Constructability of a High Temperature Concrete Pad

Peter Bly

Geotechnical & Structures Laboratory US Army Engineer Research & Development Center (ERDC)

USACE Infrastructure Systems Conference June 14, 2011 Atlanta, Georgia

US Army Corps of Engineers BUILDING STRONG®

Permission to publish was granted by Director, Geotechnical & Structures Laboratory

Presentation Outline

- BackgroundIssue
 - Objective
- Construction details
 - Pad design
 - Construction materials
- Approach
 - Small scale demonstrations
 - Medium scale demonstrations
 - •Full scale construction
- Conclusions & Recommendations

Issue

- Short take-off and vertical landing (STOVL) aircraft have high exhaust temperatures
 - Ex: F-35B Joint Strike Fighter (JSF), V-22 Osprey, AV-8B Harrier
- Put extreme short term thermal load on airfield pavements during vertical landings (VL)
- Thermal load greater than conventional portland cement concrete (PCC) can withstand
- Explosive spalling = high foreign object damage (FOD) potential
- Tri-service effort to design & construct PCC STOVL pads to withstand multiple landings
 - •NAVFAC: Geometric & PCC mixture
 - USACE & Air Force: Construction

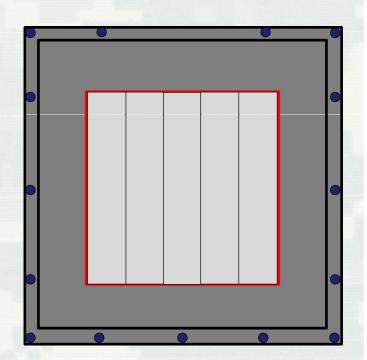
Objective

Program

 Develop & validate heat resistant STOVL pad geotechnical & structural design for the JSF

<u>ERDC</u>

• Evaluate heat resistant material constructability


- Verify full scale PCC mixture proportioning
- Identify construction limitations
- Revision of in-place documents
 - Geometric design ETL 10-04: Joint Strike Fighter (JSF) F35-B Vertical Landing (VL) Pad Design
 - Construction specification UFGS 32-13-99: High Temperature Concrete for Airfields
 - "Living" document

Pad Design

- First pads built at Eglin AFB, FL
 - First F-35B flight training base
- Dimensions
 - •12 in.-thick center landing zone: 100 ft x 100 ft
 - Continuously reinforced pavement
 - Optimized NAVFAC lightweight PCC
 - Focus of ERDC work
 - 12 in.-thick safety zone: 50 ft outside of landing zone
 - Jointed plain pavement
 - 650 psi flexural strength conventional PCC
 - •8 in.-thick shoulder: 10 ft outside landing zone
 - Jointed plain pavement
 - •650 psi flexural strength conventional PCC
 - Allows for 2-in. max surface grinding over lifecycle

Construction Materials

5 - 20 ft x 100 ft paving lanes
#8 A722 Grade 120 rebar at 12 in. spacing

Dywidag thread bar

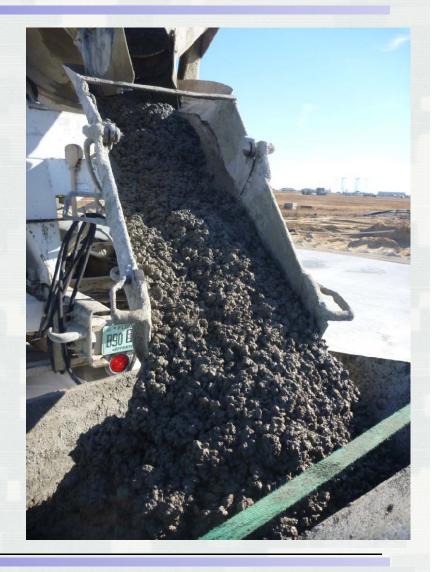
Mechanical coupler bar splice
5.5 in.-high steel high chairs

Maintains rebar just below mid-depth

Epoxy filler between construction joints
14 day wet cure after all concrete poured

Burlap and soaker hose/ponding

Sodium silicate densifier applied to surface


90 days after final placement

Construction Materials

- NAVFAC designed lightweight PCC mixture
 - Materials
 - Expanded slate aggregates
 - Type I/II portland cement
 - Class F fly ash
 - Air entraining admixture
 - Low & medium range water reducers
 - Polypropylene fibers
 - Target fresh properties
 - $\bullet 3 \pm 1$ in. slump
 - •6 \pm 1.5 % total air content
 - •3 4 % air loss during delivery
 - ASTM C173 measured
 - 100 105 lb/ft³ unit weight
 - Target hardened properties
 - •550 psi flexural strength

Construction Materials

NAVFAC heat resistant PCC verification testing

Disk sample materials

NAVFAC jet blast simulator

Approach

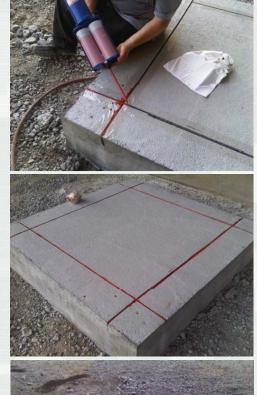
•Small scale construction demonstration (Vicksburg, MS)

- July 2010 Mixture design for contractors
- August 2010 High temperature joint sealant (ERDC & NAVFAC)
- Medium scale test section construction
 - •3 mix design verification demonstrations at the ready mix plant (Ft. Walton Beach, FL)
 - •2 test sections constructed by contractors (Eglin AFB, FL)
- •Full scale STOVL pad construction

•November 2010 to January 2011 - 2 STOVL pads (Eglin AFB, FL)

Small Scale Construction Demo

- First NAVFAC mixture batched greater than 6 ft³
- Test panels cast to show contractors mixture
- Took input from contractors present to optimize mixture design for job
- Lessons Learned
 - Lightweight aggregates must be presoaked to control water demand
 - Aggregate properties vary more than expected
 - Slump, WR, and w/c ratio increased for fluidity
 - Mixture is deficient in available paste
 - Expected surface will not look "pretty"
 - Good fiber dispersion and consolidation



Small Scale Construction Demo

Verify the NAVFAC sealant material application
Test high temperature joint sealant on mixture
Develop sodium silicate application method

Lessons Learned

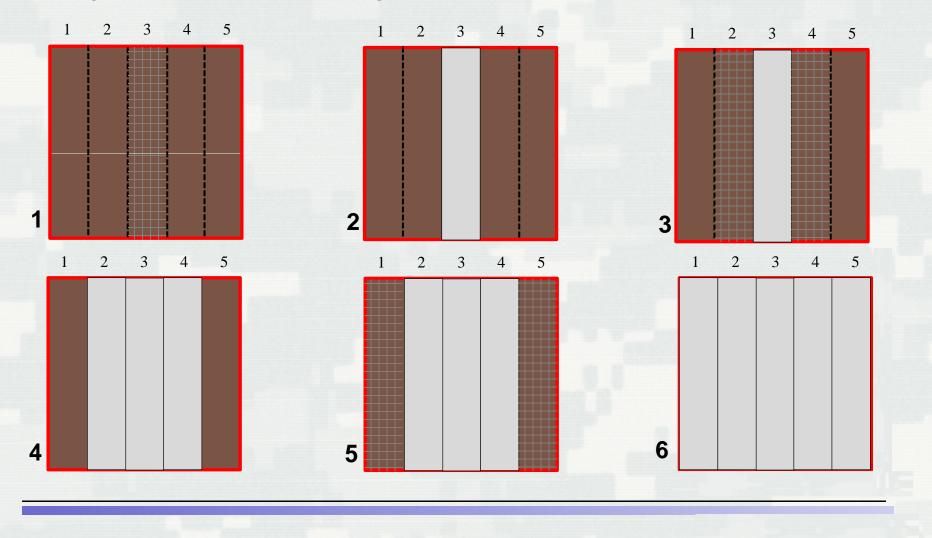
- Apply sealant to dry-to-touch joint surface
- Good sealant bond to NAVFAC mixture
- Use shielding tape to achieve a clean surface
- Hand spraying + brooming puddles effective for applying sodium silicate

Medium Scale Plant Batching Demo

- Verify that larger batches of NAVFAC mixture could be made with full scale production equipment
 - Larger test panels made at plant
 - Simulated transport time used
 - Jet blast samples made & sent to NAVFAC
- Lessons Learned
 - •Cementitous content increased for more paste
 - Aggregate moisture must be carefully controlled
 - Aggregate contamination in stockpiles
 - Watch the plant production
 - •ACI batching tolerances not applied
 - Equipment breakdowns
 - Required admixture rates are highly temperature dependent

Medium Scale Plant Batching Demo

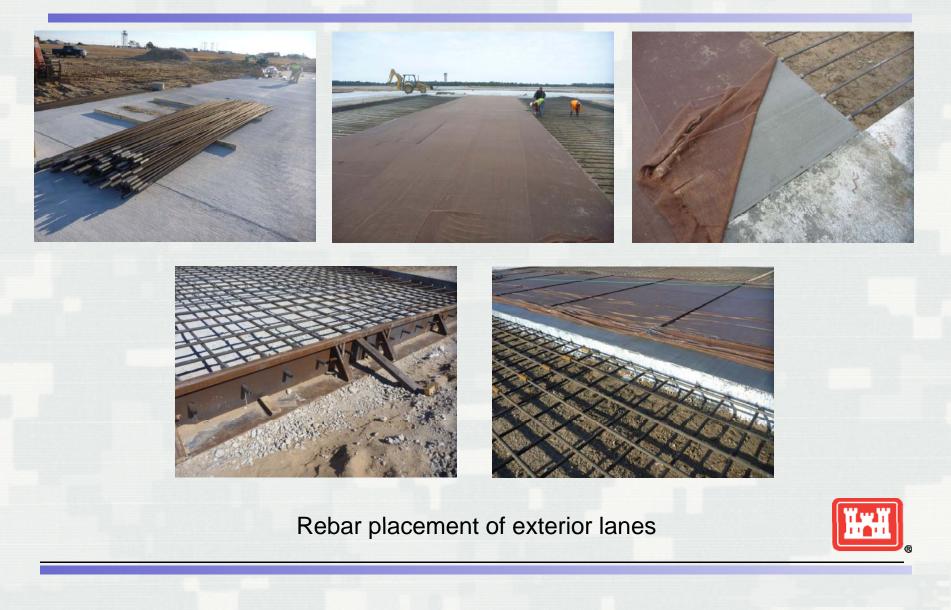
- Verify that the NAVFAC mixture could be placed with full scale placement equipment
 - Full paving lane used for test section
 - Evaluate contractor's procedures & workmanship
- Lessons Learned
 - Mixture modification too great to allow use of pump trucks following specification
 - Contractors needed to work on concrete work fundamentals
 - Good bond between rebar and concrete
 - Ensure aggregates are tested as delivered to modify mix design

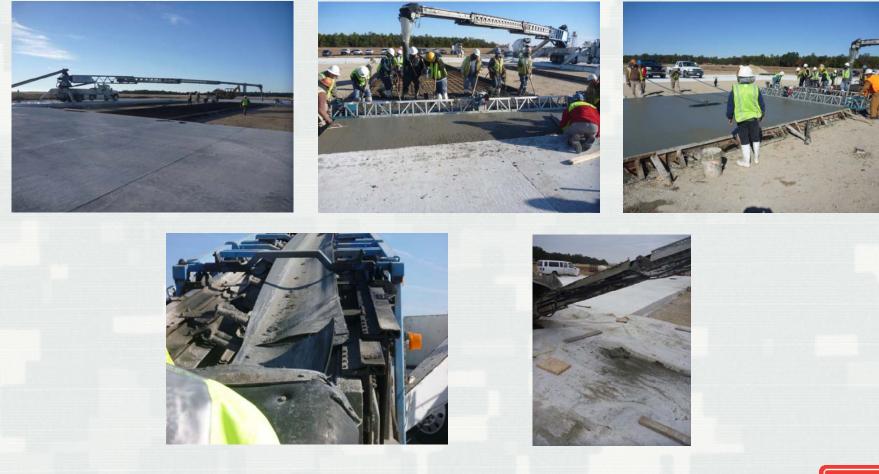

•Phasing

- •Safety Zone \rightarrow Landing Area \rightarrow Shoulder
- •Landing zone construction
 - •Work from inside out \rightarrow Efficient reinforcement placement
 - Alternate rebar placement and PCC pours per lane per pad → Speedy construction times

•Minimum PCC construction window required: 9 days

•Landing zone construction phasing



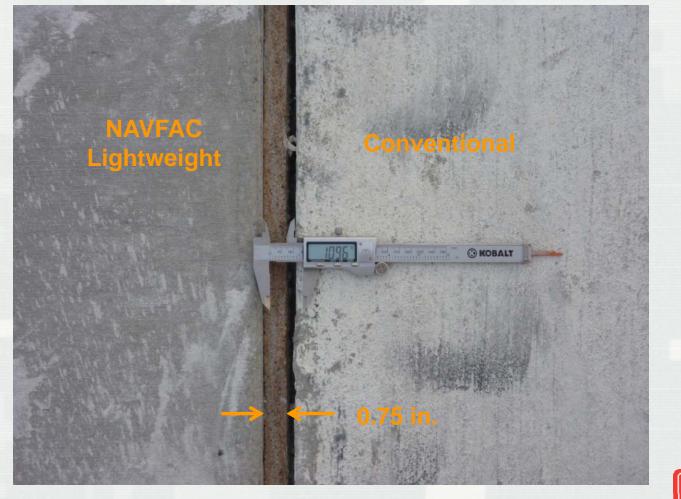


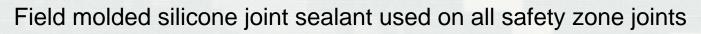
Rebar placement of interior lane

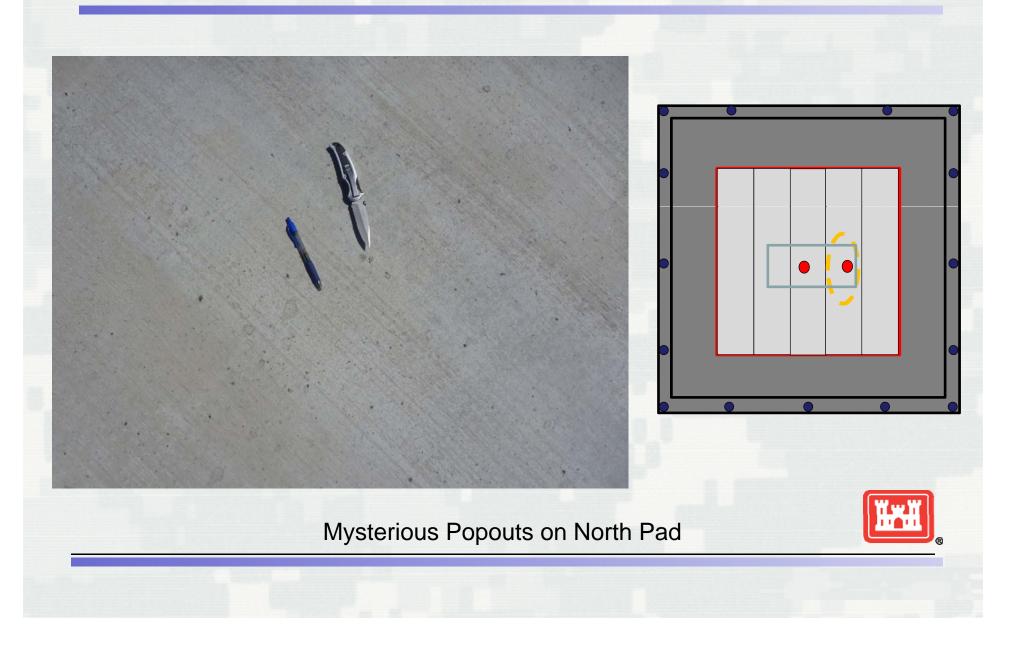


Concrete placement – telescopic conveyor truck

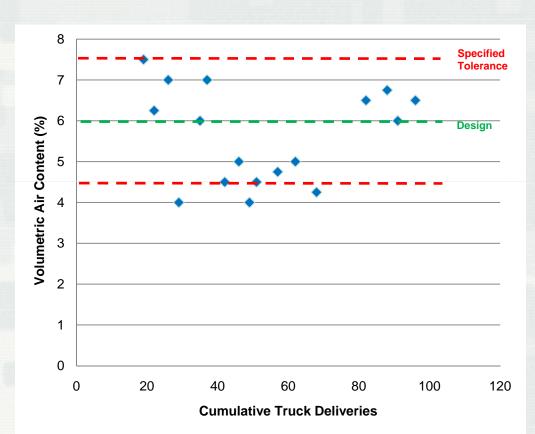
Concrete placement - tailgated



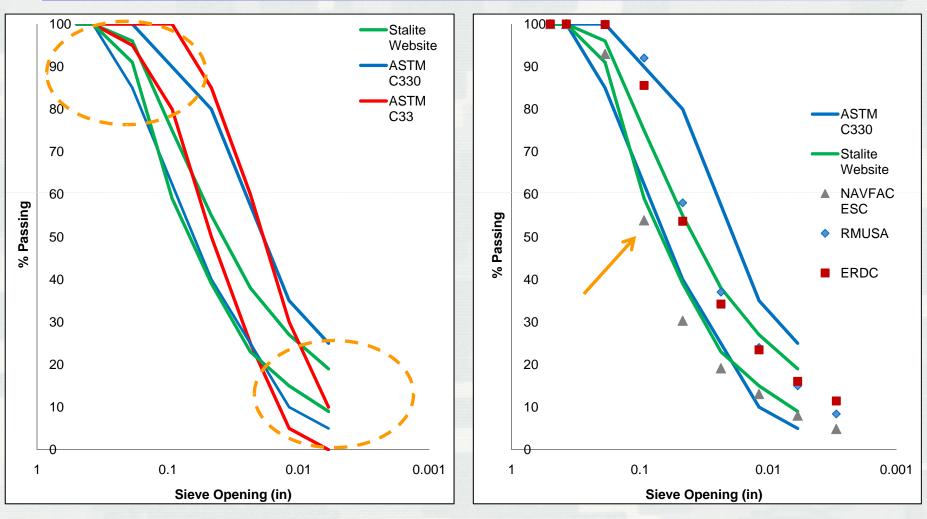

Tight shrinkage cracking as expected



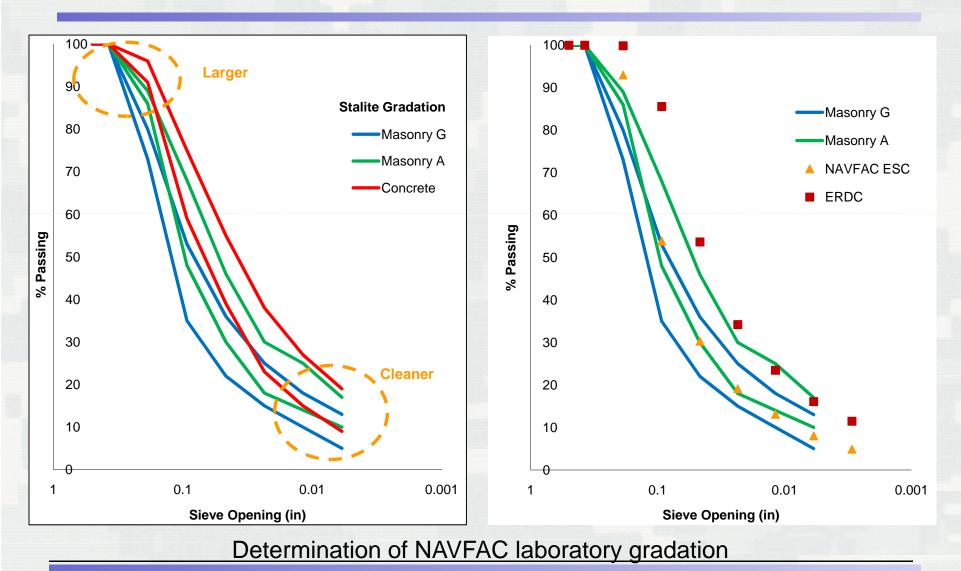
Large amount of dry shrinkage observed



- More paste should be available to apply appropriate texture or other measures should be taken
- Ensure correct materials and specifications are being followed
 - High chairs
 - Air entrainer dosages
 - Concrete material property testing & modifying mixture design
 - Aggregate moisture contents & control of water in PCC production critical
- Placement equipment requirements expanded to include tailgating
- Unsure of aggregate contamination effects on thermal performance at surface
- Use of specified fine sand gradation should be changed to a coarser gradation
- Rebar configuration used worked well & other options should be removed
- Entire pad should be sprayed with $9\%_m$ Sodium silicate solution
- Better methods for applying sodium silicate evenly should be used
- Performance not verified since no aircraft have used pads yet
 - Shrinkage cracking held tight together


UFGS 32-13-11 Specification						
Take Action at		Action				
Level	Value (%)	ACIION				
Individual test control chart						
Watch	± 1.0	adjust AEA, retest				
Warning	± 1.5	halt operations, repair, retest				
Range between 2 consecutive tests						
Watch	2.0	recalibrate AEA dispenser				
Warning	3.0	halt operations, repair, retest				

Ensure correct materials and specifications are being followed – Air content



Aggregate Size	Comparison of Measured Laboratory Physical Properties by Organization						
	Property	Stalite	NAVFAC	ERDC	RMUSA	ERDC	
0.75"	BSG	1.52 [1.47-1.54]	1.54	1.52ª	1.50	1.50	
	ABS	6.0	NA	10.1ª	3.8	4.2	
	Gradation	ASTM C330 for 1.5-in max	Fails ASTM C330	-	Passes ASTM C330	Passes ASTM C330	
0.375"	BSG	1.60 [1.57-1.64]	1.55	1.52ª	1.53	1.61	
	ABS	6.0	NA	10.1ª	4.6	6.6	
	Gradation	ASTM C330 for 0.5-in max	Fails ASTM C330	-	Passes ASTM C330	Passes ASTM C330	
Fine	BSG	1.75 [1.70-1.80]	1.79	1.95	2.01	1.93	
	ABS	6.0	NA	3.0	4.6	3.5	
	Gradation	Not ASTM C33 Within ASTM C330	Fails Stalite Fails ASTM C330	Fails Stalite Passes ASTM C330	Fails Stalite Passes ASTM C330	Passes Stalite Passes ASTM C330	
Date T	ested	Website (typical)	March 2010	June 2010	July 2010	November 2010	

Ensure correct materials and specifications are being followed – aggregate properties

Paste loss & sand gradation changed from laboratory studies

Questions?

