Groupoid Infinity

KOSTIANTYNIVSKA 20/14, KyIv, UKRAINE 04071

Categorical Encoding of Inductive Types
Paul Lyutko, Maxim Sokhatsky

Groupoid Infinity
Kamianets-Podilsky 2016

Contents

I__Abstract]

[2

Type Theory|

[2.1 Intuitionistic Type Theory|.

2.3 Dependent Types|
2.4 Identity Types| e
2.5 Inductive Types|.

Category Theory|

[3.1 Programs and Functions| 0oL
[3.2 Algebraic Types and Cartesian Categories|
[3.3 Exponential, A-calculus and Cartesian Closed Categories|
[3.4 Functors, A-calculus|
3.0 Algebras|
[3.6 Imitial Algebras|
[3.7 Recursive Types|

Categorical Encoding|

[4.1 List Samplel

Abstract

From PTS to HTS. We want to have flexible detachable layers on top of PTS core.
Then Sigma for proving. Then well-founded trees or polynomial functors as known as data
and record. Then higher path types, interval arithmetic, glue and comp for HIT. Each
layers is driven by differenth math, the common in only the method — category theory.

Extensible Language Design. Encoding of inductive types is based on categorical
semantic of compilation to PTS. All other syntax constructions are inductive definitions,
plugged into the stream parser. AST of the PTS language is also defined in terms of
inductive constructions and thus allowed in the macros. The language of polynomial
functors (data and record) and core language of the process calculus (spawn, receive and
send) are just macrosystem over Om language, its syntax extensions.

Changable Encodings. In pure CoC we have only arrows, so all inductive
type encodings would be Church-encoding variations. Most extended nowadays is
Church-Boehm-Berrarducci encoding, which dedicated to inductive types. Another well
known are Scott (lazyness), Parigot (lazyness and constant-time iterators) and CPS
(continuations) encodings. However most of them require variations of Fixpoint types.

Proved Categorical Semantic. There was modeled a math model (using higher-order
categorical logic) of encoding, which calculates (co)limits in a cathegory of (co)algebras
built with given set of (de)constructors. We call such encoding in honour of Lambek
lemma that leeds us to the equality of (co)initial object and (co)limit in the categories of
(co)algebras. Such encoding works with dependent types and its consistency is proved in
Lean model.

2.1

Type Theory

Intuitionistic Type Theory

Type theories are formal calculi that can be seen as both mathematical formal logics,
set theories, programming languages and formalized programming logics used to prove
program properties and derive a correct program from a specification |?].

We will follow the tradition in the literature on type systems [?| and formulate our
calculus with judgment rules in a well-known notation of Natural Deduction. There are
two types of judgement rules: ais a object of type A; a and b are definitionaly equal objects
of type A. Rules for each type can be in turn classified into formations, introductions,
eliminators and computational rules.

Formation rules are typing rules, introductions (type constructors) and eliminators are
adjunctions that correspond to axioms, and computational rules correspond to operational
semantics. From categorical point of view typing rules correspond to functors, axioms
to morphisms and operational semantics to equalities on morphisms.

Our variant of intuitionistic type system has an infinite hierarchy of universes, the
hierarchy is non-cumulative, the universe of propositions is impredicative while
universes of values, types and higher types are predicative. The next paragraphs briefly
describe the reasons for such design choices.

While there are variants of MLTT with finite number of universes (see for example the
lambda cube and PTS formulations of Calculus of Constructions in [?]), most modern
provers have an infinite hierarchy of universes as it’s more expressive.

The first universe, the universe of propositions, has impredicative quantification while
all other universes are predicative. This setup is known to simplify the type system while
keeping it free of paradoxes and thus sound as a formal logic.

The first few universes have analogs in logic and axiomatic set theories. The bottom is
contractible space. Universe 0 can be thought of as the universe of propostions. Universe
1 contains elements. Universe 1 contains sets. Universe 2 contains classes. The hierarchy
can be cumulative or non-cumulative. In cumulative setting lower universes are included
in higher ones — e.g. all elements are sets. In non-cumulative setting the universes don’t
intersect, so the case is analogous to axiomatic set theories with urelements.

2.2 Universes
1: Nat
Type;
1: Nat
Type; : Typeit1
i1: Nat, j:Nat
Type; — Type; : Typemaz(i j)

2.3 Dependent Types
m:A u:Abmy:B
[m1/u] w2 : B
x:AF B:Type
Il (x: A) = B:Type

z:AFb: B

Az:A)—>b:II (z:A)— B
f:I(x:A)—-B) a:A
fa:Bla/z]
x:AFb:B a:A
(A(x:A)—=b)a=0bla/x]: B [a/z]

(sorts)

(axioms)

(rules)

(subst)

(IT-formation)

(A-intro)

(App-elimination)

(B-computation)

record IT (A: Type): Type :=
(I1: (A — Type) — Type)

(fun: (B: A — Type) — V (a: A) - B a — II B)
(app: (B: A — Type) — II B — V (a: A) — B a)
(app-fun (B: A — Type) (f: V (a: A) — B a): V (a: A) — app (fun f) a ==> f a)

a
(fun-app (B: A — Type) (p: Il B): fun (A(a: A) — app p a) ==> p)

2.4 Identity Types
a:A b:A A:Type
Id(A,a,b) : Type
a:A
refl(A,a): Id(A,a,a)

(Id-formation)

(Id-intro)

p:ld(a,b) x,y:A w:ldlx,y)r- E:Type x:AFd:FE [z/y, refl(x)/u]
J(a,b,p, (x,y,u) d) : E [a/z, by, p/u]

(J-elimination)

a,x,y: A, w:ld(z,y)FE:Type z:Abd:E [x/y, refl(z)/u]
J(a,a,refl(a), (x,y,u) d) =d |a/z] : E [a/y, refl(a)/u]

(Id-computation)

record Id (A: Type): Type :=
(Id: A — A — Type)
(refl (a: A): Id a a)
(Predicate := V (x,y: A) —» Id x y — Type)
(Forall (C: Predicate) := V (x,y: A) = V (p: Id x y) - C x y p)
(A (C: Predicate) := V (x: A) = C x x (refl x))
(axiom-J (C: Predicate): A C — Forall C)
(computation-rule (C: Predicate) (t: A C):
V (x: A) - (J Ct x x (refl x)) ==> (t x))

2.5 Inductive Types
A:Type x:A B(zx):Type
W(z:A) = B(x) : Type

a:A t:B(a) > W
sup(a,t) : W

(W-formation)

(W-intro)

w:WkECw):Type x:A, uw:B(x) =W, v:1l(y:B(z)) = C(u(y)) F c(z,u,v) : C(sup(z,u))
w: Wk wrec(w,c) : C(w)

(W-elimination)

w:WkECw):Type x:A, u:B(x) =W, v:I(y:B(z)) = C(u(y)) F c(z,u,v) : C(sup(z,u))
x: A, wu:B(x) > WhEwrec(sup(xz,u),c) = c(z,u, \(y: B(z)) = wrec(u(y),c)) : C(sup(z,u))
(W-computation)

3.1

Category Theory

Programs and Functions

Category theory is widely used as an instrument for mathematicians for software analisys.
Category theory could be treated as an abstract algebra of functions. Let’s define an
Category formally: Category consists of: morphisms (arrows) and objects (domains and
codomains of arrows) along with associative operation of composition and unit morphism
that exists for all objects in category.

f'A%gff-Aig%C (Comp) iAo A D
f:A—B
‘ : : ~ Id
f.B(?A) hg.fCTBh) Dhjil—w (Assoc) fOZdA:f:A_>B()
0g)oh=jJo(go :
:A— B
! (IdR)

idgof—=f:A B

record Setoid: Type :=
(Carrier: Type)
(Equ: Carrier — Carrier — Prop)
(Refl: V (eg: Carrier) — Equ e eg)
(Trans: V (ei,e2,es: Carrier) — Equ e; es — Equ ez e3 — Equ e; e3)
(Sym: V (e1 ez: Carrier) — Equ e; e — Equ e2 ejp)

record Cat: Type :=
(Ob: Type)
(Hom: V (dom,cod: Ob) — Setoid)
(Id: V (x: Ob) — Hom x x)
(Comp: VY (x,y,z: Ob) — Hom x y — Hom y z — Hom x z)
(Domi,: V (x,y: Ob) (f: Hom x y) — (Hom.Equ x y (Comp x x y id f) f))
(Codio: V (x,y: Ob) (f: Hom x y) — (Hom.Equ x y (Comp x y y f id) f))
(Subst,: V (x,y,z: Ob)
(fi1, f2: Hom x y) (Hom.Equ x y f; f2)
(g1, g2: Hom y z) (Hom.Equ y z g1 g2) —
(Hom.Equ x z (Comp x y z f; g1) (Comp x y z f2 g2)))
(Assoco: V (x,y,z,w: Ob) (f: Hom x y) (g: Hom y z) (h: Hom z w)
— (Hom.Equ x w (Comp x y w f (Comp y z w g h))
(Comp x z w (Comp xy z f g) h)))

3.2

Algebraic Types and Cartesian Categories

After composition operation of construction of new objects with morphisms we introduce
operation of construction cartesian product of two objects A and B of a given category
along with morphism product < f,g > with a common domain, that is needed for full
definition of cartesian product of A x B.

This is an internal language of cartesian category, in which for all two selected objects
there is an object of cartesian product (sum) of two objects along with its L terminal (or
T coterminal) type. Exe languages is always equiped with product and sum types.

Product has two eliminators 7 with an common domain, which are also called projections
of an product. The sum has eliminators ¢« with an common codomain. Note that eliminators
7w and ¢ are isomorphic, that is rooc =0 onm = id.

r:AxB I
m :AxB— A m :AxB— B
a:A b: B
a:A b:B al|b:A® B
(a,b): Ax B
z: AQ B
T 31:A—-A®B;83,:B—-A®B

The L type in Haskell is used as undefined type (empty sum component presented in all
types), that is why Hask category is not based on cartesian closed but CPO [?]. The L type
has no values. The T type is known as unit type or zero tuple () often used as an default
argument for function with zero arguments. Also we include here an axiom of morphism
product which is given during full definition of product using commutative diagram. This
axiom is needed for applicative programming in categorical abstract machine. Also consider
co-version of this axiom for [f,g] : B+ C — A morphism sums.

f:A—B g:A—=C BxC
(f,9): A= BxC

7710<fvg> :f
7720<fvg> =g
(fom,fom)=Ff
(f,g)oh={foh,goh)
<7T1,7T2> =1d

3.3

Exponential, A\-calculus and Cartesian Closed Categories

Being an internal language of cartesian closed category, lambda calculus except variables
and constants provides two operations of abstraction and applications which defines
complete evaluation language with higher order functions, recursion and corecursion, etc.

To explain functions from the categorical point of vew we need to define categorica
exponential f : AP, which are analogue to functions f : A — B. As we already defined
the products and terminals we could define an exponentials with three axioms of function
construction, one eliminator of application with apply a function to its argument and axiom
of currying the function of two arguments to function of one argument.

z:A-M:B apply o ((curry f)omi,ma) = f
ANz.M:A> B curry apply o (g o m1,m2)) =g
apply o {curry f,g) = f o (id,g)
f:A—B a:A (curryf)og:curry(fo(gOTrl,Tr2>)
apply fa : (A—B)xA— B curry apply = id
fiAxB—=C

curry f: A— (B — C)

A-language as CAM machine

Objects : T | — | x
Morphisms : id | fog | (f,g) | apply | X | curry

3.4

Functors, A-calculus

Functor comes as a notion of morphisms in categories whose objects are categories.
Functors preserve compositions of arrows and identities, otherwise it would be impossible
to deal with categories. One level up is notion of morphism between categories whose
objects are Functors, such morphisms are called natural transformations. Here we need
only functor definition which is needed as general type declarations.

f: A—>B
Ff:(A—=B)—=(Fa—Fb)

dyg A— A
Fidy = idpy : FA—SF A

f:B—~C g:A—B
FfoFg = F(fog) : FA—SFC

We start thinking of functors on dealing with typed theories, because functors usually
could be seen as higher order type con

record Functor (yp: Type — Type): Type :=
(fmap: V (a,B: Type) — (o = B8) = ¢ B = ¢ B;
(id_,: V (a: Type) (x: ¢ a) — fmap id x = x)
(comp: V (a,B,v: Type) (f: 8 — v) (g: a = B) (x: ¢ @)
— fmap (f o g) x = (fmap f o fmap g) x)

10

3.5

3.6

3.7

Algebras

F-Algebras gives us a categorical understanding recursive types. Let F' : C — C be an
endofunctor on category C'. An F-algebra is a pair (C,¢), where C is an object and
¢ : F C — C an arrow in the category C. The object C is the carrier and the functor F
is the signature of the algebra. Reversing arrows gives us F-Coalgebra.

FC—*5C C 25 FC
S
FD—4D DY FD

fop=9oFf Yof=Ffoyp

Initial Algebras

A F-algebra (uF,in) is the initial F-algebra if for any F-algebra (C, ¢) there exists a unique
arrow (¢) : pF' — C where f = (¢) and is called catamorphism. Similar a F-coalgebra
(vF, out) is the terminal F-coalgebra if for any F-coalgebra (C,) there exists unique arrow
[¢] : C — vF where f = [¢]

FuF —y yF c-—?.FcC
F)| I i1 |71
FC —% . (¢ vF 2 FuF

foin=gpoF f=f=(p) outof=F fop=f=][y]

Recursive Types

As was shown by Wadler [?] we could deal with recusrive equations having three axioms:
one fix : (A — A) — A fixedpoint axiom, and axioms in: FFT — T and out : T — F T
of recursion direction. We need to define fixed point as axiom because we can’t define
recursive axioms. This axioms also needs functor axiom defined earlier.

M:F (uF) M:A— A
ingep M :p F fix M : A
M :uF

outy,p M : F (pu F)

11

Categorical Encoding

List Sample

Lambek encoding is a categorical proof-representation of higher inductive types encoding.
Let’s start with simple Curch/Boem/Berrarducci encoding for List as one of the basic

inductive types:

Natural Numbers: y X — 1+ X
List A: p X -1+ Ax X
Lambda calculus: p X - 14+ X x X + X
Stream: v X - A x X
Potentialy Infinite List A: v X - 1+ A x X
Finite Tree: p X - pY -1+ X xY =p X = List X

Initial Object

data List: (A:*) — % :=
(nil: List A)
(cons: A — List A — List A)

Fa=1+AXxX

Construct corresponding F-Algebra

record listAlg (A: Type) : Type :=
(X: Type)
(nil: Unit — X)
(cons: A — X — X)

Introduce List Morphisms

record listMor (A: Type) (x1,x2: ListAlg A) : Type :=
(map: x1.X — x2.X)
(mapNil: Path x2.X (map (x1.nil unit)) (x2.nil unit))
(mapCons: V (a: A) — V (x: x1) —
Path x2.X (map (x1.cons a x)) (x2.cons a (map x)))

Introduce connected points of List type

record listPoint (A: Type) : Type :=
(point: V (x: ListAlg A) — x.X)
(map: V (x1,x2: listAlg A) — V (m: ListMor A x1 x2) —
Path x2.X (m.map (point x1)) (point x2))

Theorems Section

lim U FlimU FlimU

12

4.2 Basic Ornaments

Our encoding allows you to precise control the type of encoded parameter. There is only
three cases and three equations: 1) for unit; 2) particular functorial type over a parameter
type and 3) recursive embedding such as in Cons constructor.

q — is a limit in Dialg P category. The constructor body is calculated with q applied to
forgetful functor U.

gpp,c : End P (G'(—),G'(—)) = P (Lim G, Lim G’)
P : Set? x Set — Set

U : Dialg P — Set

G :D — Dialg P

G'=UG:D — Set
| U(Lim G) = Lim G

4.2.1 Unit

Like for Bool or Nil constructors encoding.

Py(A,B) = B
q e: Lim G’
go €= ¢€

4.2.2 Fixed Type
Like for Cons first parameter.
P (A,B)=X — P(A,B)
qe: X — P(Lim G', Lim G')
qqexA=cAcx
4.2.3 Recursive Parameters

Like for Cons second parameter. This case is a key in encoding recursive data types such
as Lists and recursive record types such as Streams.

Py(A,B)=A — P(A,B)
g2 €: Lim G' — P(Lim G', Lim G')
pel A=e A (I A)

13

Data Type, Polymorphic Functions and Theorems The data type of lists over a
given set A can be represented as the initial algebra (uL4,in) of the functor La(X) =
1+ (A x X). Denote uLa = List(A). The constructor functions nil : 1 — List(A) and
cons : A x List(A) — List(A) are defined by nil = in o inl and cons = in o inr, so
in = [nil, cons]. Given any two functions ¢: 1 — C and h : A x C — C, the catamorphism
f={[e,R]) : List(A) — C' is the unique solution of the equation system:

fonil=c
focons=ho(idx f)
where f = foldr(c,h). Having this the initial algebra is presented with functor p(14+A4x X)

and morphisms sum [1 — List(A), A x List(A) — List(A)] as catamorphism. Using this
encoding the base library of List will have following form:

foldr = ([f o nil,h]), f o cons = ho (id x f)
len = ([zero, A a n — succ nl)

(++) = A zs ys — ([Mz) — ys, cons]))(xs)
map = X f — ([nil, cons o (f x id)])

Lists in Exe language We encode List as usually we do in II, X-provers.

data list: (A: %) — * :=
(nil: list A)
(cons: A — list A — list A)

list = X ctor — X\ cons — X\ nil — ctor
cons =Ax — Axs— Alist = X cons — A nil — cons x (s list cons nil)

nil = X list — X cons — X\ nil — nil

record lists: (A B: %) :=
(len: list A — integer)
((++): list A — list A — list A)
(map: (A — B) — (list A — list B))
(filter: (A — bool) — (list A — 1list A))
len = foldr (A x n — succn) 0
(++) = X ys — foldr cons ys
map = X f — foldr (Ax s — cons (f x) xs) nil
filter = X p — foldr (Ax xs — if p x then cons x xs else xs) nil
(foldl =X fvas= foldr (Axg— (A—=g (fax)))idzsv

14

4.3
4.3.1

4.3.2

4.3.3

Recursor and Induction
Recursor

There is a belief that recursor (non-dependent eliminator) in Type Theory is a weaker
property than induction principle (dependent eliminator). At the same time from category
theory we know that Universal Property defines the object uniquely. In the case of initial
object in the category of algebras, the initiality could be defined by recursor. That means
that all properties of algebra follow from its initiality, as a case it is possible to get the
recursor from induction. There is a sensitive moment here, all categorical constructions
are being formulated with defined equality on morphisms, in type theory the equality is
built-in type that could have extended properties. Simplify we could say that we can get
recursor from induction without equality, and with proper equality we could get induction
from recursor.

Fibrations

Mechanism of getting induction principle from equality is based on the presentation of
dependent types through fibrations. Hereby dependent type (D : B — T'ype) is defined as
(p : Sigma B P — B) which projects dependent pair to the first field. In topology such
approach is called fibration. To the other direction for a given morphism (p : E — B)
which we understands as fibration with projection p, we could get its dependent type
as (D : B — Type) by calculation in every point (b : B) its image of projection p by
using equality on elements of B. In type theory besides depndent pair Sigma also used
the dependent product Pi. In encoding of dependent types with fibrations there is a
correspondance between elements of dependent and morphism-fibrations for projection p:
such (s: B — E) that s xp = I. The example of this implementaion could be seen in

EXHI] OM?]

Induction

The input for induction is a predicate — dependent type encoded with (p : E — B).
Induction needed additional information for predicate. The type of induction is defined by
set of inductive constructors. Induction is just a statement that on E we have the structure
of F-algebra of inductive type. Now we could apply recursor to E getting the map (I — E)
from initial object which in fact the section (fibre bundle) of fibration and thus defines the
dependent function which is a proved value of induction principle. The example for Bool
could be found in

EXEF oM [

https://github.com/groupoid /exe/blob/master /prelude/macro.new /Mini.macro
https://github.com/groupoid /om/blob /master /priv/posets/sec2all
3https://github.com/groupoid/exe,/blob/master /prelude/macro.new/Data.Bool.macro
“https://github.com/groupoid /om/blob /master /priv/posets/Data/Bool /induc

15

4.4 Conclusion

Summarizing we encode types of source lambda calculus with objects of selected category,
dependent types with fibrations, dependent function as fibrations, inductive types as limits
of identity functors on category of F-algebras.

16

References

Category Theory
[1] S.MacLane Categories for the Working Mathematician 1972
[2] W.Lawvere Conceptual Mathematics 1997

[3] P.Curien Category theory: a programming language-oriented introduction 2008

Pure Type Systems

[4] P.Martin-Lof Intuitionistic Type Theory 1984
[5] T.Coquand The Calculus of Constructions. 1988

[6] E.Meijer Henk: a typed intermediate language 1997
[7] H.Barendregt Lambda Calculus With Types 2010

Inductive Type Systems

[8] F.Pfenning Inductively defined types in the Calculus of Constructions 1989
[9] P.Wadler Recursive types for free 1990

[10] N.Gambino Wellfounded Trees and Dependent Polynomial Functors 1995
[11] P.Dybjer Inductive Famalies 1997

[12] B.Jacobs (Co)Algebras) and (Co)Induction 1997

[13] V.Vene Categorical programming with (co)inductive types 2000

[14] H.Geuvers Dependent (Co)Inductive Types are Fibrational Dialgebras 2015

Homotopy Type Systems

[15] T.Streicher A groupoid model refutes uniqueness of identity proofs 1994
[16] T.Streicher The Groupoid Interpretation of Type Theory 1996

[17] B.Jacobs Categorical Logic and Type Theory 1999

[18] S.Awodey Homotopy Type Theory and Univalent Foundations 2013

[19] S.Huber A Cubical Type Theory 2015

[20] A.Joyal What is an elementary higher topos 2014

[21] A.Mortberg Cubical Type Theory: a constructive univalence axiom 2017

17

	Abstract
	Type Theory
	Intuitionistic Type Theory
	Universes
	Dependent Types
	Identity Types
	Inductive Types

	Category Theory
	Programs and Functions
	Algebraic Types and Cartesian Categories
	Exponential, -calculus and Cartesian Closed Categories
	Functors, -calculus
	Algebras
	Initial Algebras
	Recursive Types

	Categorical Encoding
	List Sample
	Basic Ornaments
	Unit
	Fixed Type
	Recursive Parameters

	Recursor and Induction
	Recursor
	Fibrations
	Induction

	Conclusion

