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ABSTRACT It is of great importance to extract and validate an optimal subset of non-dominated features for
effective multi-label classification. However, deciding on the best subset of features is an NP-Hard problem
and plays a key role in improving the prediction accuracy and the processing time of video datasets. In this
study, we propose autoencoders for dimensionality reduction of video data sets and ensemble the features
extracted by the multi-objective evolutionary Non-dominated Sorting Genetic Algorithm and the autoen-
coder. We explore the performance of well-known multi-label classification algorithms for video datasets in
terms of prediction accuracy and the number of features used. More specifically, we evaluate Non-dominated
Sorting Genetic Algorithm-II, autoencoders, ensemble learning algorithms, Principal Component Analysis,
Information Gain, and Correlation Based Feature Selection. Some of these algorithms use feature selection
techniques to improve the accuracy of the classification. Experiments are carried out with local feature
descriptors extracted from two multi-label datasets, the MIR-Flickr dataset which consists of images and
the Wireless Multimedia Sensor dataset that we have generated from our video recordings. Significant
improvements in the accuracy performance of the algorithms are observed while the number of features
is being reduced.

INDEX TERMS Feature selection, multi-label, multi-objective optimization, autoencoder, ensemble,
classification.

I. INTRODUCTION
Multi-label classification has been applied to many problems
in various fields of application, including the diagnosis of
diseases based onmany signs and symptoms [1] and also used
in many tools developed for the classification of social media
resources, images, bioinformatics [2], videos [3], patient
classification [4], text [5], and audio that may need to be
assigned with more than one label [6]. Images are the subject
of research on multi-label classification problems in mul-
timedia resources. If an image of the sea is to be labeled
as a beach, a comprehensive analysis of the scene may be
necessary to identify the image. An image of the sea con-
taining sunbeds, parasols, people, bags, sand, and sailing
provides more accurate clues for identifying the image. The
absence of certain objects on the image can also be useful for
the classification of the scene. The absence of a truck or a
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skyscraper reinforces the idea that this image is a beach. This
concept is called Semantic Scene Analysis/Classification [7].
In general, the structure of a scene is first generated,
and then the associated objects are detected for semantic
analysis.

An important aspect of real data is that it usually has mul-
tiple scopes. An image taken by the camera can include many
features, correlated or not. Tagging this rich data content with
simple binary labels may not be possible in many cases. For
this reason, multi-label classification is an important field of
data classification. For binary classification, data is labeled
as one of two classes, while for multi-class classification,
there are more than two possible classes and each row of
data is labeled with only one class. On the other hand, for
multi-label classification, there are more than two possible
labels and each row of the data can have more than one
label.

Irrelevant and/or redundant data should be filtered before
being transmitted to big data stores in order to speed up
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data processing. Concentrating on relevant big data might
also increase the accuracy of the classification and provide
better data analysis models. A widely used filtering method
is the selection of features, which is used in preprocessing
the data to achieve these goals. The feature selection process
searches for the most relevant and sufficient subset of fea-
tures for data mining and classification. There are three main
methods for performing feature selection: filtering, wrapper,
and embedded methods. The filtering methods use compu-
tationally inexpensive evaluation functions over all available
data features, providing a ranking of the features that can
be used to select only a feasible portion of the data [8].
Wrapper methods use learning algorithms to determine the
most relevant subsets of features used for training to maxi-
mize the performance of learning. The evaluation of wrapper
algorithms is computationally very expensive, but they can
determine the most valuable subset of features [9]. Embedded
methods combine feature selection methods with a model
construction process (wrapper), so that they have an ability
to stop the attribute filtering process when the performance
achieved by the classification/learning algorithm reaches a
sufficient level [10].

In this study we first use autoencoders to implement the
dimensionality reduction for video data. The number of layers
of autoencoder is determined with a heuristic approach. Sub-
sequently, the sets of reduced number of features extracted
with the two regularized autoencoders, dropout and denoising
autoencoders, are determined as a latent space representa-
tion of input data. Then, feature selection is applied to the
same input data with NSGA-II. After both feature selection
operations are done and reduced dimensional feature-sets
are obtained, these feature-sets are combined. Thus, most
descriptive features that are selected by two different meth-
ods are combined and ensemble feature selection results are
achieved with NSGA-II and multi-label classification algo-
rithms. Our ensemble feature selection approach provides
better results than the previous results on the datasets used
in this study. The Hamming score is increased while the
number of features is being reduced during multi-objective
optimization.

Second, we analyze the performance of multi-label
classification algorithms, Non-dominated Sorting Genetic
Algorithm (NSGA-II) [11], autoencoders, ensemble learn-
ing algorithms, Principal Component Analysis (PCA), Infor-
mation Gain (IG), and Correlation Based Feature Selection
(CBFS). Binary Relevance (BR), Classifier Chains (CC),
Pruned Sets (PS) and Random k Label-sets (RAkEL) are
the main multi-label classification algorithms. Support Vec-
tor Machines (SVM), J48-Decision Tree (J48) and Logis-
tic Regression (LR) are used to evaluate the fitness values
(prediction accuracy). Thanks to parallel computing (using
lightweight multi-threading), the fitness value calculations of
the chromosomes are sped-up in NSGA-II. To our knowl-
edge, we have implemented for the first time dimensional-
ity reduction algorithms using autoencoders for multi-label
classification. The under-complete autoencoders are used in

the form of denoising and drop-out regularization in different
noise factors with well-tuned parameter settings.

Two different datasets are used in our experiments,
MIR-Flickr dataset which consists of images and theWireless
Multimedia Sensor (WMS) dataset that we have generated
from our own video recordings. For the WMS dataset, three
minute-video and 1,000 frames of this video are provided
in a multi-labeled format (three labels) with Scale-Invariant
Feature Transform (SIFT) local feature descriptors (100 bags
of visual words for each). To the best of our knowledge,
the image/video datasets and the selection of features on
local descriptors are not studied and evaluated before, for
the first time in this study. Additionally, we review state-
of-the-art feature selection algorithms and improvements to
ensembled feature sets that are extracted by two different
feature selection approaches, deep autoencoder and the scal-
able multi-objective evolutionary algorithm, with the second
optimization step are carried out for the first time in our
study. In this paper, we show that the quality of the results of
our approach is improved with higher Hamming scores and
fewer features. The contributions of our study can be listed
as:

• Autoencoders are proposed to implement the dimension-
ality reduction of video data and a heuristic approach is
developed to determine (tune) the number of layers of
the proposed autoencoder.

• A parallel multi-objective NSGA-II algorithm is used to
select the best subset of features and the resulting set is
combined with the feature set of the autoencoder.

• The proposed algorithms are verified to be robust after
comprehensive experiments. There are small deviations
from the best solutions reported in literature.

• An efficient multi-objective ensemble method is intro-
duced to extract the most descriptive features of video
datasets. The Hamming-score is improved while the
minimum number of features is being used.

Section 2 provides information on recent studies.
Section 3 provides information on the related theoretical
background to the problem. The models proposed for the
selection of the features are described in detail and the
validation algorithms are explained in Section 4. The exper-
imental results of the proposed algorithms are evaluated and
discussed in Section 5. Our final remarks and future studies
are presented in the last section.

II. RELATED WORK
This section summarizes the algorithms in literature that
have been used for multi-objective feature selection and
multi-label classification. A feature selection method that
consists of a heuristic checklist that provides a basic road-map
by asking questions about features and labels is proposed
in [12]. A feature selection research for multi-objective opti-
mization algorithms that integrate genetic algorithms and
machine learning techniques is presented in [13]. A new
multi-label feature selection method in classification for
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a multi-objective Particle Swarm Optimization PSO algo-
rithm is presented in [14]. The NSGA-II and Evolutionary
Non-Dominated Radial Slots based algorithm (ENORA) is
reported in [15]. An algorithm to eliminate irrelevant, noisy
and redundant features during face recognition is developed
in [16]. A NSGA-II with Naive Bayes (NB) and SVM for
feature selection is proposed in [17]. A feature selection
approach based on the weighted relevancy is given in [18].
Three multi-objective feature selection methods for binary
classification problems with machine learning are proposed
in a recent study [19]. Proposed techniques consist of two
phases; feature subset selection and applying machine learn-
ing techniques for better accuracy prediction. 1-NN algorithm
as a classifier on NSGA-II algorithm for multi-objective fea-
ture selection are used in [20]. A multi-objective NSGA-II
feature selection algorithm for multi-label data classification
with Label Powerset (LP), Binary Relevance (BR), Classifier
Chain (CC) and Calibrated Label Ranking (CLR) is used
in [21].

A hybrid genetic algorithm with SVM on feature selection
for hyper-spectral image classification in order to get better
band combinationmeans to find irrelevant band combinations
with theminimal number of bands is developed in [22]. A fea-
ture selection algorithm, Reduced Pareto set Genetic Algo-
rithm with elitism (RPSGAe), with SVM is proposed in [23].
A multi-objective PSO for feature selection with Linear
Forward Selection (LFS) and Greedy Step-wise Backward
Selection (GSBS) methods is proposed [24]. A PSO algo-
rithm focused on performance metrics of multi-objective
optimization algorithms is developed [25]. In this study,
hyper-volume and two-set-coverage are investigated.
A Teaching Learning Based Optimization (TLBO) algorithm
for feature selection is proposed in [26]. In TLBO, the best
learners are selected as teachers and the remaining individuals
are called students. Pareto optimal results are reported as
candidate features for feature subset selection operation. The
selection of multi-label features using the ant-colony opti-
mization is studied in [27]. The authors use the multi-label
k-nearest neighborhood algorithm to evaluate the subsets
of features and compare them with some other approaches.
Additionally, an applied a multi-objective optimization algo-
rithm based on decomposition which is the Tchebycheff
method for the purpose of feature selection is developed
in [28]. The authors use multi-label benchmark datasets for
validation of the proposed feature selection approach. All
results are compared with other well-known multi-objective
optimization algorithms such as NSGA-II and PSO. A multi-
objective feature selection Artificial Bee Colony (ABC)
algorithm to maximize the classification performance and to
minimize the number of selected features is proposed in [29],
[30]. The ABC algorithm is reported to outperform other
methods in terms of both the dimensionality reduction and
the classification accuracy.

In recent years, ensemble feature selection techniques
have become popular. Among those, a comprehensive review
of ensemble feature selection techniques is presented [31].

An ensemble feature selection on medical datasets is devel-
oped [32]. They combine three types of feature selection
techniques (filter, wrapper, and embedded). As described in
their study, these three methods are combined and they show
that an average union and multi-intersection based ensemble
feature selection approaches perform better than those of sin-
gle feature selectors. They validate their methods with small
scale and also high dimensional datasets. There are some
other studies in the literature for ensemble feature selection
methods [33], [34].

The dimensionality of hand-crafted image features by
using deep autoencoders is reduced [35]. The authors use
fusion and transfer learning and perform training with
10,000 images from Yahoo Flicker Creative Commons
100M dataset. They create four deep-autoencoder models
with changing encoding-dimensions, starting from 32 up
to 256. This work hyper-parameters are stated as, batch size
950 with 350 epochs, the loss function is L1 (mean abso-
lute error) and the activation function is Rectified Linear
Units (RELU). While some feature sets yield better results
after features are used with autoencoder, some feature-sets
are yield as not appropriate for autoencoder dimensionality
reduction.

A distributed computation model to measure the quality of
each feature with respect to multiple labels on Apache Spark
is developed [36], [37]. A parallel algorithm with Graph-
ics Processing Units (GPU) for computing the multi-label
k-Nearest Neighbor classifier without any loss of accuracy
is presented [38]. Experiments verify that it is able to achieve
200 times speed-up compared to a sequential execution with
a single CPU.

Autoencoders with state-of-the-art dimensionality reduc-
tion algorithms on two different image datasets (Modified
National Institute of Standards and Technology and Olivetti
Face Datasets) are developed in [39]. PCA, linear discrim-
inant analysis (LDA), locally linear embedding (LLE) and
ISO map dimensionality reduction techniques are used dur-
ing the experiments. The autoencoders are observed to pro-
vide results competitive with state-of-the-art algorithms. The
autoencoders extract different structures than other methods.
This property works well on the repetitive structures on
simpler datasets. The number of hidden layer nodes should
be equal to intrinsic dimensionality to get the best perfor-
mance. Because this study is about images and pixel-wised
reproducible representations, dimensionality reduction with
autoencoder part and setting parameters (such as the number
of nodes in the hidden layer) is studied in our research. Fea-
ture selection by shallow autoencoders on 7 benchmark
datasets consisting of image and text data separately is devel-
oped in [40]. The authors report better solutions in most cases
when the results are compared with Laplacian Score (LS),
Multi-cluster Feature Selection (MCFS), Unsupervised Dis-
criminative Feature Selection (UDFS) and regularized
self-representation. Variational-autoencoder as an additional
optimizer for the encoders is proposed in [41]. The model
autoencoder consists of two stages. The first stage uses the
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optimization of feature subsets and the second stage is used
for shallow regularized autoencoder optimization concern-
ing the weights and biases. The proposed method based on
autoencoder is reported to give better results than other state-
of-the-art algorithms.

There are many types of autoencoders and depending on
the dataset, features, and correlations among labels, most of
the time it is observed that autoencoders have good perfor-
mance. Most models are created and evaluated on image data
but to the best of our knowledge, our research is unique in
that it uses image descriptors instead of pixel based images
directly.

III. AUTOENCODERS AND DIMENSIONALITY REDUCTION
The aim of an autoencoder is to learn a representation (encod-
ing) for input data, typically for dimensionality reduction,
by training the artificial neural network in an unsupervised
manner. During this process, the semantic structure of the
data is learned with smaller representations; therefore, it is
typically used for dimensionality reduction with synthetic
features that are created by optimizedweights and biases [42].
Information retrieval with dimensionality reduction was first
implemented by Hinton and Salakhutdinov for semantic
hashing in 2009 [43].

Autoencoders reduce the input dimension through the bot-
tleneck (i.e. code) layer to have a smaller size representation
of the actual data. They try to reproduce the input from
that bottleneck layer as output. The simplest autoencoders
are called vanilla autoencoders that contain only three layers
(input, bottleneck/code, and output layers). It can be thought
to be the skeleton of autoencoders in general. Mathemat-
ical representation of the autoencoder is stated in Equa-
tions 1 and 2. The function f refers to the encoder which
takes input X as the parameter and creates the code h. The
decoder function (g) takes as its an input the bottleneck
layer (h) to reconstruct the output layer (X̂ ) (as performed
by a similar version of the input layer (X )). Finally, this
similarity is measured by the loss function which is stated in
Equation 3.

h = f (x) (1)

X̂ = g(h) (2)

L(x, g(f (x))) (3)

Types of autoencoders are examined under two titles con-
sidering the output size of the encoders; under-complete
autoencoders and over-complete autoencoders [44].

A. UNDER-COMPLETE AUTOENCODERS
When the number of nodes in the code layer (the output
size for the encoder part of the autoencoders) is smaller than
the input layer, these autoencoders are called under-complete
autoencoders. As shown in the Figure 1, input, bottleneck,
and the output dimensionalities are represented as |X |, |h|,
and |X̂ | respectively. The autoencoder tries to copy input
to the output with learned coefficients and the size of the

FIGURE 1. General structure of under-complete autoencoder.

input dimension (|X |) is equal to the size of output dimension
(|X̂ |). Also, the size of the input dimension (|X |) is greater
than the size of the bottleneck layer (|h|) because the type of
the autoencoder is an under-complete autoencoder. The main
goal is to reduce the loss between the input and output, but it
should not be zero to avoid memorizing or copying the input
directly to the output. Therefore, the number of hidden layers
is smaller than the input.

B. OVER-COMPLETE AUTOENCODERS
For the over-complete autoencoders, the size of h might be
equal or larger than the size of input X . Figure 2 demon-
strates this structure. Over-complete autoencoders are pre-
ferred for classification purposes when the feature-set with
higher dimensional representation is required. The technique
of increasing the number of neurons to a higher dimen-
sionality than the actual feature-set is used for extracting
hidden structures in data with more significant features.
However, the model can memorize directly without gener-
ating structural identifications of the input data. In order to
avoid this situation, some regularization operations are used.
The types of regularized autoencoders are sparse autoen-
coders, denoising autoencoders, contractive autoencoders,
and regularized autoencoders with dropout. These are good
for under-complete autoencoders to create better reduced
dimensional representations.

C. REGULARIZATION FOR AUTOENCODERS
During the training of neural networks, it may be difficult to
learn the key features to be able to perform prediction on pre-
viously unseen validation data using the existing dataset due
to its unsuitability or small size. In addition to this, the model
that has been learned might not be good enough. In such
situations, some regularization techniques may be useful to
tackle the problem. The first regularization mentioned and
implemented in our study is the denoising autoencoder. The
denoising autoencoders are created to prevent over-fitting and
to extract better representations of the input data through the
bottleneck. Another method is dropout regularization which
is an extended version of the denoising autoencoder.
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FIGURE 2. General structure of over-complete autoencoder.

FIGURE 3. Dropout regularization for dimensionality reduction.

1) DROPOUT REGULARIZATION
In dropout regularization, some randomly selected nodeswith
all of its connections are dropped out with probability, p.
Since this probability parameter is a hyper-parameter to apply
dropout regularization, it should be tuned carefully. For most
of the problems, p=0.5 gives successful results [45]. This
regularization is applied to all hidden layers and the input
layer within the encoder part of the autoencoder in contrast
to the denoising autoencoder. In other words, while training,
some nodes are discarded with their weights and biases.
Therefore, efficient nodes from the high dimensional model
are selected and this method is used to prevent over-fitting
as denoising autoencoder. Figure 3 shows the structure of
the dropout regularization (nodes marked with X represent
dropped out nodes).

2) DENOISING AUTOENCODERS
are regularized forms of autoencoders to force the model for
better learning [46]. As shown in Figure 4, a specific rate
of noise is added to the input layer or randomly selected
nodes are blanked-out from the input layer. Later, the model
is trained through some noisy input so that the input is not the

same as the output as in regular autoencoders. The model of
the autoencoder is trained with this noisy input and forced to
avoid this noise. This process extracts better representations
for dimensionality reduction.

IV. MULTI-LABEL VIDEO DATA CLASSIFICATION
ALGORITHMS
In this section, we explain multi-label image and video
data classification algorithms, multi-objective NSGA-II,
autoencoders, and ensemble algorithms. Binary Relevance
(BR) [47], Classifier Chains (CC) [48], Pruned Sets (PS) [49],
and Random k-Labelsets (RAkEL) are used as multi-label
classification algorithms. Basic classifiers that are applied
for multi-label classification algorithms are SVM, LR, and
Decision Tree (J48).

To deal with multi-label classification problems, three
main approaches are applied: data transformation, method
adoption and ensemble-based classifiers [47]. For the data
transformation approach, the multi-label data is transferred
into multi-class or binary-class data, and then the problem
is solved with base classifiers and the results are combined.
The best known algorithms included in this study are BR,
CC, Label Powerset (LP) and PS. In the adoption approach,
the existing classification algorithms that solve multi-class or
binary-class problems are modified as its multi-label version.
Therefore, each algorithm has a different and unique solu-
tion in the method adoption approach. The third approach
ensembles the algorithms used in this study and uses the
advantage of assembling these algorithms. The well-known
ensemble multi-label classifier is RAkEL that involves both
BR and LP.

NSGA-II is a classical population-based multi-objective
algorithm developed by Deb et al. [11]. We implement the
parallel version of this algorithm for the experimental com-
parisons of our proposed algorithms (autoencoder and ensem-
ble algorithms). The NSGA-II algorithm starts with a random
initial population of chromosomes. Each chromosome has a
selected set of features for a given dataset. Non-dominated
sorting operation is performed by considering the Pareto-
fronts. Individuals in smaller fronts have higher priorities.
The binary tournament method is applied to generate a new
population. At each crossover and bit-flip mutation opera-
tions, two new children are generated. Only the best half of
the individuals is used to breed a new population. Individuals
with worse fitness values are eliminated.When the maximum
number of generations has been produced, the algorithm
terminates [11]. The pseudocode of the NSGA-II algorithm
is provided in Algorithm 1.

The evaluation metrics used for multi-class or binary clas-
sification cannot be used directly for multi-label classifica-
tion. The accuracy of the labels must be taken into account
in the label set. In this way, Hamming loss is a sample-based
metric that is used primarily. The loss measure is calculated
for each instance and an average value is calculated. The
symmetric difference (1) is found between the prediction and
the actual label sets for all labels per instance (Equation 4).
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FIGURE 4. Denoising autoencoder structure (h represents bottleneck and a represents
hidden layer(s) of autoencoder).

Algorithm 1: The Pseudocode of NSGA-II
#gen: number of generations;

P← generate an initial population randomly;
S← {} // set of evaluated chromosomes

for i← 1 to #gen do
foreach u in P do

if u does not exist in S then
u.objective1← #selected features;
u.objective2← HammingScore(u,mca);
S← S ∪ {u};

else
u.objective← S[u].objective;

end
end
P← NSGA-II (P) //generate a new population

end

return ParetoOptimalSolutions(P);

Then, it is normalized according to the number of instances
and the number of labels [47].

HammingLoss =
1
n
1
k

n∑
i=1

| Yi1Zi | (4)

Deep denoising autoencoder: Autoencoders are well-
known architectures due to their efficiency in dimensionality
reduction. We use an under-complete deep autoencoder with
10 encoder layers and 10 decoder layers for the solution
of our problem. All of the layers in encoder and decoder
are fully-connected (dense) with additional dropout layers to
avoid overfitting. Encoder and decoder layers are symmetric
for both the number of nodes and layers. This structure is

preferred based on the implementation of autoencoders with a
similar purpose as in the study of Petscharnig et al. [35]. Since
our aim is to learn latent space features while reconstructing
the input, sharing weights in this way is more reasonable.
In addition to this, we work on SIFT and Segmentation-based
Fractal Texture Analysis (SFTA) local image descriptors,
while the features are being extracted. Data is turned into ’flat
images’. Because of this, autoencoder layers are selected as
’dense’ layers.

After the training and testing processes are performed
on our autoencoder model, latent space representation is
extracted as reduced dimensional synthetic data. After being
sure about the number of layers in our deep autoencoder,
we create a 10-layered network that has symmetrical layers in
encoder and decoder. Since the number of nodes is reduced
in the code layer, all intermediary layers are candidates for
being latent space representation. Through this perspective,
all reduced dimensional representations are extracted to com-
pare as shown in Figure 5. We have created ten different
autoencoders with varying numbers of layers.

Figure 6 shows our autoencoder model that is config-
ured for both datasets concerning the number of layers. Ten
encoder layers as Dense with RELU activation and dropout
layers with 0.5 probability. The number of nodes for each
layer is changed. For theMirFlickr dataset that has 42 features
originally, the number of nodes starts from 38 to 2 as the
bottleneck. For WMS dataset with 100 features, the number
of nodes starts from 90 to 10 up to the code layer in the bottle-
neck and it is selected as 5. These values (bottleneck values)
are selected in this way like the nodes of the code layer are
decided for the general number of selected features from the
NSGA-II. Other layers are distributed concerning the code
and the input sizes. Denoising autoencoder is implemented
for the same structure.
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FIGURE 5. Reduced dimensional representation extraction on
autoencoder.

Parallel multi-objective evolutionary algorithms are
efficient tools for the optimization of NP-Hard
problems [50], [51]. The performance of the optimization
can be considerably improved by using a well-grained par-
allel calculation of chromosomes with intelligent operators
(mutation and crossover). The fitness calculation of the
chromosomes in this study requires a lot of time because
of the applied machine learning techniques. This process
prevents the exploration of more subset of features of selected
elements. Therefore, we implement a Parallel-NSGA-II algo-
rithm [52]. The proposed algorithm by Multi-Objective Evo-
lutionary Algorithm (MOEA) framework keeps a population
at the memory of the master processor and calculates the
fitness values of the chromosomes at each slave processor.
Since the calculation of the accuracy with a selected number
of features is well-grained, it is observed that this paral-
lelization technique of the conventional NSGA-II gets an
almost linear speed-up during the experiments. It is possible
to calculate a larger number of fitness values and obtain better
results than the standard (serial) version of the NSGA-II
algorithm.

V. PERFORMANCE EVALUATION OF THE ALGORITHMS
The experiments are performed on a computer with 8 core
64-bit CPU (I7-3632QM, 2.20GHz). The algorithms are
developed with Java programming language and the MOEA
framework [52]. Multi-label machine learning algorithms
are implemented with MEKA (a multi-label extension of
Waikato Environment for Knowledge Analysis (WEKA)
machine learning toolkit) [53]. Deep autoencoder is

implemented in Python programming language with Keras
library that uses Tensorflow backend.

Multi-label machine learning algorithms are selected
from a rich set of multi-label classification approaches.
Data-transformation approaches based on multi-class
and binary classification problems and ensemble-based
approaches are applied. Additionally, some recent versions of
the algorithms are applied on the datasets and by considering
the results based on both the execution time and the success
of the algorithms, BR, CC, PS, and RAkEL are selected as
multi-label classification algorithms.

In our experiments, two multi-label video/image datasets
are used to verify the algorithms. The first dataset is the
most widely used and publicly available image dataset
MIR-Flickr [54]. This dataset consists of 25,000 images.
Important features of the dataset are extracted in a study
by Costa et al. [55]. This feature set that is extracted with
the Segmentation based Fractal Texture Analysis (SFTA)
algorithm is used in our experiments. This extraction creates
binary images with binary stack decomposition. Extracted
features are transformed into vectors as feature sets [56].
There are 42 features in MIR-Flickr dataset and at most
23 labels for each image (Car, Bird, Lake, Night, Water,
Sky, People, Baby, Clouds, Tree, Portrait, Dog, Animals,
Female, Transport, Flower, Indoor, Male, Food, River, Struc-
tures, Sea, Sunset). The labels and the correlations between
the labels are presented in Figure 7. With respect to the
correlation chart, the most correlated labels are people and
males, sky and clouds. Some interesting correlations are
revealed such as baby and sky exist together in almost all
samples of a baby. The night and male join have occurred
in half of the night samples. Since this dataset has many
aspects and repetitive structures are rare, the number of
unique label-sets is 390 and the maximum occurrence for a
label-set is 37 with labels; structures, sunset, transport, and
indoor.

The second dataset is created by recording videos using the
WMS dataset that is designed for our earlier research. The
recorded video files are split into five-second shots and all
of the objects are identified by a human user and manually
annotated as ground truth. There are three possible labels
(person, group of people and vehicle). After the annotation
process is completed, SIFT features are extracted based on
key-point localization of objects [1]. The implementation
is done using OpenCV library and the Python program-
ming language [57]. Once the SIFT features are produced,
the codebook is constructed to obtain a dictionary of visual
words. During the construction of the codebook, the k-means
clustering algorithm is applied to determine the centroids.
Then, L1 normalization is applied to obtain the final version
in the form of 100 bags of visual words for each frame.
The data is extracted from 3-minute videos and 1000 video
frames are used for feature extraction. Figure 8 shows the
correlation between labels. Most correlated labels are person
and groups of people. A person and a vehicle exist together
for nearly 80% of vehicle object samples. Additionally, since
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FIGURE 6. Autoencoder model for MirFlickr datasets.

FIGURE 7. Labels and the chart of correlations for MIR-Flickr dataset.

tree labels are available in the WMS dataset, 8 label-sets
occur and the most correlated labels are person and vehicle
with 70 samples.

The results reported here are the averages of five execu-
tions with five-fold cross-validation. This method is used
to minimize the impact of random factors. The dataset is
divided into five equal-size partitions and four of them are
used for training. The remaining partition is used for testing.
The average of these five executions is the final accuracy
value. This is one of the most common techniques in the liter-
ature to evaluate the predictive accuracy of machine learning
algorithms. The parameters used in the experiments for the
NSGA-II algorithm are presented in Table 3. These parame-
ters are decided after comprehensive experiments. The pro-
posed method is sensitive to its parameters. We use the best

FIGURE 8. Labels and the chart of correlations for WMS dataset.

parameter settings of NSGA-II that have been provided by
previous studies.

Ensemble feature selection uses multi-label classification
algorithms. All algorithms are selected considering differ-
ent types of multi-label classification approaches. Methods
BR and CC are used for binary data transformation and
for multi-class data transformations PS is used. The Ran-
dom k Labelset algorithm is implemented as an ensemble
multi-label classifier, which is one of the state-of-the-art
ensemble multi-label classifiers. In order to observe the per-
formance difference between classic multi-label classifica-
tion methods and state-of-the-art ensembles for multi-label
classification, EnsembleML is implemented with widely
used multi-label classification library, Meka. All other
four implemented multi-label classification algorithms are
implemented in ensemble version and results are repre-
sented in Tables 1 and 2 for WMS and MIR-Flickr dataset
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FIGURE 9. Setting the number of layers and the results of the algorithms for MirFlickr dataset (The results of the PS-LR are not added
due to its long execution time).

TABLE 1. Ensemble Multi-label classification performances on WMS
dataset considering both Hamming-score and execution time.

TABLE 2. Ensemble Multi-label classification performances on MIR-Flickr
dataset considering both Hamming-score and execution time.

respectively. For all results, five-fold cross validation is
applied and J48 decision tree algorithm is used as a base
classifier.

Tuning the parameters of an autoencoder has an important
effect on its performance. Since an autoencoder is a neural
network, the number of layers and the number of nodes in
each layer should be set properly for the model. The method

TABLE 3. Parameter settings for the NSGA-II algorithm (N is the number
of individuals in the population).

explained in Section IV with Figure 5 is applied to select the
number of layers and the termination condition. As a result of
this operation, the bottleneck layer with 2 nodes and previous
5 layers with 6, 10, 14, 18, and 22 nodes are trained and
reduced dimensional features are extracted from these layers
for the MirFlickr dataset. Other layers are not tested because
accuracy is decreased with earlier layers. With respect to
the results displayed in Figure 9, layer-10 is selected. This
layer which is also a bottleneck (the least number of nodes)
of the model with 2 nodes provides better results. Addition-
ally, a similar methodology is applied on WMS dataset and
again 10 layers are used to detect the required number of
layers. The results are given in Figures 10, 11, 12, and 13
for the BR, CC, PS, and RAkEL algorithms respectively.
Concerning these results, Layer-6 with 40 nodes and Layer-5
with 50 nodes are selected. Layer-2 has good results but the
number of features is too high for a dimensionality reduction.

Since implemented autoencoder is under-complete and
aims dimensionality reduction, the number of nodes is started
at a value smaller than the number of input features and it
is reduced through bottleneck which is determined in the
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FIGURE 10. Setting the number of layers, the results of the BR algorithms
for WMS dataset.

FIGURE 11. Setting the number of layers, the results of the CC algorithm
for WMS dataset.

FIGURE 12. Setting the number of layers, the results of PS algorithm for
WMS dataset.

previous step. Since MirFlickr dataset has 42 features,
the number of nodes of the first layer is started from 38 and
reduced by 4 at a time until it becomes 2. Similarly, WMS
dataset has 100 features. The number of nodes in the first
layer is started from 90 and reduced by ten until the bottle-
neck. The bottleneck has 5 nodes for this model.

By tuning the layers and number of nodes for Mir-
Flickr dataset, 10 layers are selected with encoding-
dimension 2. For WMS dataset, 5 layers are selected with
encoding-dimension 50.

FIGURE 13. Setting the number of layers, the results of the RAkEL
algorithms for WMS dataset.

TABLE 4. Selected parameters for the MirFlickr and WMS datasets.

The activation function, optimizer, learning rate, loss
function, batch size and the number of epochs are also
tuned experimentally. Adam [58] and Stochastic Gradi-
ent Descent (SGD) are used optimizers with 0.1, 0.01,
0.001 learning rates (See Figure 14).

Sigmoid and RELU are applied as loss functions, mean
absolute error and mean squared error respectively to select
best-fitted parameters as activation functions. 32, 128 and
256 batch sizes are tried on both datasets. For Mir-
Flickr and WMS datasets, 100 and 300 epochs are applied
respectively. Parameters used for both datasets are given
in Table 4.

A. THE RESULTS OF THE DENOISING AUTOENCODER
In order to analyze the effect of another type of regularization
than the dropout, denoising autoencoder is examined. All
parameters remain the same as in the dropout regularized
autoencoder. Dropout layers are omitted and noise is added
to the input layer in different noise levels.

For WMS dataset denoising autoencoder is applied with
varying noise factors 0.3, 0.5, 0.8 and results are given
in Table 6. When average execution results are consid-
ered, 0.5 is selected as the best noise factor. However,
varying all different noise factors, denoising autoencoder
results are not better than those of dropout regularized
autoencoder.

The same experiments are applied on the MIR-Flickr
dataset and results are given in Table 7. When the noise factor
is selected as 0.5, six (6) algorithms have better performance
than the noise factor selection of 0.8 and the results of five (5)
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FIGURE 14. Applied different learning rates and the results of the parameter tuning experiments.

TABLE 5. The execution times of denoising and dropout regularized
autoencoders in seconds.

TABLE 6. The results of the denoising autoencoder with noise factors 0.3,
0.5, 0.8 and comparison with dropout regularized autoencoder with WMS
dataset. (NF is Noise Factor).

algorithms are better than those with 0.3. If themean averages
of different noise factors are compared, the best selection
does not change. For this dataset, the dropout regularized
autoencoder performs better than denoising autoencoder. The
difference between results on denoising and dropout regular-
ized autoencoders is less than that is observed on the WMS
dataset. As a result, since the dropout regularized autoencoder
performance is better than denoising autoencoder for both
datasets, dropout regularized autoencoder is used in the other
experiments using ensembling.

TABLE 7. The results of the denoising autoencoder with noise factors 0.3,
0.5, 0.8 and comparison with dropout regularized autoencoder for
MIR-Flickr dataset. (NF is Noise Factor).

The execution times of denoising autoencoder and dropout
regularized autoencoder are presented in Table 5. Mainly,
dropout regularized autoencoder takes slightly more exe-
cution time than denoising autoencoder since dropout reg-
ularization is applied on each hidden layer but denoising
autoencoder uses only the input of the model. Although
the execution times of both autoencoders are not much
different, when compared with the NSGA-II, autoencoder
takes much less execution time. While autoencoder takes
0.80 seconds on average for MIR-Flickr dataset, NSGA-II
takes a minimum of 20 minutes for the execution of a
generation in the average with parallel implementation.
The execution time of our ensemble approaches used in
this study changes depending on the number of ensembled
features.

The computational complexity of the algorithms mainly
depends on the performance of the machine learning algo-
rithms. The techniques used in this study are polynomial
time processes. The cross validation is another reason of the
long execution times. Training period of the datasets with
many features takes longer times than the execution time of
smaller feature sets. NSGA-II has a termination condition
that depends on the number of the generations and autoen-
coders work with the number of epochs. These are the main
parameters for the cost effectiveness of the proposed methods
in our study.
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TABLE 8. Overall results for WMS dataset with autoencoder and ensembled NSGA-II and autoencoder. (HS is Hamming-score, #Feat is Number of
Features). Algo-I is NSGA-II-BRJ48 & AE-40, Algo-II is one more step optimization of Algo-I results with NSGA-II, Algo-III is NSGA-II-BRSVM & AE-50,
Algo-IV is one more step optimization of Algo-III results with NSGA-II (NA stands for Not Available).

B. HETEROGENEOUS ENSEMBLE APPROACH FOR
FEATURE SELECTION
There are two types of feature selection ensembles, homoge-
neous and heterogeneous [31]. In the homogeneous approach,
the same feature selection algorithm is applied on differ-
ent subsets of data and the results of all the subsets of
features obtained using the same algorithm are aggregated.
In the heterogeneous approach, there are multiple feature
selection algorithms applied on the same dataset. After all
of the feature selection algorithms are applied and reduced
dimensional feature-sets are recorded, all of these results are
ensembled.

We implement heterogeneous approach for the feature
selection (See Figure 15). We use two different feature selec-
tion algorithms in our proposed approach. Since autoencoders
are used for dimensionality reduction, latent space represen-
tation of the implemented autoencoder model is saved as
the produced synthetic features from actual input. On the
other hand, features discovered by the genetic algorithm are
saved for a result of heterogeneous ensemble feature selection
scheme. The collection of this new feature-set is given as
input to the genetic algorithm for the next step of optimiza-
tion.

C. THE COMPARISON OF AUTOENCODER RESULTS AND
ENSEMBLE WITH NON-DOMINATED SORTING GENETIC
ALGORITHM-II
After having the results of the NSGA-II algorithm, one of the
most popular dimensionality reduction algorithms from the
aspect of deep neural networks, autoencoder is tested. Table 8
presents the overall results of WMS dataset based on the
autoencoder and ensemble of NSGA-II and autoencoder. For
all steps, the number of features and hamming-score values
are stated. BR algorithm does not perform well with reduced
dimensional autoencoder features as image descriptor fea-
tures usedwith theNSGA-II algorithm.Almost all algorithms
have better results considering both objectives which are the
number of features and Hamming-score.

FIGURE 15. Proposed Heterogeneous Ensemble Feature Selection
Schema.

We concatenate reduced dimensional datasets that are gen-
erated from autoencoder and NSGA-II algorithms. Two dif-
ferent merged datasets are revealed. By selecting the subset
of datasets generated by the NSGA-II algorithm to merge,
different aspects are applied. The first one selects the subset
considering the Pareto-optimal results which are selected
as BR-J48 algorithm with 14 features, and the second one
selects subset considering the highest Hamming-score which
is BR-SVM with 42 features. Then the selection of reduced
dimensional representations by autoencoder is performed
in the selection of the number of layers. These combina-
tions are merged and MLC machine learning algorithms are
applied to evaluate newly merged datasets. Since features
are generated with results of BR and J48 algorithms for the
first merged dataset, BR and J48 algorithms are not applied
again. These rows are represented as NA. Similarly, BR and
SVM algorithms are used when the dataset is created for
Algo-III. Because of this reason, these algorithms are not
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TABLE 9. Overall results for MirFlickr dataset with autoencoder and ensembled NSGA-II and autoencoder. (HS is Hamming-score, #Feat is Number of
Features). Algo-V is NSGA-II-CCJ48 & AE-2, Algo-VI is NSGA-II-BRJ48 & AE-2, Algo-VII is one more step optimization of Algo-VI (NA stands for Not
Available).

used for validation of the Algo-III and Algo-IV and repre-
sented as NA.

For the final stage, the results of these merged algorithms
(Algo-I and Algo-III) are applied on NSGA-II again for
one more optimization step. The results of both algorithms
(Algo-II andAlgo-IV) are improved in terms of the number of
features and Hamming-score when compared to the previous
step considering all objectives on 6 MLC machine learning
algorithm combinations.

Table 9 presents the overall results of MirFlickr
dataset based on autoencoder and ensemble version with
NSGA-II. Similar operations are performed for MirFlickr
dataset. The results of 5 algorithms are improved when
compared with NSGA-II. CC-J48 with 6 features are con-
catenated with autoencoder model that has 2 dimension
(Algo-V) and similarly, BR-J48 with 6 features are con-
catenated with autoencoder with the encoded dimension-2
(Algo-VI). Since Algo-VI results are better than Algo-V,
one more step optimization is applied on Algo-VI with
NSGA-II. The best results are recorded by RAkEL algorithm.
All of applied MLC machine learning algorithm results are
improved with autoencoder, Algo-V, Algor-VI and Algo-VII
when compared to before feature selection and previous
steps.

In conclusion, autoencoder based dimensionality reduction
performs better on a dataset that is simple and includes repet-
itive structures and fewer labels, as in WMS dataset [39].

D. THE RESULTS OF CORRELATION BASED FEATURE
SELECTION, INFORMATION GAIN, PRINCIPAL
COMPONENT ANALYSIS ALGORITHMS
Our algorithms are also compared with PCA, IG, and CBFS.
PCA is a linear dimensionality reduction technique that uses
linear mapping via covariance or correlation relationship
between features. Though variance of the low dimensional
data is maximized and by using eigenvectors, most related

features arise. This algorithm is based on a study by Pear-
son [59]. This supervised dimensionality reduction technique
is revised in a book by Jolliffe [60]. The other implemented
algorithm is IG, which is used for splitting decision trees but it
is also a popular feature selection technique. The difference
between the entropy of dataset D and the weighted sum of
selected subset entropies is calculated as the information gain
and the highest is selected as the strongest feature. For this
purpose, searching is performed via ranking all attributes.
Multi-label classification techniques are used while applying
IG on multi-label data. Binary relevance based IG results
are evaluated on other multi-label classification algorithms.
The last feature selection algorithm we use is CBFS. It is
a filter-based feature selection algorithm and ranks features
by a heuristic evaluation function given in Equation 5. The
average class-feature correlation is represented as rcf . rff
represents the average feature-feature correlation where k
represents the number of features. The subsets are evaluated
considering feature-feature and feature-class correlations of
all features. Termination is performed by the ’best-fit’ search
method. If five consecutive subsets are not improved over the
current best subset, then searching is terminated.

µs =
krcf√

k + k(k − 1)rff
(5)

The algorithms are evaluated on both datasets.
Tables 10 and 11 present the results onWMS andMIR-Flickr
datasets, respectively. For both datasets, BR, CC, PS, and
RAkELmulti-label classification algorithms are applied with
base classifiers J48 decision tree, SVM and LR on new
reduced subsets.

For the WMS dataset, similar results are recorded.
Our proposed feature selection approach has further
optimized ensemble feature selection. With NSGA-II
(Algo-IV), the results are 0.7983 Hamming score with 22 fea-
tures on the CC-J48 algorithm combination. CBFS can reach
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TABLE 10. The results of CBFS, IG, and PCA algorithms on WMS Dataset.

TABLE 11. The results of CBFS, IG, and PCA algorithms on MIR-Flickr
Dataset.

0.7520 Hamming-score and IG has 0.79200 Hamming-score.
PCA has the worst results (see Table 10).

With MIR-Flickr dataset, our proposed feature selection
approach, which is further optimized ensemble feature selec-
tion, NSGA-II (BR-J48 & AE) (Algo-VII) has reached
0.8678Hamming-score valuewith one feature.With the same
algorithm combination, CBFS reports 0.86335 Hamming-
score value with 17 features, IG reports 0.86265 with the
same number of features and PCA has better results than both
CBFS and IG (see Table 11).

The results obtained by our final approach include fur-
ther optimization of the ensemble feature selection algo-
rithms (Algo-II, Algo-IV for the WMS dataset, Algo-VII for
the MIR-Flickr dataset). All the results are better for three
algorithms out of five compared to the results of the autoen-
coder. However, the genetic algorithm (NSGA-II) gives bet-
ter results than the autoencoder for the MIR-Flickr dataset.
However, the autoencoder results on the WMS dataset are
better than NSGA-II in eight out of twelve algorithms, since
the WMS dataset includes many repetitive structures and the
number of possible labels or the number of objects that should
be found in the frames is not high, unlike the MIR-Flickr
dataset. As far as the selection approaches of ensemble
feature selection (Algo-I and Algo-III) are concerned, they

work much better than the genetic algorithm (NSGA-II)
and autoencoder. Finally, by applying further optimization
on the selection of ensembled feature sets, we obtain the
best results from these optimized algorithms (Algo-II and
Algo-IV). In addition, Algo-IV improves the results for five
out of six algorithms, as shown in Tables 6 and 7.

In order to show the significance of our algorithms,
we run the algorithms many times and we obtain small
deviation thorough these tests. Algo-III has 0.9% devia-
tion with CC-J48, 0.5% deviation with CC-LR, 0.7% with
PS-J48, 0.6% deviation with RAkEl-LR on WMS dataset
and has 0.05% deviation with CC-LR, 0.01% deviation with
PS-SVM, 0.02% with RAkEl-LR MIR-Flickr Dataset. The
deviations are less than 1% in the average.

Additionally, t-tests are performed to verify the signifi-
cance level of the proposed algorithms. α is selected as 0.05
(5%) for both datasets and the resulting value is obtained as
0.000092 after the experiments. All values are better than
0.05 so the results are decided to be statistically significant.

VI. CONCLUSION
We analyze the performance of multi-label video data classi-
fication algorithms through feature selection techniques. The
multi-objective evolutionary NSGA-II is used for the feature
selection process and autoencoders with regularizations as
denoising autoencoder and drop-out regularization are imple-
mented. An under-complete autoencoder is implemented for
dimensionality reduction with two different techniques. The
first one is denoising autoencoder, which is based on adding
in a certain amount of noise to the input image for better
learning through the output and the second one is dropout
regularization before every hidden layer in encoder part for
similar purposes with the denoising autoencoder. The number
of layers is determined with a heuristic approach. A dimen-
sionally reduced sub-set of data is extracted after all ten
hidden layers. For MIR-Flickr dataset 10th layer has better
performance than others. However, for WMS dataset 5th

layer gives better results. Other parameters such as optimizer,
activation function, learning rate are also set.

The reduced dimensional feature sets that are extracted
with both dropout regularized autoencoders and NSGA-II are
ensembled. The ensemble of these combined feature-sets is
evaluated. Our proposed method which is based on ensem-
ble feature selection using deep autoencoder and NSGA-II
with two-step optimization is performed for the first time
in the literature to the best of our knowledge. Additionally,
for ensemble feature selection, deep autoencoders are not
used before. When the results are discussed, our proposed
method has competitive results compared to state-of-the-art
algorithms and feature selection algorithms without applying
ensembling. Our proposed method provides better results on
the WMS dataset that has repetitive structures and a limited
number of labels. The Hamming score is increased while
the number of features is reduced during the multi-objective
optimization. The algorithms succeeded in obtaining the sets
of optimal Pareto solutions.
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Algorithms CBFS, IG, and PCA can provide good results
but NSGA-II has the best results with the longest execution
times. Pareto optimal solutions of autoencoders have almost
the same results with NSGA-II. But with less execution time
and fewer number of features in the average. The proposed
method provides (near)-optimal solutions. The exact solution
(finding the optimal subset of features) is NP-Hard and its
algorithm is not reasonable.

The proposed algorithms can be used for the classification
of images, social media resources, videos, patients, texts, and
audio files. In the future, new algorithms can be executed on
more powerful parallel computing machines. Increasing the
number of generations and exploring with diverse popula-
tions can yield better results. Other multi-label classification
problems with diverse image feature descriptors can be used.
Different types of autoencoders and multi-objective feature
selection algorithms can also be developed with other possi-
ble ensemble feature selection techniques.
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