security
model. Mechanisms that worked adequately in an initial environment often fail
in a wider one.

Access control mechanisms are no exception. Unix, for example, was origi-
nally designed as a ‘single user Multics’ (hence the name). It then became an
operating system to be used by a number of skilled and trustworthy people in a
laboratory who were sharing a single machine. In this environment the function
of the security mechanisms is mostly to contain mistakes; to prevent one user’s
typing errors or program crashes from deleting or overwriting another user’s
files. The original security mechanisms were quite adequate for this purpose.

But Unix security became a classic ‘success disaster’. Over the 50 years
since Ken Thomson started work on it at Bell Labs in 1969, Unix was repeat-
edly extended without proper consideration being given to how the protection
mechanisms also needed to be extended. The Berkeley versions assumed an
extension from a single machine to a network of machines that were all on
one LAN and all under one management. The Internet mechanisms (telnet,
ftp, DNS, SMTP) were originally written for mainframes on a secure network.
Mainframes were autonomous, the network was outside the security protocols,
and there was no transfer of authorisation. So remote authentication, which the
Berkeley model really needed, was simply not supported. The Sun extensions
such as NFS added to the party, assuming a single firm with multiple trusted
LANs. We’ve had to retrofit protocols like Kerberos, TLS and SSH as duct tape
to hold the world together. The arrival of billions of phones, which communicate
sometimes by wifi and sometimes by a mobile network, and which run apps from
millions of authors (most of them selfish, some of them actively malicious), has
left security engineers running ever faster to catch up.

Mixing many di↵erent models of computation together has been a factor in
the present chaos. Some of their initial assumptions still apply partially, but
none of them apply globally any more. The Internet now has billions of phones,
billions of IoT devices, maybe a billion PCs, and millions of organisations whose
managers not only fail to cooperate but may be in conflict. There are companies
that compete; political groups that despise each other, and nation states that
are at war with each other. Users, instead of being trustworthy but occasionally
incompetent, are now largely unskilled – but some are both capable and hostile.
Code used to be simply buggy – but now there is a lot of malicious code out
there. Attacks on communications used to be the purview of intelligence agencies
– now they can be done by youngsters who’ve downloaded attack tools from the

Security Engineering 233 Ross Anderson

6.5. SUMMARY

net and launched them without any real idea of how they work.

6.5 Summary

Access control mechanisms operate at a number of levels in a system, from the
hardware up through the operating system and middleware like browsers to the
applications. Higher-level mechanisms can be more expressive, but also tend
to be more vulnerable to attack for a variety of reasons ranging from intrinsic
complexity to implementer skill.

The main function of access control is to limit the damage that can be done
by particular groups, users, and programs whether through error or malice. The
most widely fielded examples are Android and Windows at the client end and
Linux at the server end; they have a common lineage and many architectural
similarities. The basic mechanisms (and their problems) are pervasive. Most at-
tacks involve the opportunistic exploitation of bugs; products that are complex,
widely used, or both are particularly likely to have vulnerabilities found and
turned into exploits. Many techniques have been developed to push back on the
number of implementation errors, to make it less likely that the resulting bugs
give rise to vulnerabilties, and harder to turn the vulnerabilities into exploits;
but the overall dependability of large software systems improves only slowly.

Research Problems

Most of the issues in access control were identified by the 1960s or early 1970s
and were worked out on experimental systems such as Multics [1684] and the
CAP [2020]. Much of the research in access control systems since then has
involved reworking the basic themes in new contexts, such as mobile phones.

Recent threads of research include enclaves, and the CHERI mechanisms for
adding finer-grained access control. Another question is: how will developers
use such tools e↵ectively?

In the second edition I predicted that ‘a useful research topic for the next
few years will be how to engineer access control mechanisms that are not just
robust but also usable – by both programmers and end users.’ Recent work
by Yasemin Acar and others has picked that up and developed it into one of
the most rapidly-growing fields of security research [11]. Many if not most
technical security failures are due at least in part to the poor usability of the
protection mechanisms that developers are expected to use. I already mention
in the chapter on cryptography how crypto APIs often induce people to use
really unsafe defaults, such as encrypting long messages with ECB mode; access
control is just as bad, as anyone coming cold to the access control mechanisms
in a Windows system or either an Intel or Arm CPU will find.

As a teaser, here’s a new problem. Can we extend what we know about
access control at the technical level – whether hardware, OS or app – to the
organisational level? In the 20th century, there were a number of security poli-
cies proposed, from Bell-LaPadula to Clark-Wilson, which we discuss at greater

Security Engineering 234 Ross Anderson

6.5. SUMMARY

length in Part 2. Is it time to revisit this for a world of deep outsourcing and
virtual organisations, now that we have interesting technical analogues?

Further Reading

There’s a history of virtualisation and containers by Allison Randal at [1575]; a
discussion of how mandatory access controls were adapted to operating systems
such as OS X and iOS by Robert Watson in [1993]; and a reference book for
Java security written by its architect Li Gong [783]. The Cloud Native Secu-
rity Foundation is trying to move people towards better open-source practices
around containers and other technologies for deploying and managing cloud-
native software. Going back a bit, the classic descriptions of Unix security are
by Fred Grampp and Robert Morris in 1984 [805] and by Simson Garfinkel and
Eugene Spa↵ord in 1996 [753], while the classic on Internet security by Bill
Cheswick and Steve Bellovin [221] gives many examples of network attacks on
Unix systems.

Carl Landwehr gives a useful reference to many of the flaws found in oper-
ating systems in the 1960s through the 1980s [1129]. One of the earliest reports
on the subject (and indeed on computer security in general) is by Willis Ware
in 1970 [1986]; Butler Lampson’s seminal paper on the confinement problem
appeared in 1970s [1125] and three years later, another influential early paper
was written by Jerry Saltzer and Mike Schroeder [1639]. The textbook we get
our students to read on access control issues is Dieter Gollmann’s ‘Computer
Security’ [779]. The standard reference on Intel’s SGX and indeed its CPU
security architecture is by Victor Costan and Srini Devadas [479].

The field of software security is fast-moving; the attacks change significantly
(at least in their details) from one year to the next. The classic starting point is
Gary McGraw’s 2006 book [1266]. Since then we’ve had ROP attacks, Spectre
and much else; a short but useful update is Matthias Payer’s Software Secu-
rity [1504]. But to really keep up, it’s not enough to just read textbooks; you
need to follow security conferences such as Usenix and CCS as well as the se-
curity blogs such as Bruce Schneier, Brian Krebs and – dare I say it – our own
lightbluetouchpaper.org. The most detail on the current attacks is proba-
bly in Google’s Project Zero blog; see for example their analysis of attacks on
iPhones found in the wild for an insight into what’s involved in hacking modern
operating systems with mandatory access control components [204].

Security Engineering 235 Ross Anderson

