
Master Thesis

Implementing a Computer Player for Abalone

using Alpha-Beta and Monte-Carlo Search

Pascal Chorus

Master Thesis DKE 09-13

Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science of Artificial Intelligence at the Department of Knowledge

Engineering of the Maastricht University

Thesis committee:
Dr. ir. J.W.H.M. Uiterwijk

Dr. M.H.M. Winands
M.P.D. Schadd, M.Sc.
J.A.M. Nijssen, M.Sc.

Maastricht University
Faculty of Humanities and Sciences

Department of Knowledge Engineering
Master Artificial Intelligence

June 29, 2009

ii

Preface

This master thesis was written at the Department of Knowledge Engineering
of Maastricht University. It is the result of a research project done in the area
of Artificial Intelligence. The goal was to implement an effective and efficient
computer player for the board game Abalone. During the work alpha-beta
search and Monte-Carlo search were investigated as possible approaches for
implementation.

I would like to thank some people that helped me during my work on this
thesis. First of all I thank my supervisor, Dr. ir. Jos Uiterwijk, for his guidance
during the whole project. He always gave me new ideas and important advices.
Thank you for reading and commenting the thesis and for the discussions during
our meetings and your lectures Games and AI and Intelligent Search Techniques.

Furthermore, I would like to thank Dr. Mark Winands who was involved in
both courses mentioned above. Thanks for the useful information and impulses
you gave in the lectures and talks.

Pascal Chorus
Aachen, June 29, 2009

iii

iv

Abstract

For over 3000 years board games are played by humans. They play against each
other to have fun and to train their strategical thinking.

Since the computer was invented people do not only play board games
against each other, but also against computer players. Many games that we
know today are available as a computer version. On the other hand, there still
exist recent games that are not analyzed very detailed.

One of these games is Abalone. It was invented in 1987. Nowadays it is very
popular. Tournaments are played regularly, but until now there is not much
research done in this game.

This thesis focuses on the implementation of an effective and efficient com-
puter player for Abalone. At the beginning of the thesis the game Abalone is
introduced. Also, its state-space complexity and game-tree complexity are given
and compared to other games.

After that the two algorithms that were implemented and tested for play-
ing Abalone are described in detail. The first one is alpha-beta search. To
strengthen its performance some improvements were implemented for it, namely
several move-ordering techniques, a transposition table and quiescence search.
The second algorithm that was investigated is Monte-Carlo search. Two im-
provements were implemented for it: depth-limited simulated games and a so-
phisticated evaluation of the outcomes of the simulated games.

It turned out that the alpha-beta search performs much better. The imple-
mented extensions all advanced the player to varying degree.

The alpha-beta player is able to challenge advanced human players.

v

vi

Contents

Preface iii

Abstract v

Contents vii

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Board Games . 1
1.2 AI used in Board Games . 2
1.3 AI and Abalone . 3
1.4 Problem Statement and Research Questions 4
1.5 Outline of the Thesis . 4

2 Abalone 7
2.1 Basics . 7
2.2 Possible Moves . 7
2.3 Sumito Moves and Special Situations 8

3 Analysis of Abalone 13
3.1 Basics . 13
3.2 Complexity . 13

3.2.1 State-Space Complexity 14
3.2.2 Game-Tree Complexity 14
3.2.3 Comparison with other Games 15

4 Algorithms 17
4.1 Alpha-Beta Search . 17

4.1.1 Minimax Algorithm . 17
4.1.2 Alpha-Beta Pruning . 19
4.1.3 Improvements . 21

4.2 Evaluation Function . 27

vii

4.3 Monte-Carlo Search . 30
4.3.1 Basic Monte-Carlo Search 30
4.3.2 Improvements . 33

5 Experiments and Results 35
5.1 Alpha-Beta Search . 35

5.1.1 Move Ordering . 35
5.1.2 Killer Moves . 39
5.1.3 Transposition Table . 40
5.1.4 Quiescence Search . 40
5.1.5 Evaluation Function . 41

5.2 Monte-Carlo Search . 43
5.2.1 Simulated Games using Random Move Players 43
5.2.2 Evaluation of Simulated Games 44

5.3 Comparison of Alpha-Beta Search and Monte-Carlo Search . . . 44
5.4 Comparison of Alpha-Beta Search and Another Program 45

6 Conclusions and Future Research 47
6.1 Answering the Research Questions 47
6.2 Answering the Problem Statement 48
6.3 Future Research . 49

Bibliography 53

A Belgian Daisy Sample Game 55

B Standard Position Sample Game 59

viii

List of Tables

3.1 Board games and their complexities 15

5.1 Evaluation function . 36
5.2 Move Ordering: Investigated nodes Standard formation 37
5.3 Move Ordering: Investigated nodes Belgian Daisy 37
5.4 Move Ordering: Investigated nodes mid-game position 38
5.5 Iterative Deepening Move Ordering: Investigated nodes Standard

formation . 38
5.6 Iterative Deepening Move Ordering: Investigated nodes Belgian

Daisy . 39
5.7 Iterative Deepening Move Ordering: Investigated nodes mid-game

position . 39
5.8 Killer Moves: Investigated nodes Standard formation 40
5.9 Killer Moves: Investigated nodes Belgian Daisy 40
5.10 Killer Moves: Investigated nodes mid-game position 41
5.11 Transposition Table: Investigated nodes Standard formation . . . 41
5.12 Transposition Table: Investigated nodes Belgian Daisy 42
5.13 Transposition Table: Investigated nodes mid-game position . . . 42
5.14 Played games using quiescence search 43
5.15 Monte-Carlo player: Numbers of simulated games 43
5.16 Comparison of basic and improved Monte-Carlo player 44
5.17 Alpha-Beta player vs. Monte-Carlo player 44
5.18 Played games between AIBA and ABA-PRO 45

A.1 Belgian Daisy sample game . 56

B.1 Standard position sample game 59

ix

x

List of Figures

2.1 Standard position . 8
2.2 Belgian Daisy position . 8
2.3 Sample inline move . 8
2.4 Sample broadside move . 8
2.5 Sumito situations . 9
2.6 Pac(-like) situations . 10
2.7 Ejecting move . 10
2.8 Coordinate system for notation 11

4.1 Sample minimax tree . 18
4.2 Sample minimax tree after alpha-beta pruning 19
4.3 Position after player 1’s second move 23
4.4 Using a value of a previous transposition 24
4.5 Game position with best attacking value for the black player . . 30
4.6 Example game position . 31

A.1 Position after ply 36 . 57
A.2 Position after ply 66 . 58
A.3 Position lost for Black after ply 96 58

B.1 Position after ply 60 . 60

xi

xii

Chapter 1

Introduction

In this chapter an introduction to games is given. First of all, board games
are introduced together with some well-known examples. Afterwards, the use
of artificial intelligence in board games and especially in Abalone is discussed.
Finally, the problem statement and the research questions are formulated and
an outline of the remaining thesis is given.

1.1 Board Games

Since humans live in civilization, they play games. Games are amusement and
they bring people together, make them forget about their real-life problems for
hours and entertain them. The first mentionings of board games go back to
3500-3000 BC. The Egypts invented some games then. Investigators figured out
that the famous game backgammon was mentioned for the first time already
3000 BC in the Burnt City of Iran [12]. Over the years more and more games
were invented [16]. To mention only some well-known of them [28]:

Backgammon A similar ancestor of backgammon was invented between 476
and 481.

Chess Predecessors were invented in the early 6th century, modern chess as it
is known today was invented in 1475.

Reversi Invented in 1883-1884.

Halma The origin of Chinese Checkers, invented in 1883.

Checkers Ancestor called Alquerque was invented in 600 BC. Modern checkers
invented in the 12th century when the rules of Alquerque were combined
with an 8× 8 game board [26]

Go Invented about 500 BC.

Monopoly Invented in the early 1930s.

1

Nowadays board games are still famous. The variety of different games
increases more and more and goes from card games and games with dice to
more extensive board games that can contain pawns, tiles, dice and cards. To
play these games is of course great fun, but it is also a competition between the
players. One’s goal is to challenge the opponents and to beat them by working
out sophisticated and clever strategies. Often the game contains aspects of
chance, e.g. rolling dice or taking a card from a deck. One cannot foresee
exactly what will happen. Thus, the game can even get more exciting.

A particular category of games are the so-called classic board games. These
are two-player games in which both players have perfect information, i.e. there
are no hidden cards or some other hidden information. Another important as-
pect is that they do not contain any actions based on luck. Thus, the players
have absolute control over their actions. Mostly, the whole game can be de-
scribed in some sentences. The rules are simple. Nevertheless, the number of
different possible moves is high which makes the game complex and challenging.
Famous examples of such games are chess and Go.

1.2 AI used in Board Games

Since the computer was invented (between 1940 and 1950) people try to make
computers play games. In 1950 Claude Shannon [21] and Alan Turing [22] came
up with first ideas to build a chess computer. From then on research in the area
of computers playing games has continued to date. People tried to implement
computers that can act in a humanlike fashion, i.e. they can reason about
their possibilites and make decisions that let them appear as intelligent players.
Since computers get faster and cheaper the preconditions for research projects
are easier to fulfil. Today one can find several approaches for playing agents for
a variety of games. Still chess is one of the most famous games for research.

In the recent years of computer history new technologies allowed program-
mers to design huge digital worlds. The games are interactive and no longer
only board games are played, but also strategy games and first-person shooters
in which the player is part of the world. He interacts with other characters and
tries to reach his goals to finish quests. The most recent category of computer
games are the so-called massively multiplayer online roleplaying games where
humans all around the world meet in a digital kingdom to talk, argue, fight,
trade, etc.

However, a huge part of research in computer games is still concerned with
classic board games. They have simple rules and perfect information. Thus,
they can be represented in a computer game easily since they build a perfect
description of a world without exceptions.

Although the world is perfect the number of possible actions players can take
is enormous. Due to the fact that it is computationally intractable to consider
all possible moves and their consequences to the end of the game, programmers
invented search techniques to find well-performing moves the computer player
can take. While computers become faster the implemented techniques can be

2

further enhanced and programmers have new possibilities.
But why are computer games that interesting for research? Since the com-

plexity of games is high one cannot observe all possible future game positions.
Therefore, it is not possible to find an optimal move to take in a certain time
range. Hence the computer cannot act optimally, but it has to find a way to
make a good guess about the accuracy of the possible moves. ”In this respect,
games are much more like the real world than the standard search problems...”
[19]. When research in games leads to some algorithm to solve the problem or
to find a non-optimal, but accurate solution, these results can be applied to
other sciences and research areas [17]. So the algorithms are not limited to the
game-solving problem, but they can be adapted to sciences like economics.

1.3 AI and Abalone

One of the recent games is Abalone. It was invented in 1987 by Laurent Levi
and Michel Lalet [27]. Abalone belongs to the group of classic board games.
There is already some research done in this game. Some researchers came up
with implementations of game playing agents. But since the game is relatively
new the research done so far is not that extensive as for other games.

In the following three implementations of agents playing Abalone are de-
scribed. The research papers are available on the internet. All of them use an
approach based on alpha-beta search.

1. Nyree Lemmens wrote a bachelor thesis at Maastricht university titled
”Constructing an Abalone Game-Playing Agent” in June 2005 [15]. The
agent’s alpha-beta search uses move ordering and transposition tables to
fasten the search. The game tree is searched with a depth of 2. However,
the evaluation function seems to be sophisticated since it uses several
features weighted according to the current progress of the game.

2. The report ”A Simple Intelligent Agent for Playing Abalone Game: ABLA”
written by Ender Ozcan and Berk Hulagu [18] is about an alpha-beta
searching agent for Abalone as well. They implemented an evaluation
function using two features: the distance to the game board’s center and
a measure of the marbles’ grouping. They made experiments with using
only one or both of the features at a tree depth of either 3 or 4. Thus,
they tried to find a well performing trade-off between complexity of the
evaluation function and the depth of search in the game tree.

3. ”Algorithmic Fun - Abalone” written by Oswin Aichholzer, Franz Auren-
hammer and Tino Werner [3] programmed an agent for Abalone using
alpha-beta search with an evaluation function only consisting of calculat-
ing the center of mass of each player’s marbles with respect to the board
game’s center. They implemented strong heuristics to early prune large
parts of the game tree. That leads to the ability to search the game tree
to a depth of 9-10.

3

1.4 Problem Statement and Research Questions

This thesis focuses on the implementation of an effective and efficient playing
agent for Abalone called AIBA.

Accordingly the problem statement is:

Is it possible to implement a strong computer player for Abalone?

To implement a player agent, we have to solve problems like ”What is the
best move in a certain situation” or ”Is my current position a strong or a weak
one?”.

Two of the most well-known algorithms that are promising to answer such
questions are Monte-Carlo search and alpha-beta search. This leads to the
research questions:

RQ1: Can an Abalone player be implemented using the alpha-beta
search?

RQ2: Can an Abalone player be implemented using the Monte-Carlo
search?

Furthermore, it seems worthwhile to improve the algorithms to achieve a
higher quality of decision making:

RQ3: Is it possible to implement some improvements to enhance the
decision-making process of both approaches?

Finally, it is interesting to compare the best implementation of both ap-
proaches in order to find out which is the more promising approach.

RQ4: Which one of the two approaches performs better?

1.5 Outline of the Thesis

The remainder of this thesis is structured in the following way:

• Chapter 2 introduces the game Abalone. The game rules are explained in
detail and some examples are given.

• Chapter 3 discusses some basic facts of Abalone from a programmer’s
point of view. Additionally, the calculation of the game’s complexity is
described.

• In chapter 4 the two basic algorithms, alpha-beta search and Monte-Carlo
search, are explained together with some approaches to improve their per-
formance.

4

• Chapter 5 describes the experiments that were performed and discusses
the results.

• Chapter 6 concludes the research done in this master thesis and gives some
suggestions for further research.

5

6

Chapter 2

Abalone

In this chapter the game Abalone will be explained in detail. First of all, some
basic information is given. After that the possible moves and special game
situations are discussed.

2.1 Basics

Abalone is a two-player strategic board game. The game board has a hexagonal
shape with 61 fields. Each player has 14 marbles. One player gets the black
ones, the other one the whites. The two players have to move in turns. The
black player begins the game.

The objective of the game is to eject the opponent’s marbles from the game
board. The player who first ejects 6 marbles of the opponent wins the game [1].

There are several start formations for the marbles. The two most popular
ones are the Standard formation which is proposed by the inventors of the
game. The second one is called Belgian Daisy. This is a formation often used in
tournaments, because the positions are more offensive right at the beginning of
the game [23]. These two formations are illustrated in the figures 2.1 and 2.2.

How marbles can be ejected from the game board is described in the next
sections where the possible moves are explained.

2.2 Possible Moves

In every turn the player is allowed to move one, two or three marbles of his
own colour. Multiple marbles may only be moved if they are connected to each
other and they are in a row. Furthermore, all marbles must be moved in the
same direction. It is possible to move the marbles inline, which means along
the axis of their current position (see figure 2.3). Another possibility is to make
a broadside move, i.e. a move not along the axis of the marbles, but sideways
(see figure 2.4).

7

Figure 2.1: Standard position Figure 2.2: Belgian Daisy position

Independent from whether an inline move or a broadside move is performed
the player may only move the marbles one field further. A move is still allowed
even if a row of marbles of the same colour is split by the move.

Figure 2.3: Sample inline move Figure 2.4: Sample broadside move

Broadside moves are only allowed if the fields the marbles are moved to
are empty. Inline moves are possible if one of the following two conditions is
fulfilled: Either the field behind the last marble is empty or the player is able to
perform a Sumito move. Sumito moves are those where some of the opponent’s
marbles are pushed. In the next section the preconditions and the consequences
of Sumito moves are described.

2.3 Sumito Moves and Special Situations

A Sumito move is a move where some opponent’s marbles are pushed by moving
some of the player’s own marbles. A Sumito situation is reached in case that
there is a row of marbles where on one side there are only black marbles and on

8

the other side there are white marbles. Between the marbles there must not be
a gap. If the number of marbles of one player exceeds the number of the other
player’s marbles he is in a Sumito situation. To determine such a situation for
each player at most three marbles of each player are taken into account since a
player is not allowed to move more than three marbles per turn. Actually, there
exist only three different Sumito situations:

• two marbles against one

• three marbles against one

• three marbles against two

In figure 2.5 all possible Sumito situations are illustrated. The black player
can choose one of them by moving a row of his marbles to the right.

Figure 2.5: Sumito situations

Another important term in Abalone is the so-called pac situation. In that
situation neither player is able to perform a Sumito move, because the number
of marbles of the same colour are equal. Thus, there exist three different pac
situations:

• one marble against one

• two marbles against two

• three marbles against three

In figure 2.6 some pac and pac-like situations are illustrated:
The marbles on top of the board are arranged in a simple 2-on-2 pac situa-

tion.
The marbles in the middle are in a pac situation as well. Although there are

4 black marbles against 3 white marbles it is a pac situation. This is because a
player is allowed to move 3 marbles at most. Thus, it is a 3-on-3 pac situation.

9

Figure 2.6: Pac(-like) situations

The setup of marbles at the bottom is no Sumito situation, because there is
no free space behind the white marble.

To achieve the objective of the game, which is ejecting six opponent’s marbles
from the board, the player has to perform a Sumito move in a position where
opponent’s marbes are at the border of the game board. After this move one
of the opponent’s marbles is lost. Figure 2.7 shows such an ejecting move
performed by the white marbles. Note that after the move the black player is
able to eject a white marble by performing the move D2C2.

Figure 2.7: Ejecting move

It can happen that both players’ goal is to defend and prevent the marbles
from being ejected. Such a game can last forever. To limit the game an addi-
tional rule can be introduced, e.g. each player has a certain amount of time,

10

maybe 10 or 15 minutes. After the time of one player is over, this player loses the
game. Another approach is to limit the total number of plies, i.e. the number
of turns. If the limit is reached the game ends in a draw.

To describe the single board fields a notation is introduced. It is based on
the cartesian coordinate system. Since the game board has a hexagonal shape
the y-axis is the one from downright to the upper left. The x-axis is simply the
horizontal line at the bottom (see figure 2.8).

Figure 2.8: Coordinate system for notation

For clearness, the columns are numbered from 1 to 9 (x coordinates) and the
rows are named from A to I (y coordinates). A field is then indicated by its y
coordinate followed by its x coordinate. For example, the field occupied by the
black marble in the center of the upper row is the field C4.

A move can also be represented using this notation. A simple notation can
be used for inline moves. Only the field occupied by the last marble to move
is noted followed by the field the marble is moved to. For example, the move
showed in figure 2.3 is described by I8H7.

To notate a broadside move one has to refer to three fields. First of all one
mentions the first and the last field of marbles in a row that are moved. The
third field that is noted indicates the new field for the marble mentioned first.
For example, the move showed in figure 2.4 is noted as C3C5D3.

11

12

Chapter 3

Analysis of Abalone

This chapter gives some information about the properties of Abalone. First
of all some basic information is given. In section 3.2 Abalone’s complexity is
explained.

3.1 Basics

Abalone is a classic board game. It is a recent game, invented in 1987. The
standard version is a two-player game. Nowadays there exist extensions to
play it with up to six players, but this thesis focusses on the original version
having two players. Abalone belongs to the class of abstract strategy games.
It is completely based on strategy, involving no luck at all. Each player has
control over his actions. Additionally, both players have perfect information [5]
about the current game position. There is no hidden information. Furthermore,
Abalone belongs to the group of zero-sum games [5]. Thus, there are no aspects
of cooperation or trading. Each player is only interested in achieving the best
position for himself and at the same time forcing the opponent into a bad
position.

Due to the characteristics of Abalone alpha-beta search appears to be a good
approach to implement a strong computer player. Since the game has perfect
information it represents a perfect world that can easily be implemented as a
computer game. It is possible to represent the game progress by two players,
max and min, where max tries to maximize his position while min tries to
minimize it. The values are calculated by an evaluation function.

Monte-Carlo search serves as a possible approach as well. There are no hard
restrictions that a game has to fulfil in order to use Monte-Carlo search.

3.2 Complexity

In this section the complexity of Abalone is discussed. The complexity is already
investigated by Lemmens [15] and Aichholzer [2]. So we refer to their research

13

at this point. The ideas about how to calculate a good approximation to the
complexity are described.

3.2.1 State-Space Complexity

The state-space complexity of a game is the number of possible board positions
[5]. First of all the game board contains 61 fields. Furthermore, each player
starts with 14 marbles leading to 28 marbles on the board at the beginning of
the game. The game ends when one of both players has lost 6 of his marbles.
Therefore, the least number of marbles that can be on the game board is 17,
where one player has lost 5 marbles and the other one 6. This is a terminal
position.

The following formula is a good approximation of an upper bound for the
number of possible game positions:

14∑
k=8

14∑
m=9

61!
k!(61− k)!

× (61− k)!
m!((61− k)−m)!

Since Abalone has a hexagonal shaped game board there exist 6 rotations
and 6 mirrors. These positions represent identical board positions. Thus, the
calculated number has to be divided by 12.

This calculation results in an approximation of 6.5 × 1023 [15]. Aichholzer
[2] calculated an approximation for Abalone’s complexity as well. He found an
approximation of 1025. Thus, the complexity seems to be somewhere between
1024 and 1025.

3.2.2 Game-Tree Complexity

The game-tree complexity is a measure to represent the complexity of the game
tree, i.e. how many possibilities exist to play the game [5].

The game tree visualizes all possible moves a player is allowed to choose.
The root of the tree is the initial position where the first player is to move.
Every edge leading to a node one level below represents a possible move for the
first player. In each of the underlying nodes the second player is to move having
a number of possibilities for his first move. A whole move in a game consists of
two half moves, i.e. the first player moves and the second player moves. A half
move is also called a ply.

Lemmens [15] found that an average Abalone game consists of 87 plies. This
number will be of interest for the later calculation of the game-tree complexity.
The second number that has to be known is the average branching factor of the
game-tree. In other words the branching factor is the number of possible moves a
player can perform in a given position. Since in Abalone the number of possible
moves can vary for several game positions an average number is used. Lemmens
[15] found an average branching factor of 60. Experiments done during this
master thesis resulted in a similar value. Aichholzer [2] mentions a branching
factor of 65-70 in his research work.

14

With the help of both the average branching factor and the average number
of plies per game an approximation of the game-tree complexity can be calcu-
lated. The game-tree complexity is the number of leaf nodes in the smallest
full-width decision tree. Using an average branching factor of 60 and an average
number of plies per game of 87 the approximation of the game-tree complexity
is 5.0× 10154

3.2.3 Comparison with other Games

The former section described the complexities of Abalone. This section com-
pares these values with other board games. Table 3.1 lists some well-known
board games together with their complexities.

Game board state-space game-tree average
size complexity complexity game length

(log) (log) (plies)
Tic-tac-toe [29] 9 3 5 9
Pentominoes [11] 64 12 18 10
Connect Four [11] 42 14 21 36
Checkers [11] 32 21 31 70
Nine Men’s Morris [11] 24 10 50 50
Draughts [11] 50 30 54 90
Chinese checkers (2 sets) [29] 121 23
Chinese checkers (6 sets) [29] 121 35
Lines of Action [29] 64 24 56 63
Reversi / Othello [11] 64 28 58 58
Hex (11x11) [11] 121 57 98 40
Chess [11] 64 46 123 80
Backgammon [29] 28 20 144 50-60
Xiangqi [29] 90 48 150 95
Abalone 61 24 154 87
Shogi [11] 81 71 226 110
Go (19x19) [11] 361 172 360 150

Table 3.1: Board games and their complexities

This table shows that Abalone has a state-space complexity similar to Check-
ers. Since Checkers has been solved it may be possible to solve Abalone with a
high-performance machine as well. On the other side the game-tree complexity
is similar to Xiangqi which is quite complex. Therefore, it may be not that easy
to solve the game.

15

16

Chapter 4

Algorithms

This chapter introduces the two basic approaches that are followed to implement
a strong Abalone playing agent. First of all there is a detailed description
of the alpha-beta search which is based on the simpler minimax algorithm.
Afterwards, the Monte-Carlo search is explained. At the end of each algorithm
some improvements are pronounced.

4.1 Alpha-Beta Search

In this section the alpha-beta search will be explained. Therefore, first of all
the minimax algorithm is described. After that the extension known as alpha-
beta pruning is discussed which is the essential improvement of the alpha-beta
search.

4.1.1 Minimax Algorithm

The minimax algorithm is intended to be applied to two player games [13]. One
of the players is called the max player and the other one is the min player.
The max player is the next player to move. His goal is to find a sequence of
moves that leads him to win the game. Thus, he searches the game tree down
to the leaves. Every leaf represents a terminal position in the game. Therefore,
every leaf has a state in which the max player wins or loses. What the max
player actually has to do is to find a sequence of moves that leads him to a
leaf in which he wins the game, if possible. To evaluate a game position, an
evaluation function as already described in section 4.3.1 is used. One evaluation
function can be the one described above which simply evaluates the terminal
position. Since his opponent, the min player, may choose moves he wants to,
the max player cannot be sure about how the exact path down to the leaf will
look like. Therefore, the max player tries to choose a path that gives him the
most promising position regardless of what move his opponent is going to take.
Thus, the max player tries to maximize the value function. If we assume that

17

the min player acts rationally his goal is to minimize the value function. Under
these assumptions the minimax algorithm works as follows:

1. Generate the whole game tree , from the root to all terminal

positions.

2. Calculate the value for every terminal position , i.e. for all

leaves

3. Calculate the values of all other nodes by propagating the

values of the leaves towards the root

a) The value of a max player node is always the maximum among

its child nodes

b) The value of a min player node is always the minimum among

its child nodes

A simple example taken from [19] is given in figure 4.1. Here a more sophis-
ticated value function is used leading to different values in the leaves between
2 and 14. The branching factor is 3 meaning that there are 3 possible moves
in each turn. In the left of the graph the terminal positions have the values 3,
12 and 8. Since the min player tries to minimize the value it chooses the move
that leads to value 3. Therefore, the value of the min player’s node is 3. Using
this method one finds for the other two nodes the value 2. The root is the max
player’s node. He chooses the path leading to the highest value. Therefore, it
decides for the move leading to the node with value 3.

This example is very simple since the tree has only a depth of 2 and a
branching factor of 3. However, for more complex trees the algorithm works in
the same way.

Figure 4.1: Sample minimax tree

18

Note that the number of nodes per tree level increases exponentially. Hence
a higher branching factor leads to a much higher number of nodes in the tree.
This results in an exponential growth of time needed to search the tree. If the
tree has a maximum depth of m and there are b possible moves in each position,
the complexity of the minimax algorithm is O(bm). Since Abalone’s game tree
has an average branching factor of about 60 (see section 3.2) and a much deeper
tree the searching of the whole tree is intractable. Thus, the value function
cannot be applied to terminal positions, but the game tree can only be observed
to a certain depth. The objective is to search the tree as deep as possible since
the deeper the tree is searched the more accurate the values of the tree nodes
are.

4.1.2 Alpha-Beta Pruning

The most significant drawback of the minimax algorithm is that the whole game
tree has to be searched. Since time requirements grow exponentially minimax
allows only a relatively small tree depth to be searched. A well-known approach
to handle this problem is alpha-beta pruning. It eliminates branches from being
searched. The resulting move is always the same as in minimax. So there is
no loss of accuracy, but only improvements regarding the computational effort.
Donald E. Knuth and Ronald W. Moore proved the correctness of alpha-beta
pruning in 1975 [13].

Figure 4.2: Sample minimax tree after alpha-beta pruning

An example to show how the pruning works is given in figure 4.2. It is
taken from [19] as well. It is the same tree as the one seen before in figure
4.1. Suppose the leftmost 3 leaves were considered and their values are already
computed. The min player has the chance to minimize the value to 3. So the

19

best move the max player can choose at the root is actually this 3. Then A2 is
considered as possible move. The first leaf in this branch leads to a value of 2.
Thus, the min player would be able to choose a move which is less or equal to
2 for sure. Since the max player has already the chance to take a move leading
to a value of 3 he will not choose the second branch. Thus, after observing the
value 2 in the leaf the whole branch is pruned and the two other leaves of that
branch need not to be considered.

The pruning is implemented by introducing two bounds: the alpha as a lower
bound and the beta as an upper bound. Again, after the leftmost 3 leaves were
investigated the max player at the root knows it can achieve at least a value of
3. Thus, the minimum bound is alpha = 3. When the first child of the second
min node is investigated the min player can achieve at most 2. Therefore, the
beta value is 2. In that case the two remaining leaves are pruned, because
beta < alpha.

Iterative Deepening

One problem of the alpha-beta search is that you cannot foresee how much
time is needed to search a specific depth in the game tree. Thus, using a static
defined tree depth is not a solution. Furthermore, playing Abalone with official
championship rules leads to a predefined time each player has for the whole
game. So there is a need to implement the search in a way where one can define
a time range that is not exceeded. A well-known approach is the so-called
iterative deepening [14]. Its basic idea is that the search starts to find a solution
with a tree depth of 1. After that search is done the time is checked. If there is
still time left for the current search the alpha-beta search is repeated, but now
with tree depth 2. This is repeated until the time is over. After implementing
this simple algorithm some problems emerge. First of all it is not known if the
next search with increased tree depth finishes in time. Therefore, it is useful to
save the durabilities of the previous searches. To make a good prediction of the
time the next search seems to take the ratio between the two previous searches
is calculated. By multiplying the time of the last search by this ratio one can
make a guess for the next search. For example, assume that the search with
tree depth 3 took 2 seconds, the search with tree depth 4 took 10 seconds. In
that case the search with a tree depth of 5 will probably take about 50 seconds.
With this information it can then be decided whether the next search is started
or not.

As long as the time predictions are accurate this approach will work well,
but if the real time needed will exceed the predicted time significantly the player
consumes time that he does not have. To prevent that an alarm timer is imple-
mented. After investigating a certain number of nodes (e.g. after 200 nodes)
the algorithm checks the time. If time is over the search stops. So the tree
search is stopped occasionally. Since it is not finished it does not generate a
useful result. So in general that case should be avoided.

The disadvantage of this algorithm is that in every tree search all the steps of
the previous search must be repeated. That can be compensated by a technique

20

that leads to a better move ordering. It is described in section 4.1.3.

4.1.3 Improvements

In this section some approaches to improve the plain alpha-beta search are
explained in general and in particular how they are implemented for the Abalone
playing agent. The results of their performance tests are discussed in chapter 5.

Move Ordering

Since the minimax algorithm always searches the whole game tree the order
the possible moves are investigated makes no difference for the calculation time.
In contrast to minimax it makes a difference for the alpha-beta search. The
alpha-beta algorithm searches the game tree regarding of which moves were
already investigated and how well they performed. Thus, the max player only
investigates game tree branches where it can exceed the value of the best move
found so far. Therefore, the search algorithm should consider the most promising
moves first to maximize the chance of tree branches being pruned [8, 19].

In Abalone the strongest moves are those that attack the opponent or those
that keep marbles together in a group for a better defense. Therefore, moves
consisting of several marbles are often more valuable. So first of all moves with
three marbles are investigated. Then the moves containing two marbles follow
and moves containing only a single marble are investigated last. The calculation
time decreases dramatically as shown in chapter 5.

An additional ordering can be made by taking the type of move into account.
So the distinction between inline moves and sidemoves is made. Since attacking
is only possible by performing an inline move these are most often the stronger
ones. Sidemoves can be worth, but most often they are valuable when the
player is defending or has to escape from a position where he is attacked by
his opponent. Furthermore, the inline moves are ordered by their strength,
i.e. capturing moves are investigated before attacking moves somewhere in the
middle of the board. Inline moves that do not push opposing marbles are
investigated last. So the ordering could be further improved by ordering the
moves in the following way:

1. 3 marbles, capturing

2. 2 marbles, capturing

3. 3 marbles, attacking

4. 2 marbles, attacking

5. 3 marbles, inline

6. 2 marbles, inline

7. 3 marbles, sideways

21

8. 2 marbles, sideways

9. 1 marble

Since a single marble move can never attack the opponent it is more like the
sideway moves than like the inline moves.

An alternative to the move ordering above is to sort the moves in descending
order with respect to the number of marbles, but moves with equal number of
marbles are ordered by their type:

1. 3 marbles, capturing

2. 3 marbles, attacking

3. 3 marbles, inline

4. 3 marbles, sideways

5. 2 marbles, capturing

6. 2 marbles, attacking

7. 2 marbles, inline

8. 2 marbles, sideways

9. 1 marble

Additionally, the ordering can be further improved due to the fact that
iterative deepening (4.1.2) is used in the alpha-beta search implementation.

The disadvantage of iterative deepening is that in every tree search all the
steps of the previous search must be repeated. That can be compensated by
using information of the previous searches. This technique arises due to the
iterative fashion of the algorithm. It works as follows. In every iteration the
possible moves at every node in the tree are ordered as described above. Addi-
tionally the moves of the principal variation found by the previous iteration are
investigated first. Since this ensures that the most promising moves are tried
first we assume that the best pruning is achieved. In many games this advantage
outperforms the disadvantage of researching some nodes.

Killer Moves

The killer-move heuristic [4] is an approach to minimize the number of investi-
gated nodes in a search. It has proven to work well in other board games. Thus,
it was also implemented in the Abalone player.

The killer-move heuristic assumes that if a move led to a pruning at a cer-
tain depth it may lead to a pruning again in another node at the same depth.
Therefore, such a move should be investigated first provided that the move is
legal in the current position. By using the killer-move heuristic one assumes

22

that if a move is the best one for a certain position it is probably also the best
one for similar positions.

In Abalone for each depth in the search tree some killer moves are stored.
Section 5.1.2 describes experiments where the number of killer moves per depth
is set to 1, 2 and 3. In each node first of all the killer moves are checked whether
they are legal moves in the current position or not. The moves that are legal
are investigated first.

Transposition Table

Basics Another improvement that was tested for utility in Abalone is a trans-
position table [7]. It is based on the fact that in a board game so-called trans-
positions can appear. Imagine the following case: The game is started with the
Standard formation. Player 1 takes the move A5B5. Afterwards, player 2 takes
the move I5H5.Then player 1 moves A1B2. This move sequence leads to the
position shown in figure 4.3.

Figure 4.3: Position after player 1’s second move

If player 1 would first take move A1B2 and as his second move A5B5 both
paths in the game tree would lead to the same position. So one path is a trans-
position of the other one. Obviously, both positions have the same value since
they are equal, but during alpha-beta search each transposition of a position
is searched. This is a waste of time, because if you found a value and its cor-
responding best move for this position once the retrieved information can be
reused and does not have to be calculated again.

The basic idea for a transposition table is as follows:
Imagine a certain node in the game tree that represents a certain game position.
The subtree of this position is searched to find the value of this position. After
the search is done, the information about the game position is saved together
with the found value.

23

If a transposition of a position already searched is reached during alpha-beta
search the information of the previous node is reused.

Which information can be used depends on the node that was searched
before. First of all the value of a game position can only be reused if the
depth of the saved game position’s subtree is greater or equal to the depth the
basic alpha-beta search would search for the current position. An example is
illustrated in figure 4.4.

Figure 4.4: Using a value of a previous transposition

Imagine that the alpha-beta search would search to a depth of 5. So usually
the search from node S would go 2 levels deep. Since S is a transposition of the
game position at node R the information of node R can be reused, because the
search from R goes 4 levels deep which is better than a depth of 2.

If it is the other way around, i.e. the node searched before was on level 3
and the current node that has to be searched is on level 1 the value cannot be
reused, because a search that has to go 4 ply deep cannot be substituted by a
value of a search 2 ply deep. At least the information can be used for move
ordering. Since there is a move that was best for the search of the shallower
depth before it is the most promising one and should be investigated first.

The second problem arises from the pruning. If a complete minimax search
would be performed you always find an exact value for a node. Thus, it is
possible to save this exact value in the transposition table. If this information
is reused in a node deeper in the game tree, there is no effort at all. The value
of the search before can simply be reused. However, in alpha-beta search values
are not always exact. If subtrees of a node are pruned the result is only a value
bound either a lower or an upper bound.

That leads to the following:

24

1. If the value of the game position saved in the transposition table is the
result of a search in a shallower tree than the search for the currently
investigated node would be the saved information is only used for move
ordering.

2. Otherwise, the value can be reused. If the value is a lower or an upper
bound it is used to reset the alpha or the beta which may lead to a narrower
search window.

3. If the value is an exact value it is just reused for the currently investigated
node.

Until now it is only described to reuse information, but it can be also smart
to update the saved information. For example, if a transposition of a game
position is found in a shallower depth of the tree than the transposition that
is currently saved in the transposition table it should be replaced, because a
transposition in a shallower depth can be reused by more transpositions than
a saved transposition at a deeper level. Additionally, a value resulting from a
search in a deeper tree is more accurate than a search of a shallower one.

Implementation After explaining the idea of a transposition table this para-
graph explains how this concept is implemented in Abalone.

In the transposition table there is one entry per game position. Checking
whether a position is saved in the table or not has to be very fast since this
check is performed at every node in the game tree. Therefore, a hash table
using a smart hash function is used.

The utility of the hash table strongly depends on the quality of the hash
function. The hash function calculates an integer value for a given position.
It is required that different game positions lead to different hash values with a
probability of almost a hundred percent. Otherwise collisions occur and values
read from the table are not reliable.

A sophisticated hash function which is used in many different board game
implementations is the Zobrist hashing called after Albert L. Zobrist [25]. In
the following the main idea of this hashing method is explained.

First of all one has to initialize some random numbers. For each of the 61
fields on the game board one has to calculate two random numbers. One random
number for the case that a white marble is on the field and one that there is a
black one. Additionally, one needs a random number for each player to indicate
who is the player to move next. These values are generated at the beginning of
the game and they stay the same for the whole game.

The hash function works as follows: For each field the value corresponding to
whether a white or a black marble occupies the field is read from the initialized
values list. Afterwards, all these values are combined by the XOR operator.
Then, the number of the player who is to move next is also combined to the
result by the XOR operation. The resulting integer is the full index for the
game position. First the XOR operator is very fast and second there is no need
to calculate the index after each move from scratch. It is possible to recalculate

25

only the values of the fields that are involved in the move the player takes.
For example if an inline move with three marbles is performed without moving
opposing marbles it is sufficient to compute two XOR operations: The first
empty field in the direction of the move turns from no marble to black or white
marble. The last field turns from black or white marble to no marble. The
latter can also easily be calculated by applying the XOR operator since a XOR
a = 0. Additionally, the player who moves next also changes. Therefore, one
has to perform two more XOR operations after every move.

An essential question is how long should the used random numbers and thus
the indexing numbers be? The length of the index is to be chosen so that the
probability of having collisions and other errors is almost zero. The probability
of making an error is calculated by

P = 1− e−
M2
2N

where N = 2n is the number of different hash codes and M the number of game
positions mapped to the hash table. Thus, using 64 bit indices leads to the
following probability for Abalone: Assuming that mostly a search at a depth
of 6 or 7 is performed leading to an absolute maximum number of investigated
nodes of 10,000,000 the probability having an error is

P = 1− e
− 10,000,0002

2×264 = 2.710501754× 10−6

Using 64 bit numbers results in having 264 = 1.844674407 × 1019 different
possible numbers. It is not possible to build an array of such a size. Therefore,
only the 20 least significant bits are used for the index in the array leading to an
array having 220 = 1048576 entries. The other bits are saved within the entry
so that they are still used for matching transpositions.

The information that is saved as an entry in the hash map contains:

• The tree depth of the search the value is calculated with

• The value of the game position

• The type of the game position’s value, i.e. upper bound, lower bound or
exact

• Complete hash key containing all 64 bits

• The best move for this position

In Abalone there are many transpositions, because all marbles of a player
are identical. There are no different pieces like in chess. Thus, the number of in-
vestigated nodes per alpha-beta search for a move can be redruced dramatically
as can be seen in section 5.1.3.

26

Quiescence Search

One of the biggest problems using alpha-beta search is the horizon effect. It
emerges in situations where the evaluation of the position changes drastically.
An example for that are capturing moves. If the player searches in the game tree
to a depth of 5 and in that depth it is possible to capture a piece of the opponent
the position has a high value. On the other hand if it would be possible for the
opponent to capture a piece just one step further, the player should not capture
the piece in order to save his own piece.

In Abalone exactly this situation can appear. When ejecting a single op-
posing marble one of his own marbles is on a field at the border. Thus, the
opponent could eject that marble when he has attacking marbles in the right
position.

Quiescence search [6] is an approach to solve the horizon problem. It tries
to adapt the deliberation a human would do, i.e. do not invest too much time
in bad moves, but concentrate on good moves and think deeper for such moves
where actions influencing winning and losing are taking place. The algorithm
distinguishes between quiescent and non-quiescent positions. A quiescent posi-
tion is one where no move can change the value of the game position drastically.
Otherwise the position is called to be a non-quiescent position. These are posi-
tions as described above. So non-quiescent positions are all positions where any
marble is attacked.

In the following it is described how quiescence search is added to the basic
alpha-beta search. First of all alpha-beta search is executed to the defined tree
depth. The leaf node is now checked for being either quiescent or non-quiescent.
If it is quiescent the board position is evaluated and the search finishes as usual.
If the node is non-quiescent the quiescence search starts. From the leaf position
a further alpha-beta search is started regarding only the capturing moves. It
does not stop until all new leaf positions are quiescent.

4.2 Evaluation Function

In a minimax tree search all nodes and thus all leaf nodes are investigated. The
leaf nodes serve a final outcome of the played game path since they represent
terminal game positions. Therefore, an investigated position at a leaf is either a
win, a draw or a loss. This information is propagated upwards to the root node
where the player is now able to assess which move is the best to take in order
to maximize the probability of a win. This idea is straightforward and leads to
an optimal behaviour of the game-playing agent.

For the alpha-beta search it is not that simple. Search does not reach the
terminal positions in the game tree, because of the high branching factor. It is
computationally impossible to do so. Therefore, the search stops at a certain
depth. Since the position is in general not a terminal position it is not possible
to assess it by either a win, a draw or a loss, because none of these cases applies
to the situation. Instead one has to evaluate the game position not by the

27

outcome of the game, but by some other features representing the value of a
position.

For all implementations of an alpha-beta search the evaluation function [19]
is essential. It has to be both fast and accurate in assessing a given game
position. To achieve a good assessment one needs to find features, which can
be evaluated for a given game position. Every feature then contributes with a
certain weight to a final value. This value is the quality of the game position.
By these values game positions are compared. The maximizing player chooses
at the root the move that is contained by the path leading to the most promising
position at the lowest level of the search tree.

For Abalone it is possible to find several features that seem to contribute to
an accurate evaluation. The following features are implemented. Experiments
to find a good evaluation function, i.e. to find a good weighting between the
features, are described in chapter 5.

1. Win or Loss
At the end of a game it may happen that game positions are reached in the
search tree that are terminal positions. In that case the evaluation function
should measure the outcome of the game, i.e. win or loss. Since winning
is the best position that can be reached the evaluation function should
return a very high value exceeding all other features. On the contrary a
losing position leads to a very low value making the player avoiding this
position. A non-terminal position is valued as a 0.

2. Lost Marbles
Since the objective of the game is to eject the opposing marbles off the
game board the number of marbles on the board is important. First of all
ejected opposing marbles give a positive reward since it brings you nearer
to your goal. On the other hand it is important to keep own marbles
on the board to not lose the game. Furthermore, ejecting an opposing
marble weakens the position of the opponent while it strengthens the own
position, because the more marbles one has the better one can attack and
defend.

3. Center Distance
A player should try to occupy the center of the game board. It gives the
player a strong position. First marbles occupying board fields at the edges
are at risk to be ejected by the opponent. So own marbles should avoid
the border of the board. Secondly, occupying the center of the board
forces the opposing marbles to stay around. They are not able to group
together and they are kept at the outside. Thus, both attacking and
defending is better when marbles are at the center than at the borders.
The center distance is measured by the so-called Manhattan distance. It
counts the fields that have to be visited before reaching the middle field.
The distances of every marble to the center are added. The best (lowest)
value that can be achieved is 20. The board position where all marbles are
in a group symmetrically around the center. The worst value is 56. In that

28

case all marbles are at the border of the game board. These two numbers
are considered to establish a return value representing the quality of the
Center-Distance feature.

4. Own-Marbles Grouping
The next important thing a player should try is to keep marbles together
in groups. Having a single marble on the board is bad, because it has not
the ability to attack the opponent. To attack at least two marbles are
needed. On the other hand it is even not able to defend. It can easily be
attacked by two opposing marbles. Therefore, a group of marbles gives
you both a higher value for attacks and for defending opposing attacks.
The strongest position is reached by having all marbles stick together in
one group. To measure the “grouping factor” of the marbles for every
marble the number of neighbouring marbles is counted. All of these are
added and give the final number for the grouping measurement. The best
value for grouping is 58, having all marbles in a huge single group. The
worst value is 0, meaning no marble has a neighbour. According to these
bounds a return value is calculated.

5. Opposing-Marbles Grouping
Since grouping of marbles gives a strong position it is valuable to hamper
the opponent grouping his marbles together. Since the best grouping for
the opponent is 58, this is the worst value for the own player. 0 is the
worst value for the opponent. Thus, it is the best value for the own player.

6. Attacking Opponent
To beat the opponent and to eject opposing marbles off the game board one
needs to attack. Attacking is done by so-called Sumito moves as described
in section 2.3. To make such a move possible the player has to reach a
Sumito position. These are positions where the player can attack the
opponent. The Attacking-Opponent feature counts all attacking positions
in a given game position. The worst value that can be reached is 0. It is
the case if there are only pac situations or opposing marbles do not occupy
neighbouring board fields. The best value that can be achieved in theory
is 19. The corresponding position is given in figure 4.5, but in general this
position will not be reached in a real game.

7. Attacked By Opponent
This feature also measures attacks, but it measures the attacking positions
of the opponent on own marbles. Thus, a lower attacking value is better
for the player.

Figure 4.6 illustrates an example game position. Underneath, the measurements
of each feature are given.

Example of measuring the features for the black player:

1. Win or Loss
Value: 0

29

Figure 4.5: Game position with best attacking value for the black player

2. Lost Marbles
Value: +1

3. Center Distance
Value: 28

4. Own Marbles Grouping
Value: 32

5. Opposing Marbles Grouping
Value: 23

6. Attacking Opponent
Value: 6

7. Attacked By Opponent
Value: 3

4.3 Monte-Carlo Search

One of the most famous search techniques is the Monte-Carlo search [10]. Its
name is based on the casino in Monte Carlo. That is because the search is
based on statistics and probabilities as it is the case in gambling. Due to the
law of large numbers in some games Monte-Carlo search is an accurate method
to determine good moves in a certain game situation.

4.3.1 Basic Monte-Carlo Search

The general idea is to simulate a certain number of games starting at the current
real situation on the game board. For each possible move a number of games

30

Figure 4.6: Example game position

are simulated and the outcome of each of these games is scored. After all
simulations are finished, the player takes the move with the highest winning
since it is probably the most promising move.

For a better explanation, here is an example of the method: Suppose it is
the first player’s turn which is a player that uses Monte-Carlo search. There
are 60 possible legal moves in the current game situation. The player now has
to simulate several games for each of these possible moves. It starts by taking
the first move. Starting at this position it simulates now a number of games,
e.g. 100. After every simulation it scores the outcome of the simulated game.
This is done by either simply scoring if the player wins (+1), loses (−1) or if the
outcome is a draw (0) or by a more sophisticated value function (see section 4.2).
The scores of the 100 games are summed up and the simulations are carried out
for the next move. This goes on until for every move the simulated games are
finished. At the end the move with the best rating is determined. This is the
move the player takes in the real game.

But what is meant by ”simulating a game”? A simulation game is a game
between two players that take their moves randomly. More precisely that means
that the player who moves next determines all his legal moves in the certain
game situation and chooses absolutely randomly which move to take. This
sounds not very useful at first glance, but if the number of simulated games per
possible move is large enough, it could lead to quite adequate scores.

Another important aspect is the valuation of the simulation outcomes. The
basic method to simply score the outcome of the game which is winning or
losing is only possible if the simulation games run until the game ends. Of
course playing to the end will probably give the best results, but most often it
is not possible to play to the end, because it would take to much time. In that
case the simulation does not run to the end, but stops after an ending condition
is reached. This can be for example a certain number of turns or a predefined

31

time range. In this case it is no longer possible to evaluate who wins, because
there is no winner. A value function is needed which can evaluate the current
game situation and returns a measure of who is in a better position, often called
the winning position.

For convenience the Monte-Carlo search is explained by means of pseudo
code.

1. Get all possible moves in the current situation of the game

2. For each of these moves

a) Take the current move

b) Simulate a number of games with the actual situation

c) Evaluate the outcome of each simulated game and accumulate

them

3. Take the move with the highest value for the regular game

Random players that choose a move from all possible moves are used in
the plain Monte-Carlo search. To improve the algorithm it is possible to add
knowledge so the random players do not really choose their moves randomly,
but they prefer more promising moves.

Time Limit

A fundamental question according to Monte-Carlo search is: How many games
should be simulated for every possible move?

First of all it is possible to define a fixed number that is the number of
simulated games per possible move. That is obvious and easy to implement,
but it is not predictable how long the search will take since every game position
offers another number of possible moves to the player. Since Abalone’s official
championship rules contain that each player has a certain amount of time for
the whole game there is a need to implement the search in a way where one can
define a time range that is not exceeded.

Therefore, the solution is not to define a fixed number of simulated games,
but to calculate this number using the number of possible moves for the current
situation, the time the player has for the whole game and the average num-
ber of plies for a whole Abalone game. The result is the time available for
the simulations of one move. When time is up games for the next move are
simulated.

TimeForCurrentMove =
LeftT imeForWholeGame

#AvgP liesOfP layer ×#PossibleMoves

By this technique the search for the next move to perform always stops
in time. Thus, for every move the maximum number of games are simulated
according to the time limitation.

32

4.3.2 Improvements

Depth-Limited Monte-Carlo Search

In general a Monte-Carlo search simulates several games for every possible move
to the end. Thus, every game results in a win or a loss. The disadvantage is
that it is not possible to estimate accurately how long a game will last until it
is finished. But if there are some games that take a long time it may happen
that there is not enough time to simulate some games for every possible move.
In that case some moves are not evaluated at all. As a result good moves may
be overseen.

To avoid this problem the duration of a simulated game should be limited
in order to have an equal number of simulated games for every move. This is
done by setting a maximum number of plies for a simulated game. If the game
arrives at a terminal position before it reaches the limit it stops. In this case, the
outcome is a win or a loss. Otherwise, i.e if the game arrives at the maximum
number of plies before reaching a terminal position the game stops as well. In
that case the outcome would be a draw.

Evaluation of Simulated Games

The time problem is solved by the approach discussed in section 4.3.2, but
another problem arises. Since games are not finished necessarily it can happen
that no winner is determined. Thus, the final outcome of the game is a draw. If
there are only a few games that end in a draw it is not a real problem, but if the
maximum number of plies per simulated game is set too low most of the games
become a draw leading to a non-accurate evaluation of the possible moves for
the player who is to move.

This problem can be solved by refining the evaluation. The most general
and obvious evaluation is, as already described, to determine if the outcome of
a game is a win, a draw or a loss. A more precise approach is to count the
lost marbles of each player. Since these numbers are the most important to
assess the strength of a player’s position they give a more precise estimate of
the current position’s quality than simply calling it a draw.

In the final Abalone implementation the limitation of plies per simulated
game is implemented. The simulated games are evaluated accoring to the num-
ber of each player’s lost marbles.

33

34

Chapter 5

Experiments and Results

In this chapter all experiments done to assess the different algorithms and their
improvements are discussed. First of all the alpha-beta player is tested. After-
wards, there are some explanations about the Monte Carlo player. Finally both
are compared.

5.1 Alpha-Beta Search

This section describes the experiments that were done to test the performance
of the alpha-beta search. The different improvements are tested and a sophisti-
cated evaluation function is determined.

To achieve comparable test results for the experiments described in sections
5.1.1 to 5.1.4 the same evaluation function is used. The weights of the features
that contribute to the value of a position are listed in table 5.1.

5.1.1 Move Ordering

The most basic improvement for an alpha-beta player implementation is the
ordering of possible moves to achieve the best pruning. In Abalone moves with
multiple marbles are more promising than moving a single marble since attack-
ing and defending can only be performed with multiple marbles. Therefore, a
first basic ordering is to first investigate moves with three marbles, then two
marbles and finally single marbles. This is referred to as move ordering 1.

Another approach for ordering is to order the moves according to their type.
This second approach orders the moves as follows:

1. 3 marbles, capturing

2. 2 marbles, capturing

3. 3 marbles, attacking

4. 2 marbles, attacking

35

Feature Value
Own Lost Marble −1, 000
Opposing Lost Marble +1, 000
Own Lost Marbles = 6 (Loss) −1, 000, 000
Opposing Lost Marbles = 6 (Win) +1, 000, 000
Center Distance of All Own Marbles < 24 +400

< 30 +300
< 35 +200
< 40 +100

Grouping of Own Marbles > 55 +320
> 50 +240
> 45 +160
> 40 +80

Attacking Power on Opponent per attack +10
Attacking Power on Own Marbles per attack −10

Table 5.1: Evaluation function

5. 3 marbles, inline

6. 2 marbles, inline

7. 3 marbles, sideways

8. 2 marbles, sideways

9. 1 marble

As an alternative it is tested to sort the moves in descending order with
respect to the number of marbles, but moves with equal number of marbles are
ordered by their type:

1. 3 marbles, capturing

2. 3 marbles, attacking

3. 3 marbles, inline

4. 3 marbles, sideways

5. 2 marbles, capturing

6. 2 marbles, attacking

7. 2 marbles, inline

8. 2 marbles, sideways

9. 1 marble

36

This ordering is referred to as ordering 3.

In the following tables the different approaches of ordering are compared. No
ordering means that first the single-marble moves are investigated followed by
the two-marbles and three-marbles moves without further ordering. The tables
5.2, 5.3 and 5.4 show the number of nodes that are investigated in the certain
game position using the different orderings. The mid-game position is the one
illustrated in figure 4.6. For these experiments a plain alpha-beta player is used.

Tree Investigated Nodes
Depth No Ordering Ordering 1 Ordering 2 Ordering 3

1 45 45 45 45
2 175 132 132 175
3 2,552 2,423 2,552 2,423
4 9,380 6,918 11,543 6,918
5 427,278 227,504 187,286 266,290
6 1,213,384 823,541 824,568 1,074,184
7 51,212,918 31,584,699 35,432,824 33,645,840
8 239,733,948 90,206,750 128,863,524 153,160,920

Table 5.2: Move Ordering: Investigated nodes Standard formation

Tree Investigated Nodes
Depth No Ordering Ordering 1 Ordering 2 Ordering 3

1 53 53 53 53
2 362 318 342 354
3 13,160 4,140 3,661 4,076
4 52,969 29,062 21,231 26,944
5 4,522,378 450,324 379,854 451,734
6 16,053,963 2,897,725 1,854,156 2,548,939
7 1,932,568,869 53,040,729 30,777,654 38,878,061
8 - 353,342,474 214,643,317 272,975,265

Table 5.3: Move Ordering: Investigated nodes Belgian Daisy

These results show that a basic ordering already has a noticable benefit
compared to no ordering. Furthermore, the ordering 2 seems to be the most
promising ordering. For the Standard starting position ordering 2 is worse
than the basic ordering. The reason is that at the beginning there are only
a few moves leading to captures or attacks. Belgian Daisy leads after some
moves to captures and attacks as well as the tested mid-game position. When
attacking or capturing moves appear the second ordering has the advantage to
first investigate these promising moves leading to many prunings.

In the following experiments move ordering number 2 is always used.

37

Tree Investigated Nodes
Depth No Ordering Ordering 1 Ordering 2 Ordering 3

1 60 60 60 60
2 813 367 236 240
3 18,929 8,891 6,082 6,707
4 160,486 38,365 17,979 22,662
5 5,553,251 937,310 427,556 474,235
6 65,038,139 2,538,791 826,597 1,094,926
7 2,442,861,481 62,480,559 17,234,990 17,438,139
8 - 194,809,382 45,190,061 52,819,767

Table 5.4: Move Ordering: Investigated nodes mid-game position

Iterative Deepening

Iterative Deepening is on the one hand a technique to enable the player to use
a specified amount of time for a move. Additionally, since several searches are
performed iteratively, one uses the principal variation from the previous search
for the next search first. The assumption is that this leads to more pruning. In
the tables 5.5, 5.6 and 5.7 searches for several depths and several game board
positions are listed. The mid-game position is the position showed in figure 4.6.
The tables show the number of investigated nodes for a basic alpha-beta search
and for an alpha-beta search using iterative deepening starting always with the
principal variation of the search before.

Tree Investigated Nodes
Depth Without ID With ID

1 45 45
2 132 176
3 2,552 2,727
4 11,543 14,163
5 187,286 201,469
6 824,568 1,019,719
7 35,432,824 36,337,658
8 128,863,524 164,662,917

Table 5.5: Iterative Deepening Move Ordering: Investigated nodes Standard
formation

The results show that the number of investigated nodes increases when iter-
ative deepening is used. Often it is an advantage to use the principal variation
of previous searches to decrease the number of nodes. Mostly, this advantage
outperforms the disadvantage of re-search nodes multiple times. For Abalone it
is not the case. Obviously, the re-search of some nodes is not absorbed by the
better move ordering.

Anyway, iterative deepening has to be used in Abalone to afford finishing

38

Tree Investigated Nodes
Depth Without ID With ID

1 53 53
2 342 442
3 3,661 4,135
4 21,231 28,028
5 379,854 384,696
6 1,854,156 2,210,887
7 30,777,654 32,921,869
8 214,643,317 243,589,752

Table 5.6: Iterative Deepening Move Ordering: Investigated nodes Belgian
Daisy

Tree Investigated Nodes
Depth Without ID With ID

1 60 60
2 236 247
3 6,082 5,939
4 17,979 23,258
5 427,556 450,390
6 826,597 1,268,097
7 17,234,990 18,232,930
8 45,190,061 61,108,828

Table 5.7: Iterative Deepening Move Ordering: Investigated nodes mid-game
position

a search in a certain time. Therefore, all following experiments are done with
iterative deepening.

5.1.2 Killer Moves

Using Killer Moves for a better move ordering should lead to more prunings. In
the tables 5.8, 5.9 and 5.10 a basic alpha-beta player is compared to one using
killer moves. Furthermore, it is tested how many killer moves per depth should
be saved.

The tables show that in both start positions it is beneficial to use killer moves.
In these two positions using one or two killer moves seems to be the best. At the
mid-game position killer moves lead to a higher number of investigated nodes.
Still using three killers performs worse than using one or two. Since the loss
in the mid-game position is small, but the gain in both other positions is high
killer moves should be used. Two killer moves per depth seem to be accurate.

39

Tree Investigated Nodes
Depth no Killer Move 1 Killer Move 2 Killer Moves 3 Killer Moves

1 45 45 45 45
2 176 176 176 176
3 2,727 2,601 2,601 2,601
4 14,163 9,614 9,614 9,614
5 201,469 146,264 146,310 146,250
6 1,019,719 543,835 546,156 546,346
7 36,337,658 8,789,211 8,803,583 8,774,354
8 164,662,917 32,814,503 32,815,327 39,879,826

Table 5.8: Killer Moves: Investigated nodes Standard formation

Tree Investigated Nodes
Depth no Killer Move 1 Killer Move 2 Killer Moves 3 Killer Moves

1 53 53 53 53
2 442 426 396 398
3 4,135 4,274 4,612 3,945
4 28,028 19,520 18,341 16,193
5 384,696 240,728 262,186 252,903
6 2,210,887 1,164,946 1,029,932 1,306,542
7 32,921,869 13,421,546 12,188,274 15,070,636
8 243,589,752 76,534,085 70,701,891 69,057,904

Table 5.9: Killer Moves: Investigated nodes Belgian Daisy

5.1.3 Transposition Table

The objective of using a transposition table is to minimize the number of nodes
that have to be investigated. Since Abalone has only one type of pieces it is ex-
pected that Abalone has many transpositions within a search tree. Therefore,
the number of investigated nodes should decrease dramatically when using a
transposition table. A comparison between an alpha-beta player using a trans-
position table and one not using it is given in the tables 5.11, 5.12 and 5.13.

The results of these experiments are as expected. Using a transposition
table leads to many prunings. Thus, they are useful to improve the results of
the alpha-beta search.

5.1.4 Quiescence Search

Quiescence search should improve the results of the alpha-beta search in the way
that it solves the horizon problem. Therefore, non-quiescent game positions are
searched deeper leading to a more accurate resulting move. The player avoids
ejecting moves if he gets under pressure afterwards. Some games between a
plain alpha-beta player and an alpha-beta player using quiescence search are
played. Both of them use a transposition table. The results of the played games

40

Tree Investigated Nodes
Depth no Killer Move 1 Killer Move 2 Killer Moves 3 Killer Moves

1 60 60 60 60
2 247 232 234 234
3 5,939 5,922 6,348 5,784
4 23,258 21,803 22,213 21,098
5 450,390 367,276 394,865 394,643
6 1,268,097 1,223,807 1,294,076 1,254,569
7 18,232,930 19,678,793 19,948,542 22,546,049
8 61,108,828 63,795,607 62,488,941 68,719,815

Table 5.10: Killer Moves: Investigated nodes mid-game position

Tree Investigated Nodes
Depth Without TT With TT

1 45 45
2 176 176
3 2,727 2,728
4 14,163 8,568
5 201,469 120,634
6 1,019,719 283,100
7 36,337,658 8,216,593
8 164,662,917 14,286,296

Table 5.11: Transposition Table: Investigated nodes Standard formation

are listed in table 5.14.
These results show that quiescence search seems to be an advantage. During

the quiescence search only capturing moves are investigated leading to very small
trees with a branching factor of at most 2 for every capturing position on the
board.

5.1.5 Evaluation Function

The quality of a game-playing agent using alpha-beta search strongly depends
on the evaluation function. The ideas about which features can be used is
already described in section 4.2. These features contribute to a total value
which represents the quality of a game board position. The difficulty is to find
a good weighting between these features. A first intuitive weighting is given in
table 5.1.

To improve the quality of the evaluation function different configurations of
features and weightings were defined. Players using these different configura-
tions played several games against each other. By the outcome of those games
it was assessed which player performs best.

To get useful results Belgian Daisy was used as start position. The reason is
that when using the standard position the players play very defensive and never

41

Tree Investigated Nodes
Depth Without TT With TT

1 53 53
2 442 442
3 4,135 4,134
4 28,028 22,693
5 384,696 257,810
6 2,210,887 936,549
7 32,921,869 11,268,180
8 243,589,752 68,810,881

Table 5.12: Transposition Table: Investigated nodes Belgian Daisy

Tree Investigated Nodes
Depth Without TT With TT

1 60 60
2 247 247
3 5,939 5,754
4 23,258 17,453
5 450,390 363,182
6 1,268,097 843,729
7 18,232,930 9,126,680
8 61,108,828 24,003,413

Table 5.13: Transposition Table: Investigated nodes mid-game position

perform a move that offers the opponent the opportunity to attack. Thus, these
games get stuck and always end in a draw. Starting with Belgian Daisy is an
effective solution for that problem. Even in tournaments between human players
Belgian Daisy is used to avoid defensive play.

The second interesting thing is that the player who begins the game seems
to have an advantageous position. Games between similar players are mostly
won by the first player.

During the experiments several weighting configurations were tested. One
configuration was extended by regarding the grouping of the opposing marbles
which is not in the configuration illustrated in table 5.1. It turned out that
it is not beneficial. Other ones put more weight on the attacking positions.
Another configuration plays more defensive since it gets a reward of 1, 000 if
the opponent loses a marble, but it gets a reward of −3, 000 if it loses an own
marble. A last configuration has a higher weight on the grouping than on the
center distance feature.

The results of the experiments show that the first intuitive weighting in
table 5.1 was already very good. Just the weighting of the attacking points was
changed from 10 to 40 in the final evaluation function.

42

Allowed As Black As White Win
Time Win Draw Loss Win Draw Loss Rate
600 13 4 3 7 6 7 62.5 %
900 11 4 5 9 6 5 62.5 %
1200 12 5 3 4 6 10 53.8 %

Table 5.14: Played games using quiescence search

5.2 Monte-Carlo Search

This section describes the experiments that were done to test the performance
of the Monte-Carlo search.

5.2.1 Simulated Games using Random Move Players

The strength of Monte-Carlo search depends on how games are simulated. To
get an idea of how long a game between two random players last 1,000 games
starting at the Belgian Daisy position were simulated. For each game the num-
ber of played plies to reach a terminal position were counted. These numbers
range from 351 to 3,752. On average a game ends after 1370 plies.

Since games should not always be played to the end, but they should be
limited to a certain number of plies it was also tested how the game outcome is
if a simulated game is limited to 200 plies. It turned out that the losing player,
i.e. the player with more lost marbles, has between 0 and 5 lost marbles. On
average the number of lost marbles is 1.37. Playing 300 plies leads to an average
number of lost marbles of 1.92. Playing 400 plies leads to an average number
of lost marbles of 2.54.

It was also tested how many games per possible move are simulated. For
this test simulated games were limited to 200 plies and the advanced evaluation,
i.e. counting lost marbles, was used. Results are given in table 5.15.

Allowed Start # simulated games
Time formation per move total

900 Standard 294 12,936
900 Belgian Daisy 290 15,080
900 mid-game position 285 16,815

1200 Standard 393 17,292
1200 Belgian Daisy 380 19,760
1200 mid-game position 372 21,948

Table 5.15: Monte-Carlo player: Numbers of simulated games

It shows that if a player has 900 seconds for the whole game, it uses less
than 20 seconds for the first move. Within these 20 seconds the player is able to
simulate more than about 13,000 games. Thus, for every possible move almost
300 games can be simulated.

43

5.2.2 Evaluation of Simulated Games

Since the games are not always simulated to a terminal position, but they stop
if a limit of plies is reached, it can be an advantage to not only evaluate an
outcome by determining whether it is a win, a draw or a loss, but to use the
difference between the lost marbles as a measure. Table 5.16 shows the outcomes
of played games of a Monte-Carlo player counting lost marbles versus a Monte-
Carlo player using the basic approach. Each player simulates games with a
maximum of 200 plies. Again, games start at the Belgian Daisy position. Since
the players were not able to finish a game within 200 plies it is not possible to
count wins and losses. Instead the lost marbles of each player are summed up
and listed in the table. For each configuration 15 games were played.

Allowed basic vs. improved improved vs. basic
Time lost marbles lost marbles

basic improved improved basic
900 17 1 5 25
1200 12 2 3 22

Table 5.16: Comparison of basic and improved Monte-Carlo player

From these numbers we can conclude that counting the lost marbles is more
accurate than just assessing wins, draws or losses. Thus, the Monte-Carlo player
should use the improved evaluation.

5.3 Comparison of Alpha-Beta Search and Monte-
Carlo Search

In this section both algorithms are compared. Some Belgian Daisy games are
played between an alpha-beta player and a Monte-Carlo player. Table 5.17 lists
the game results.

Allowed Winner Winner
Time AB MC MC AB
900 15 0 0 15
1200 15 0 0 15

Table 5.17: Alpha-Beta player vs. Monte-Carlo player

It is obvious that alpha-beta search is much better. The Monte-Carlo player
is not able to win a game. During all 60 games the Monte-Carlo player was able
to eject three opposing marbles together. All these games took between 15 and
40 plies. Thus, alpha-beta achieved fast wins since the average number of plies
for one game is 87.

The conclusion of this experiment is that alpha-beta search is a good ap-
proach to use for Abalone. Using Monte-Carlo search does not lead to a good

44

reasoning about which move is best.

5.4 Comparison of Alpha-Beta Search and An-
other Program

This section gives some results of games between AIBA and another Abalone
program that is available on the internet.

The ABA-PRO agent implemented by Tino Werner et. al mentioned already
in the introduction in section 1.3 is available for free. Therefore, it is a good test
candidate. Today it is probably the best Abalone program. It has even beaten
the 3 times world champion of Abalone – Gert Schnider [3]. AIBA is tested
to several strength levels of ABA-PRO. ABA-PRO does not support defining a
time limit to the computer player. The player with strength 9, i.e. it searches the
game tree to a depth of 9, needs between 15 and 30 seconds to generate most
of the moves. Sometimes it needs even several minutes, but that is seldom.
All in all the player with strength 9 seems to be a fair comparison to AIBA
using a time limit of 1200 seconds for the whole game. Thus, the comparison
between these two players is the most accurate. Several games between these
two players are played. All of them start at Belgian Daisy formation. If a game
is not finished after 200 plies it is called a draw. That is fair, because the time
AIBA uses for a move keeps decreasing. Thus, at a certain point it does not
longer search to the usual average depth of 6, but at a shallower depth which
would lead to a distorted test result. The results are listed in table 5.18. AIBA
1200 indicates that AIBA uses 1200 seconds for the whole game. The number
behind ABA-PRO gives the strength level of the player.

Player 1 Player 2 Lost Marbles Winner
AIBA 1200 ABA-PRO 3 1 : 6 AIBA 1200
ABA-PRO 3 AIBA 1200 4 : 5 Draw
AIBA 1200 ABA-PRO 4 3 : 4 Draw
ABA-PRO 4 AIBA 1200 6 : 3 AIBA 1200
AIBA 1200 ABA-PRO 9 6 : 5 ABA-PRO 9
ABA-PRO 9 AIBA 1200 4 : 6 ABA-PRO 9

Table 5.18: Played games between AIBA and ABA-PRO

It turned out that AIBA can keep up with ABA-PRO 3 and 4. It achieves
two draws and two wins.

Strength 9 is stronger than AIBA 1200. It achieved 2 wins. However, the
AIBA did not perform too bad since it was able to capture 4 or 5 opposing
marbles. This is because it is aggressive right from the beginning on while ABA-
PRO tries to occupy the center of the game board. Thus, at the beginning the
AIBA is strong and captures some marbles. In the following rounds ABA-PRO
has a stronger position since it has a single group of marbles at the center of
the board.

45

46

Chapter 6

Conclusions and Future
Research

This chapter concludes the research that was done. It gives answers to the
research questions and the problem statement mentioned in section 1.4. At the
end some ideas for future research are given.

6.1 Answering the Research Questions

In section 1.4 some research questions are given. This chapter gives answers to
them according to the experimental results of chapter 5.

RQ1: Can an Abalone player be implemented using the alpha-beta
search?

During the research one of the investigated algorithms to implement an Abalone
playing agent was alpha-beta search. It turned out that it is a good approach
to use since Abalone is a two-player strategic board game. The performance of
the algorithm strongly depends on the quality of the evaluation function. If the
evaluation function gives reliable results, alpha-beta search is a good approach
to use.

RQ2: Can an Abalone player be implemented using the Monte-Carlo
search?

Monte-Carlo search is an approach that can be used. It works, but the resulting
decisions of the player are not always reasonable. This is probably due to the fact
that during the simulation games the player take absolutely randomly moves.
Since the majority of possible moves in a situation consists of bad ones the
players often choose bad moves. Thus, the simulation games do not represent
typical games. Maybe it performs better if it is possible to increase the number
of simulated games per move.

47

RQ3: Is it possible to implement some improvements to make both
approaches making better decisions?

There are some opportunities to improve both the alpha-beta and the Monte-
Carlo search. For alpha-beta search move ordering is the most important one.
If a good move ordering is used the number of investigated nodes per search can
decrease dramatically leading to a deeper search in the same time range. Addi-
tionally, a transposition table can further improve the search, because subtrees
of transpositions do not need to be re-searched completely. The killer-move
heuristic turned out to be another valuable improvement to speed up search.
Quiescence search is a good way to solve the horizon problem. The extra effort
is minimal since only the capturing moves are investigated to a greater depth.

For Monte-Carlo search two improvements were implemented and tested.
The first one is limited Monte-Carlo search where the simulated games are
limited to a certain number of plies. This is needed, because a simulation game
can easily last for 4,000 plies. An average game only last for 87 plies. Limiting
the number of plies in a simulation game leads to a higher number of simulated
games per move since it avoids very long games.

The second improvement is not only to evaluate the outcomes of simulation
games, but to count the lost marbles of each player. Since games are limited
they often end up in a draw. In that case it can only contribute to the final
evaluation if the lost marbles are counted. Otherwise, it would be a draw that
does not change anything for the result.

RQ4: Which one of the two approaches performs better?

The comparison of both approaches clearly shows that alpha-beta search per-
forms much better than Monte-Carlo search. Every game was won by alpha-beta
search. Even in 60 games Monte Carlo search was able to eject only 3 oppos-
ing marbles. Thus, alpha-beta search is much more accurate. It should be
absolutely preferred.

6.2 Answering the Problem Statement

Now that the research questions are answered this section gives an answer to
the problem statement given in section 1.4.

Is it possible to implement a strong computer player for Abalone?

Yes, it is possible to build a strong computer player for Abalone. The approach
that should be used to make the player strong is alpha-beta search. It leads to
reasonable behaviour early in the research progress and can be further improved
by some techniques as well as by enhancing the evaluation function. During
research move ordering, transposition table, killer moves and quiescence search
were investigated. They all contributed to a better performance of the Abalone
playing agent. But there is still research to do regarding the evaluation function.

48

6.3 Future Research

This research gives detailed experimental results of a computer player built on
alpha-beta search together with some basic techniques to improve it.

There are other approaches to further improve the search which are not
investigated yet. Examples are an opening book, history heuristic [20] and
aspiration search [8]. Furthermore, forward-pruning techniques like null move
[24] or multi-cut [24] can also be investigated.

Another important field where further research has to be done is the evalu-
ation function. The features currently used are valuable, but maybe there are
others that can contribute to a better evaluation.

Furthermore, the time that is used for a move can be improved. Currently
only an alarm timer is implemented. Therefore, the time for a move decreases
with every move. It would be good to distribute the time more intelligent, e.g.
to keep some time for the moves in the endgame.

As the sample game described in appendix A shows it would be an im-
provement to have dynamic weights on the features of the evaluation function.
That would enable the player to concentrate on reaching the center at the start
game. When the player has reached a strong position it then starts to attack
and capture opposing marbles.

Furthermore, much more experiments can be done. It is interesting to let the
agent play against other Abalone computer programs. A comparison between
the agent and professional human players would also be interesting.

There are also Monte-Carlo search techniques that may perform better than
the basic Monte-Carlo approach currently implemented. The so-called Monte-
Carlo tree-search [9] could be implemented, which is expected to be much better
than the basic Monte-Carlo search. However, seeing the enormous overwhelming
power of alpha-beta search over Monte-Carlo search, it is not to be expected
that Monte-Carlo tree-search outperforms alpha-beta search.

49

50

Bibliography

[1] Abalone S.A., Abalone User’s Manual. 1997.

[2] O. Aichholzer, Abstract Strategy Games Abalone and Pyraos. Research
Stay FU Berlin, Berlin, Germany, May 2004.

[3] O. Aichholzer, F. Aurenhammer and T. Werner, Algorithmic Fun –
Abalone. Institute for Theoretical Computer Science, Graz University of
Technology, Austria, 2002.

[4] S.G. Akl and M.M. Newborn, The principal continuation and the killer
heuristic. ACM Annual Conference Proceedings, pp. 466-473, 1977.

[5] L.V. Allis, Searching for Solutions in Games and Artificial Intelligence.
Maastricht University Press, Maastricht, 1994.

[6] D.F. Beal, A Generalised Quiescence Search Algorithm. Artificial Intelli-
gence, 43(1):85-98, 1900.

[7] D.M. Breuker, Memory versus Search in Games. Ph.D. thesis, Department
of Computer Science, University of Limburg, 1998.

[8] M.S. Campbell and T.A. Marsland, A Comparison of Minimax Tree Search
Algorithms. Artificial Intelligence, 43(1):85-98, 1900.

[9] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck. Monte-carlo tree search: A
new framework for game ai. In Michael Mateas and Chris Darken, editors,
Proceedings of the Fourth Artificial Intelligence and Interactive Digital
Entertainment Conference, pages 216-217. AAAI Press, Menlo Park, CA.,
2008.

[10] J.M. Hammersley and D.C. Handscomb, Monte Carlo Methods. Methuen
& Co., 1964.

[11] H.J. van den Herik, J.W.H.M. Uiterwijk and J. van Rijswijck, Games
solved: Now and in the future. Artificial Intelligence, 134:277-311, 2002.

[12] H. Kastner, Backgammon. Geschichte. Regeln. Strategien. Humboldt /
Schluetersche, August 2008.

51

[13] D.E. Knuth and R.W. Moore, An Analysis of Alpha-Beta Pruning. Arti-
ficial Intelligence, 6:293-326, 1975.

[14] R.E. Korf, Depth-First Iterative-Deepening: An Optimal Admissible Tree
Search. Artificial Intelligence, 27:97-109, 1975.

[15] N. Lemmens, Constructing an Abalone Game-Playing Agent. B.Sc. thesis,
Maastricht University, 2005.

[16] H.J.R. Murray, A History of Board Games Other than Chess. Oxford
University Press, 1952.

[17] N.J. Nilsson, Problem Solving Methods in Artificial Intelligence. McGraw-
Hill Book Company, New York, NY, USA, 1971.

[18] E. Ozcan and B. Hugalu, A Simple Intelligent Agent for Playing Abalone
Game: ABLA. Proc. of the 13th Turkish Symposium on Artificial Intelli-
gence and Neural Networks, pp. 281-290, 2004.

[19] S. Russel and P. Norvig, Artificial Intelligence – A Modern Approach.
Prentice-Hall Inc., Englewood Cliffs, NY, USA, 1995.

[20] J. Schaeffer, The history heuristic and the performance of alpha-beta en-
hancements. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, Vol. 11, pp. 1203-1212, 1989.

[21] C. Shannon, Programming a Computer for Playing Chess. Philosophical
Magazine, Ser. 7, Vol. 41, No. 314, pp. 256-275, March 1950.

[22] A.M. Turing, Digital Computers Applied to Games. In B.V. Bowden,
editor, Faster than Thought, Sir Isaac Pitman, London, 1953.

[23] T. Werner and P. Sommerlund, The 1st ICGA Abalone Tournament. Graz,
Austria / Copenhagen, Denmark, 2003

[24] M.H.M. Winands, H.J. van den Herik, J.W.H.M. Uiterwijk and E.C.D.
van der Werf, Enhanced Forward Pruning. Department of Computer Sci-
ence, Institute for Knowledge and Agent Technology, Maastricht Univer-
sity, 2005

[25] A.L. Zobrist, A New Hashing Method with Application for Game Playing.
Technical Report 88, The University of Wisconsin, 1970.

[26] The history of checkers,
http://www.essortment.com/hobbies/historycheckers smap.htm,
March, 2009.

[27] Wikipedia.org - Abalone (board game),
http://en.wikipedia.org/wiki/Abalone game, March, 2009.

52

[28] Wikipedia.org - Board game,
http://en.wikipedia.org/wiki/Board games, March, 2009.

[29] Wikipedia.org - Game Complexity,
http://en.wikipedia.org/wiki/Game complexity, May, 2009.

53

54

Appendix A

Belgian Daisy Sample Game

This appendix gives an example of an Abalone game between AIBA 1200 and
ABA-PRO level 9. It starts from the Belgian Daisy position. AIBA 1200 plays
the black marbles and starts the game. Table A.1 lists all moves that were made
during the game.

Black opens the game with A1B2. This is a move ABA-PRO also prefers
when it plays first. It leads to a position where no marble is in danger. ABA-
PRO answers with the similar move A5B5. By moving A2B3 Black is not
attacked by White, but puts pressure on the opponent since it is able to attack
at two positions. White is focussed on occupying the center of the board. By
moving B5C5 it moves the three marbles nearer the center. But after this move
Black takes the move B1B2 leading to a position with two opportunities to
capture a white marble. Therefore, White will lose at least one marble for sure.
The main difference between both players in the start game and mid game is
that AIBA plays aggressively right from the start. On the other side ABA-PRO
concentrates on reaching the center to have a strong position for the remaining
game. As a result AIBA is able to capture some marbles in this phase of the
game.

After ply 36 (position in figure A.1) White has already a good position since
it has all marbles in a single group at the center of the game board. The black
marbles are divided into two groups one at the top and one at the bottom.

At ply 67 (position in figure A.2) Black moves B6B5. This looks stupid
at first glance, but it is not. Before that move the marble at B6 is attacked
and could be captured. By moving B6B5 the marble on B6 is moved away. The
marble at A3 is now attacked. However, this position is better, because if White
ejects the black marble on A3 it also loses a marble, since Black attacks A3 as
well. Before the move White has lost 4 marbles, Black has lost 2. Thus, by
these two moves both players lose a marble which is better for Black, because
then it has already ejected five opposing marbles and is very close to a win.
Unfortunately, although Black is leading the game White is able to win the
game at the end since it has a much better position. After ply 95 AIBA (Black)
realizes that it has lost the game for sure. White moves C3C4 leading to a

55

Ply Move Ply Move Ply Move Ply Move
1 A1B2 26 F6E5 51 A2B3 76 E6D5
2 A5B5 27 B2B3 52 F5E5 77 B5B4
3 A2B3 28 B6C6 53 B3C4 78 F6E6
4 B5C5 29 H9H8 54 G6F6 79 B3B4
5 B1B2 30 C6D6 55 C4D5 80 E5E6
6 B6C6 31 A1A2 56 F4G5E4 81 A3A4
7 C2C3 32 D6E6 57 B6C7 82 B2C3
8 C6D6 33 H8H7 58 D6C5 83 B5B6
9 D4C4 34 F4F5 59 C7C6 84 E7E6
10 I5H5 35 H7H6 60 D3D4 85 A4A3
11 H7G7G6 36 D5E5 61 C6C5 86 E4D4
12 G4G5F3 37 H5H6I6 62 E3E4 87 A4A3
13 I8H7 38 C3D3 63 C4C5 88 D6C5
14 F3F4 39 I5I6H5 64 E4F5 89 I8I9H7
15 F7G7 40 E6F6 65 F2E2 90 A3B3
16 C7D7 41 I6H5 66 G6F6 91 A1A2B1
17 H7G6 42 F3F4 67 B6B5 92 E5D5
18 D7D6 43 H4G4G3 68 C3B3 93 A5B6
19 G8G7 44 G5H6 69 C5B4 94 B5B4
20 I6H6I7 45 G3F3F2 70 F5E5 95 B1C2
21 F5G6 46 I7H6 71 B5B4 96 C3C4
22 I7I8 47 A4B5 72 B2C3 97 C7D7
23 G6H7 48 H6G5 73 A5A4 98 B2B3
24 H4G4 49 B4C5 74 F7E6 99 C2D2
25 G7H8 50 E4D4 75 C6B5 100 B3B4

Table A.1: Belgian Daisy sample game

position where Black can save the marble on C7, but the marble on B6 cannot
be saved (see figure A.3).

This game shows that AIBA is able to find good moves and puts pressure on
the opponent. It does not play much worse since it ejects 5 opposing marbles.
AIBA’s biggest problem is that it tries to capture opposing marbles right from
the start. This leads to early captures. On the other hand, ABA-PRO does not
attack in the beginning of the game, but it tries to reach a good position for
the remaining game by occupying the game board’s center. As a result it loses
some marbles at the beginning, but in the endgame it is very strong and is still
able to win the game.

Starting a game at the Standard position does not suffer from this problem
since there are no attacking and no capturing moves at the start of the game.
To reach a position where the opponent can be attacked the player has to move
his marbles to the center anyway (see appendix B).

From this sample game one can conclude that AIBA can be improved by
concentrating on reaching a good position at the beginning. It should attack

56

Figure A.1: Position after ply 36

not before it has a strong position at the center with most of the marbles in one
single group. A possible approach would be to divide the game into different
phases. In the start phase the main goal is to occupy the center leading to an
evaluation function that has the highest weight on the features center distance
and grouping. Once a good position is reached the weighting changes in the
way that ejecting opposing marbles is the most important goal.

57

Figure A.2: Position after ply 66

Figure A.3: Position lost for Black after ply 96

58

Appendix B

Standard Position Sample
Game

This appendix gives an example of an Abalone game between AIBA 1200 and
ABA-PRO level 7. It starts from the Standard position. In that position ABA-
PRO searches much longer to find a move. Therefore, it plays only with a search
depth of 7. AIBA 1200 plays the black marbles and starts the game. Table B.1
lists all moves that were made during the game.

Ply Move Ply Move Ply Move Ply Move
1 A1B2 16 G8F7 31 B3B4 46 H4H5
2 I5H5 17 A4B4 32 I7I6 47 B3B4
3 A2B3 18 F7E6 33 B4B3 48 I8H8
4 I6H6 19 B3C4 34 H9I9 49 B4B3
5 A5A4 20 I8I7 35 B3B4 50 I7I6
6 H8G7 21 B4B3 36 I8I7 51 B3B4
7 B6C6 22 I7I8 37 B4B3 52 G8H8
8 I9H9H8 23 B3B4 38 I9I8 53 B4B3
9 A3B4 24 I6I7 39 B3B4 54 I8I7
10 H4I5 25 B4B3 40 H5H6 55 B3B4
11 A2B2 26 I8I9 41 B4B3 56 I6I5
12 I5I6 27 B3B4 42 I6I5 57 B4B3
13 B1C2 28 H8I8 43 B3B4 58 H5I6
14 I7H6 29 B4B3 44 I5H4 59 B3B4
15 B4C4 30 I9H9 45 B4B3 60 I5H4

Table B.1: Standard position sample game

After ply 60 the game is stopped as a draw, because both players repeat
their moves. They keep their marbles in groups so that the opponent cannot
attack. This behaviour is as expected. The final position is given in figure B.1.
As a result the Belgian Daisy should be preferred for games between the players

59

to keep the game in progress.

Figure B.1: Position after ply 60

60

