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Overview
• Asynchronous behaviour

Timers
Threads
Synchronisation
Thread safety
Objects in shared memory

• Techniques
Application of idioms and patterns to create design solutions
Use of templates and inheritance for generalisation
Use of operator overloading to simplify class use

• New language features

This talk addresses the issues presented by asynchronicity in system architecture, 
with an emphasis on the methods and techniques used to model system features as 
objects and represent them in a robust C++ framework. Such frameworks are seen 
as the appropriate medium for presenting, and extending, system functionality to the 
programmer.
Comprehension and development of these classes is separate task to the 
development of typical applications, and often requires a deeper understanding of 
both detailed design and language. A number of advanced techniques, design 
patterns, idioms, and new language features are employed “under the hood” to 
construct these classes.
The aim is on the construction of a framework rather than on any specific run-time 
or operating system. Where appropriate, references will be made to Win32, Solaris, 
POSIX, etc. The emphasis on portability is not simply a reference to OS portability, 
but version to version portability. Developers who do not regard portability as an 
issue tend to get bitten more by the latter than those who take a more abstract, 
layered and mature approach.
A pattern is a solution to a problem in a context, and for idioms the context is closer 
to the language. Some commonly known C++ techniques are now enhanced by 
better support from the language. The draft C++ standard is nearing finalisation, and 
some new features will be presented in context as a preview of techniques that may 
soon available. Not all the features are supported by current compilers.
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Callback idioms

• The role of callbacks
Decouple selection of functionality from its execution
Late binding of functionality to data
Provide some sort of generic interface to plug-in functionality

• The C callback function model is too primitive
Functions are stateless, so functions requiring a context 
need data passed in separately
Functions are defined at compile time, and cannot be 
customised or composed dynamically
Error prone and unsafe
Inextensible

Event driven programming, whether on a GUI messaged based system or down at 
the level of interrupts, is characterised in C by the use of function pointers. These 
present many apparent roots of control within a system.
A review of the techniques used in C reveals that the representation of callback 
concepts is done through clumsy interfaces: for data to be associated with an event it 
is often passed in as a parameter of generic form, i.e. void * or worse; for context, 
data must be associated with the callback at registration, only to be passed back to 
the function with the event; the definition of functions is fixed at compile time —
although selection may be performed dynamically, definition cannot.
Multiple roots of control, association of data with function, grouping of related 
functions, generic interfaces with alternative implementations, etc. are mapped more 
easily into an object model than into a procedural one. 
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Callbacks via interfaces
• Association of 

function(s) with data 
via common interfaces 
can be expressed with 
interface classes

class updateable
{
public:

virtual void update() = 0;
protected:

~updateable() {}
};

class updateable
{
public:

virtual void update() = 0;
protected:

~updateable() {}
};

class cached_view
: public virtual updateable, public virtual displayable { ... };

class cached_view
: public virtual updateable, public virtual displayable { ... };

• Classes can support multiple interfaces

• Interface support can be queried at runtime
displayable *component = 0;
...
if(updateable *view = dynamic_cast<updateable *>(component))

view->update();

displayable *component = 0;
...
if(updateable *view = dynamic_cast<updateable *>(component))

view->update();

Abstract base classes can be used to represent pure interfaces to functionality. They 
represent a simplified protocol through which an object can access the service of 
another object independently of its class implementation. One or more pure virtual 
functions represent the entry points to the behaviour, allowing the relationship of 
function and data to be inverted: a pointer is held to an object rather than a function.
This approach can be used in implementing notification architectures such as 
Observer pattern and Model-View-Controller configuration, of which the 
Document-View architecture is a degenerate variant.
In the case illustrated above, the destructor is declared protected because public 
deletion is not a property offered by this interface.
Multiple interfaces implies multiple inheritance, but it is not meaningful to have 
repeated interface inheritance so interfaces are used as virtual base classes. This 
is supported by an explicitly named construct in Java, but has always been available 
as a technique in C++ and other languages.
Run-time type information (RTTI) and dynamic_cast now offer better support 
for this technique. A pointer (or reference) can be cast down or across safely to a 
more derived or sibling class. Unlike hand crafted RTTI mechanisms, this works 
with virtual base classes and multiple inheritance. The result of a successful 
dynamic_cast is a correctly typed pointer, with returned null on failure. 
Declaration and test can be combined in a single condition, with the scope restricted 
to that of the control structure.
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Interfacing with C callbacks

echo delayed_welcome("Hello");
delayed_welcome.run_in(5); 

echo delayed_welcome("Hello");
delayed_welcome.run_in(5); 

int timer(int, void (*)(void *), void *);int timer(int, void (*)(void *), void *);

Header with prototypes

class echo : public scheduled
{

...
virtual void on_expiry()
{

cout << message << endl;
}
...

};

class echo : public scheduled
{

...
virtual void on_expiry()
{

cout << message << endl;
}
...

};

Simple derived class

class scheduled
{
public:

void run_in(interval when)
{

timer(when, handler, this);
}
...

protected:
...
virtual void on_expiry() = 0;

private:
static void handler(void *me)
{

reinterpret_cast<scheduled *>(me)->
on_expiry();

}
};

class scheduled
{
public:

void run_in(interval when)
{

timer(when, handler, this);
}
...

protected:
...
virtual void on_expiry() = 0;

private:
static void handler(void *me)
{

reinterpret_cast<scheduled *>(me)->
on_expiry();

}
};

Wrapper class

Callback
Set up timer 
callback

Virtual call

A common requirement is to take a callback system implemented in C, and wrap it 
up as C++. In the example shown here a generic interface to a timer registration is 
shown. The C function is fairly typical in its set of arguments: one or more 
arguments control the execution, one argument is the function, and one or more 
arguments represent user data to be passed back in.
To wrap this up as C++, the function to be called back is a class static. Its user 
data is the this pointer of the registering object. This is passed in as a void *, 
but is converted to the base class type and the place holder virtual function is called. 
This kind of algorithmic inversion, where a skeleton of a function is defined to rely 
on deferred functionality, is termed the Template Method pattern (not to be 
confused with C++ templates), and is described in Design Patterns: Elements of 
Reusable Object-Oriented Software by Gamma, Helm, Johnson and Vlissides.
The reinterpret_cast is one of the new cast operators (the other two not 
mentioned so far are static_cast and const_cast). These operators 
explicitly name the kind of cast they perform, rather than the old style notation that 
mixes many of these roles (intentionally or otherwise). As such they make the code's 
intent clearer and are easier to grep for. A reinterpret_cast is one that 
reinterprets the underlying representation of its operand as another type.
Note that class body inline functions are used here and throughout the talk for 
brevity rather than as recommended practice — inlines tend to be inappropriate for 
functions that are virtual or whose address is used.
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Callback functions as objects

template<typename result>
class function
{
public:

virtual result operator()() = 0;
...

};

template<typename result>
class function
{
public:

virtual result operator()() = 0;
...

};

function<bool> *on_bad_news = 0;
...
if(on_bad_news && (*on_bad_news)())

report_recovery();
else

terminate();

function<bool> *on_bad_news = 0;
...
if(on_bad_news && (*on_bad_news)())

report_recovery();
else

terminate();

class rollback : public function<bool> { ... };class rollback : public function<bool> { ... };

class failover : public function<bool> { ... };class failover : public function<bool> { ... };Inherit

Call

Derived classes provide 
functionality and data

Function objects used 
via a common interface

The association of 
function and data can 
be factored out into 
an abstract class

The idea that user data and functionality can be associated, can be modelled 
explicitly. A functor (or functional, functionoid, or simply function object) is an 
object that masquerades as a function. The class described here models a function 
hierarchy in which the function part, represented by operator(), takes no 
arguments. Derived classes then redefine this place holder, and add any support 
functions and data as necessary.
A further level of generalisation is possible in describing the return value of the 
functor. Templates are used here to represent horizontal generalisation, whereas 
inheritance represents vertical generalisation. The template parameter is used to 
name the return type of the functor. Note that a recent keyword, typename, is used 
rather than class to qualify the parameter.
In this context it is identical to class. However, it is felt to be clearer and more 
accurate than class when any type is being referred to. As a matter of convention, 
throughout the rest of this talk typename will be used to name any type, and 
class will refer to actual class types. typename has another more significant 
use within the language, but the same can be said of class!
The bool type is a built-in type associated with keyword constants false and 
true. It was introduced to resolve the difficulties (and indeed, impossibility) of 
defining a library type that has consistent Boolean behaviour appropriate to the 
language. It is also the final word on the many such mismatched types offered by 
library vendors. The bool type supports all the implicit conversions to make it 
compatible with its int predecessor.
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Wrapping up function pointers

template<typename result>
class function_ptr
: public function<result>

{
public:

function_ptr(result callback())
: ptr(callback) {}

virtual result operator()()
{ return ptr(); }

private:
result (*ptr)();

};

template<typename result>
class function_ptr
: public function<result>

{
public:

function_ptr(result callback())
: ptr(callback) {}

virtual result operator()()
{ return ptr(); }

private:
result (*ptr)();

};

bool prompt_user_to_continue();
function_ptr<bool> prompt =

prompt_user_to_continue;
...
on_bad_news = &prompt;

bool prompt_user_to_continue();
function_ptr<bool> prompt =

prompt_user_to_continue;
...
on_bad_news = &prompt;

Transparent and uniform 
use of complex objects 
and function pointers

An adaptor class can be 
defined for function 
pointers

To make the function object model comprehensive in a hybrid language like C++, 
the low level mechanism such as function pointers must be brought into the fold. 
The code above illustrates such a class, wrapping a function pointer up in an object. 
The adaptor above is is an example of the Adapter pattern, whose intent is described 
in Design Patterns as
Convert the interface of a class into another interface clients expect. Adapter lets 
classes work together that couldn't otherwise because of incompatible interfaces.
With function pointer declarations, the soundest policy is often to introduce a 
typedef to reduce the hieroglyphic index of the content. This was not felt to be 
necessary in the code above given the size of the example. Instead, advantage is 
taken of the C syntax sugar that allows function pointer arguments to be declared 
using function syntax.
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Member function pointers
• Applying member function pointers to objects

Chosen behaviour can vary on a per-object basis
Different functionality can be chosen over time
Can be used as a form of customisable polymorphism

template<typename id, class mapped> class function_map
{
public:

...
void operator()(mapped &object, id request) { (object.*lookup[request])(); }

private:
map<id, void (mapped::*)()> lookup;

};

template<typename id, class mapped> class function_map
{
public:

...
void operator()(mapped &object, id request) { (object.*lookup[request])(); }

private:
map<id, void (mapped::*)()> lookup;

};

const pair<service, void (server::*)()> service_spec[size] =
{ make_pair(start, &server::on_start), make_pair(flush, &server::null), ... };

function_map<service, server> deliver(service_spec, service_spec + size);
...
deliver(handler_object, service_request);

const pair<service, void (server::*)()> service_spec[size] =
{ make_pair(start, &server::on_start), make_pair(flush, &server::null), ... };

function_map<service, server> deliver(service_spec, service_spec + size);
...
deliver(handler_object, service_request);

Member function pointers allow separate selection of a member function and target 
object. Unlike the case of ordinary, unbound function pointers, there is no syntax 
sugaring on offer — the syntax is logical, but gruesome.
Being able to independently refer to a member function as almost an object in its 
own right allows programmers to program alternatives to normal, class defined 
polymorphism. Whereas conventional polymorphism is defined at compile time on 
a per-class basis, member function pointers can be used to implement per-object 
variations in behaviour, they may be changed at runtime, or they may be used to 
implement a pseudo-vtable, as above.
The function_map class is a container that maps some specified identifier type, 
such as an enum or string identifying a message or event, to a member function for 
a specified type. function_map objects are functors that are substitutes for the 
normal, unnamed function lookup mechanism, where statically bound identifiers are 
applied via the dot or arrow operators. This meta-level of programming is normally 
associated with more dynamic languages, such as CLOS, Dylan, Smalltalk and Self.
The map class is an associative array or dictionary class that is a part of the draft 
library standard, and is originally from the Standard Template Library (STL). Also 
from the STL is the pair template, which is an aggregate holding two public 
members. It is used for an ad hoc association of data couplets, a task simplified with 
the make_pair function. The deliver object is initialised from an array of 
associations in the STL iterator style of a range bound by an initial pointer and a 
one-past-the-end pointer.  
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Dynamic data+function binding
• It is possible to reify the 

association between an 
object and the 
dynamically chosen 
function

• The bound pair can then 
be treated as another 
function object

template<class target>
class remember_function
: public function<void>

{
public:

remember_function(
target *on,
void (target::*call)())

: ptr(on), member(call) {}
virtual void operator()()

{ (ptr->*member)(); }
private:

target *ptr;
void   (target::*member)();

};

template<class target>
class remember_function
: public function<void>

{
public:

remember_function(
target *on,
void (target::*call)())

: ptr(on), member(call) {}
virtual void operator()()

{ (ptr->*member)(); }
private:

target *ptr;
void   (target::*member)();

};

multimap<event_id, function<void> *> event_table;

remember_function<connection> flusher(&db, &connection::flush);

event_table.insert(make_pair(bad_news, &flusher));

multimap<event_id, function<void> *> event_table;

remember_function<connection> flusher(&db, &connection::flush);

event_table.insert(make_pair(bad_news, &flusher));

As with many strong associations, the delayed binding between an object and a 
member pointer can be wrapped up. An adaptor is shown above that implements 
fully bound, free standing function objects from that data+function pairing.
A remember_function public data member can be used as a pseudo-member 
function, providing the target object is initialised with this so that callback occurs 
back into the current object.
The multimap standard container class allows values to be stored against non-
unique keys; here, an event could trigger multiple callbacks.
We can rewrite the function_map call mechanism, illustrated previously, in 
terms of remember_function and operator overloading — any of the left to 
right associating binary operators — to choose a more visually appealing call 
method. The comma operator would be of use as this gives the feeling of treating a 
call as a tuple/association between the receiver, the mechanism, and the selector:

(object, mechanism, selector)();
The code behind this is somewhat less appealing than its usage suggests:

template<typename id, class mapped>
pair<mapped *, function_map<id, mapped> *>
operator,(mapped &, function_map<id, mapped> &);

template<typename id, class mapped>
remember_function<mapped> operator,(
pair<mapped *, function_map<id, mapped> *> &, id);
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Multi-threading

• A thread is a path of control within a process
A process is a container for one or more threads
Threads have their own execution context, but share their 
enclosing process address space

• Many modern operating systems offer threading
Scheduling is managed by the OS or a runtime library
Threading functionality is typically accessed via a C API

• C++ can be used to build threaded frameworks
Easier to use as shields user from API issues
Uniform and extensible interface model
Portability

Threads present a number of design and implementation challenges, as well shifts in 
perspective. The idea that an object encapsulates state and presents a safe, defined 
operational interface to users prevails even more strongly in multi-threaded OO. 
Many of the concepts used for process design are more applicable than those used 
for sequential, single process development.
Threads offer a means of sharing data more readily across concurrent tasks, but with 
this simplification comes the certainty that assuming "because it can be shared, it 
should" leads to more problems than approaching it from the other side — i.e. 
"assume no sharing, and design it in", rather than "everything is shared except that 
which is designed out".
Issues such as the integrity of global and static objects, and any that are implicitly 
operated on by unbound functions, are no longer assured.
Different operating systems handle the concept of threads differently: some 
implement them as user threads, which are scheduled within a process by a runtime 
support system; some as kernel threads, which are scheduled separately by the 
operating system; some offer both, such as Solaris threads and lightweight processes 
(LWPs). There are benefits and drawbacks to both approaches, although in terms of 
true pre-emptive, non-blocking, non-invasive architecture, kernel threads are 
preferred. In multi-processor systems implementing a shared memory architecture 
kernel threads can be scheduled on different CPUs.
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The role of a thread class

• A thread class is
Abstract
A wrapper for the C API
A function with asynchronous 
execution semantics

• Active objects have their 
own thread of control

• Embedded thread objects 
can be used to emulate 
asynchronous functions
on passive objects

class connection_server
: public thread

{
...

private:
virtual void main()
{

... // lifecycle
}
...

};

class connection_server
: public thread

{
...

private:
virtual void main()
{

... // lifecycle
}
...

};

Class for active connection 
server objects 

connection_server server(...);
...
server(); // run server
cout << "started" << endl;

connection_server server(...);
...
server(); // run server
cout << "started" << endl;

Active objects are those which own their own thread of control, either directly or 
indirectly. They are the actors of a system, initiating activity on other objects to 
carry out certain tasks and achieve specific aims. These collaborating objects are 
passive objects that are active only as the result of being called by another thread of 
control, hence they are reactive. They are conceptually servers where active objects 
are clients. Objects that have both characteristics are termed agents.
A thread base class should wrap up all the mechanism associated with thread 
handling and management, leaving the derived class free simply to define any data, 
its construction, provide a lifecycle, and any auxiliary functions as necessary. 
Additional synchronisation mechanisms, such as message queues, can be attached 
for building active agent objects that handle requests from other threads, as well as 
initiating them.
Active objects own a root of control and describe their own lifecycle. Execution and 
state are closely associated, so it is natural to model this both as a class and as a 
function.
Implicit threading behaviour is possible on some systems where features such as 
asynchronous I/O are implemented in the system API. Functions such as these can 
be associated with passive objects, such as a file handler, as asynchronous member 
functions, ie. they do not block the caller until they complete in the way that 
ordinary synchronous functions do. Explicit threading can also be used to achieve 
this. A similar concept is expressed by oneway functions in OMG's CORBA 
distributed object model. 
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Implementing a thread base

void big_job();
function_ptr<void> task = big_job;
thread_adaptor background(task);
background();
cout << "started" << endl; 

void big_job();
function_ptr<void> task = big_job;
thread_adaptor background(task);
background();
cout << "started" << endl; 

... thread_create(..., void (*)(void *), void *);... thread_create(..., void (*)(void *), void *);

Part of C API

class thread_adaptor
: public thread

{
...

private:
virtual void main()
{

adaptee();
}
function<void> &adaptee;

};

class thread_adaptor
: public thread

{
...

private:
virtual void main()
{

adaptee();
}
function<void> &adaptee;

};

Function adaptor derived class

class thread : public function<void>
{
public:

virtual void operator()()
{

... thread_create(
..., start, this) ...

}
...
static thread *current();

private:
virtual void main() = 0;
static void start(void *me)
{

reinterpret_cast<thread *>(me)->
main();

}
...

};

class thread : public function<void>
{
public:

virtual void operator()()
{

... thread_create(
..., start, this) ...

}
...
static thread *current();

private:
virtual void main() = 0;
static void start(void *me)
{

reinterpret_cast<thread *>(me)->
main();

}
...

};

Wrapper class

Callback

Initialise 
and run 
thread

Virtual 
call

C thread creation functions vary in detail, but tend to have the following features in 
common: resulting thread ID and success, callback function to start from, user data, 
and a host of options to control execution.
The thread wrapper class follows a similar form to the C callback wrapping method 
described earlier. In addition, most systems support thread specific data: the thread 
can hold data under a specific key. This can be used to associate the thread object 
pointer with the raw thread ID, ie. given an ID it is possible to retrieve the 
associated object, if any. A dummy class and singleton object (see the Singleton in 
Design Patterns) can be used to represent the original, main thread.
One variation on the typical thread creation process is the concept of a thread fork. 
This literally clones the current thread — stack, instruction pointer, etc. — at the 
point of the fork, but beware issues related to bytewise copying. Linux supports this 
feature with the clone call. If this is available on a system it makes the 
implementation of an asynchronous function — leaving aside synchronisation issues 
for a moment — trivial:

perform thread fork
if(in cloned thread)

perform asynch task

The thread_adaptor class illustrated above allows function objects, and by 
implication function pointers, to be used as the main task of a thread.
A private virtual function is used as an idiom to express that a function 
should only be provided by a derived class, but not called by it.
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Traps for the unwary

• There is a temptation to make 
threads auto-runnable

However, execution may occur on 
a partially constructed object
Initialisation and execution are 
separate concepts

• Lifetime of actual thread must 
be contained in lifetime of 
thread object

Careful design of daemon threads
Co-ordinate destruction

class thread
: public function<void>

{
...

protected:
thread() : ...
{

...
(*this)();

}
...

};

class thread
: public function<void>

{
...

protected:
thread() : ...
{

...
(*this)();

}
...

};

Thread object lifespan

Thread object lifespan

Actual thread lifespan

Actual thread lifespan

Attempting to run a thread from within a thread base class has unfortunate 
consequences. The thread can be scheduled to run before the derived constructors 
have completed, leaving the object incompletely initialised. An incorrect vptr can 
have disastrous effects: the start routine may attempt to execute a pure virtual 
function call on the object. It is always dangerous to call virtual functions from 
within a constructor and destructor; doubly so with multi-threading.
One way of looking at the solution is that it two phase initialisation. However, the 
idea of deferred execution — separating initialisation and main lifecycle — is closer 
to the truth. Decoupling like this makes thread objects easily rerunnable.
When a thread object reaches its destructor, it must either wait for the raw thread to 
complete or kill it. Whichever strategy is adopted, the point is that the underlying 
thread cannot be allowed to continue: it would be operating on deallocated memory.
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Synchronisation primitives
• Different types

Mutexes
Recursive
Non-recursive

Semaphores
Binary
Counting

Condition variables
Events

• Scope
Intra-process
Inter-process

class mutex
{
public:

...
void lock();
bool try_lock();
bool try_lock_for(interval);
void unlock();
...

private:
...
mutex(const mutex &);
mutex &operator=(const mutex &);

};

class mutex
{
public:

...
void lock();
bool try_lock();
bool try_lock_for(interval);
void unlock();
...

private:
...
mutex(const mutex &);
mutex &operator=(const mutex &);

};

mutex guard;
guard.lock();   // block to acquire
...             // critical section
guard.unlock(); // release

mutex guard;
guard.lock();   // block to acquire
...             // critical section
guard.unlock(); // release

In the presence of multiple threads, synchronisation of access to data is vital. A 
number of primitives are typically available on a threading system.
Mutexes and semaphores may be locked and unlocked, bracing a section of code 
termed the critical section. The execution of this code must appear to be executed 
atomically with respect to other threads, ie. although it may technically be pre-
empted, it is not re-entered until completed by a given thread. This term is not to be 
confused with the Win32 critical section, which is simply a degenerate form of 
mutex.
Mutexes offer mutual exclusion in terms of a single thread, ie. the thread that locks 
it must be the thread that unlocks it. Binary semaphores are not quite so structured. 
It is system dependent as to whether or not a mutex is re-entrant, ie. whether or not a 
locked mutex may be relocked by the locker. Some systems, such as Solaris, offer 
locks that allow multiple reader / single writer access. These are more structured 
than the other primitives. They may be faked up using condition variables or events 
and mutexes, or pairs of counted semaphores. Win32 events are effectively "smart 
blocking flags". Condition variables are like events, but they auto-lock a mutex.
The scope or reach of these primitives may be within a single process address space, 
or may be system wide for synchronisation across processes.
Casual copying of mutexes, ie. copying objects that represent a unique lock, is 
prevented in the example above by declaring the copy operators private and 
providing them with no implementation.
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Generalised locking
class synchronised
{
public:

virtual void lock() = 0;
virtual bool try_lock() = 0;
virtual bool try_lock_for(interval) = 0;
virtual void unlock() = 0;
...

};

class synchronised
{
public:

virtual void lock() = 0;
virtual bool try_lock() = 0;
virtual bool try_lock_for(interval) = 0;
virtual void unlock() = 0;
...

};

template<class synch_primitive>
class synch_derived : public synchronised
{
public:

virtual void lock() { guard.lock(); }
...

private:
synch_primitive guard;

};

template<class synch_primitive>
class synch_derived : public synchronised
{
public:

virtual void lock() { guard.lock(); }
...

private:
synch_primitive guard;

};

Interface class describes 
the protocol that any 
derived class will 
implement for using 
synchronised objects

Inherit

synch_derived<mutex> yale;
...
synchronised &key = yale;
...
key.lock();
...
key.unlock();

synch_derived<mutex> yale;
...
synchronised &key = yale;
...
key.lock();
...
key.unlock();

The mutex class introduced previously is a non-polymorphic class that encapsulates 
a system primitive and portion of C API. Clearly, many of the synchronisation 
primitives support common operations, and hence interfaces. In some cases a more 
general interface is useful.
The synchronised interface class may be used explicitly as a base class for a 
class supporting synchronisation. More usefully for primitives, which are best left as 
non-polymorphic, an adaptor class can be used to provide the interface — run-time 
polymorphism — on behalf of anything supporting the correctly named functions —
sometimes known as compile time polymorphism. It easier to take a non-
polymorphic class and adapt it to be polymorphic, than it is do it the other way 
around: the overhead and semantics of polymorphism can only introduced to a class, 
not removed.
It is also possible to create read_write_synchronised and waitable
interfaces for hierarchies supporting reader/writer locking and simple event 
synchronisation. For instance, thread could support the waitable interface for 
synchronising on its termination.
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Resource locking

• Explicit lock/unlock is
Tedious
Error prone
Open to abuse
Not exception safe

• Natural pairing can be 
encapsulated as a 
control object

template<class synch = synchronised>
class lock
{
public:

lock(synch &key) : lockee(key)
{ lockee.lock(); }

~lock() { lockee.unlock(); }
private:

synch &lockee;
};

template<class synch = synchronised>
class lock
{
public:

lock(synch &key) : lockee(key)
{ lockee.lock(); }

~lock() { lockee.unlock(); }
private:

synch &lockee;
};

{
lock<mutex> region(plain);
...

}

{
lock<mutex> region(plain);
...

}

{
lock<> region(general);
...

}

{
lock<> region(general);
...

}

mutex plain;
synch_derived<mutex> general;

mutex plain;
synch_derived<mutex> general;

} {Critical 
region

Although encapsulated, there are a number of problems waiting to happen with 
explicit lock/unlock code. Programmer error, such as premature return from a 
function, can leave a synchronised object in a locked state. Exceptions thrown in the 
critical section will bypass the call to unlock as the thrown exception unwinds the 
stack. It is also quite tedious and low level.
The control structure pairing can be encapsulated in a class that executes lock in 
the constructor and unlock in the destructor. Should a function be left 
prematurely, for whatever reason, the destructors are called as the stack is unwound, 
and hence the lock is freed even in exceptional circumstances.
This is known as the resource-acquisition-is-initialisation idiom. It simplifies the 
code and makes it more robust. The encapsulation of control in this case also ties the 
programmer's critical section in with the linguistic concepts of scope and lifetime. 
The critical region is thus explicitly delimited by the object's lifetime.
The solution presented also allows lock objects to be applied to an object either 
based on run-time or compile time polymorphism. A template parameter is used to 
specify what type is to be locked, and it has been provided with a default of 
synchronised for the polymorphic case. When the default is used, empty <> are 
still required with the type name.
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Thread-safe interfaces
class event_queue
{
public:

...
size_t size() const
{

read_lock<> reading(key);
return events.size();

}
void push(event *new_event)
{

write_lock<> writing(key);
events.push(new_event);

}
...

private:
mutable read_write_mutex key;
queue<event *> events;

};

class event_queue
{
public:

...
size_t size() const
{

read_lock<> reading(key);
return events.size();

}
void push(event *new_event)
{

write_lock<> writing(key);
events.push(new_event);

}
...

private:
mutable read_write_mutex key;
queue<event *> events;

};

event_queue objects are monitors 
with thread-safe interfaces

Although part of the physical 
state, key is not part of the 
object's logical state and hence no 
need to preserve const-ness 
within const member functions

For passive objects shared 
between threads, internal locking 
of state accessing public 
members is appropriate

Passive objects that are shared between threads require locking when their interface 
is accessed. This can be done by negotiation through an additional separate 
synchronisation object, or closer to the class itself.
For objects that are known to be shared, it makes sense to provide the locking as 
part of the automatic behaviour, ie. when a public function is called it locks an 
internal synchronisation object. Objects of such a class are said to be monitors or, in 
Ada 95 parlance, they are protected. These simplify programming from the class 
users point of view.
The class author must be careful not to call other public member functions from 
within the class if the synchronisation object is not re-entrant.
The class above assumes read/write synchronisation classes and control objects, 
using the multiple reader capability to implement const member functions and 
single writer for modifier functions. event_queue forwards functions on to a 
queue, another class introduced from the STL.
The locking mechanism involves a change of state on the lock object, but this is part 
of the administration of event_queue rather than a logical property implied by 
the public interface, which should be const-correct. The mutable specifier
informs both the compiler and reader that it is safe and expected that key may be 
modified within a const member function.
It is possible to template event_queue on a synchronisation primitive, and 
provide a null_synchronisation pass-through class for use in single 
threaded systems.
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Thread-safe proxies

class symbol_table
{
public:

virtual bool empty() const = 0;
virtual void clear() = 0;
...

};

class symbol_table
{
public:

virtual bool empty() const = 0;
virtual void clear() = 0;
...

};

Interface class

class symbol_table_locked_ref : public symbol_table
{
public:

virtual bool empty() const
{ return read_lock<>(key), target.empty(); }

virtual void clear()
{ write_lock<>(key), target.clear(); }

...
private:

mutable read_write_mutex key;
symbol_table &target;

};

class symbol_table_locked_ref : public symbol_table
{
public:

virtual bool empty() const
{ return read_lock<>(key), target.empty(); }

virtual void clear()
{ write_lock<>(key), target.clear(); }

...
private:

mutable read_write_mutex key;
symbol_table &target;

};

Proxy class

class hash_table : public symbol_table
{
public:

virtual bool empty() const;
virtual void clear();
...

};

class hash_table : public symbol_table
{
public:

virtual bool empty() const;
virtual void clear();
...

};

Implementation class

Forward callsInherit

Derivation 
separates 
interface from 
implementation

A lock-and-forward
proxy class can be 
provided with the 
same interface 

An alternative approach separates out the class of interest into an interface and an 
implementation. This is suitable where a usage type might support creation types. 
One or more of these implementation classes provide the actual class state and logic. 
A proxy class supporting the same usage interface provides the locking, and 
forwards the requests onto the actual object.  The intent of the Proxy pattern is 
described in Design Patterns as
Provide a surrogate or place holder for another object to control access to it.
This technique can be used with existing unsynchronised classes, but also easily 
allows for the possibility of alternative implementations, or even chains of proxies 
that enhance the functionality (similar to the Decorator pattern). By holding a 
pointer to the interface class, users of this class need not be concerned with either 
the details of synchronisation or any impact in migrating the code to a single 
threaded system — the interface remains the same, and the object would be 
accessed directly.
Another way of looking at this form of proxy is as a "smart lvalue".
Note use of temporary unnamed variables and the normal comma operator in the 
synchronisation expressions. Such temporary variables are guaranteed to have their 
destructor called at the end of the full expression, ie. statement in this case, and 
hence automatically unlock.
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Externally locked interfaces

• Class users negotiate mutual exclusion explicitly
• The target class must be synchronisable

By inheritance, requiring that the class is designed this way
Or by aggregation, with target class access using operator->

class symbol_table
: public synchronised

{
public:

...
virtual void lock();
virtual void unlock();
...

};

class symbol_table
: public synchronised

{
public:

...
virtual void lock();
virtual void unlock();
...

};
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-in template<class adaptee, class synch>

class synch_adaptor
: public synch_derived<synch>

{
public:

...
adaptee *operator->() const

{ return target; }
private:

adaptee *target;
};

template<class adaptee, class synch>
class synch_adaptor
: public synch_derived<synch>

{
public:

...
adaptee *operator->() const

{ return target; }
private:

adaptee *target;
};A
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Alternatively classes may chose to require that users negotiate the use of their 
interface explicitly. One technique is to derive from the synchronised interface 
and implement a synchronisation strategy of choice. Alternative derivations include 
inheriting from a concrete synchronisation class that is either explicitly named or 
provided via a template parameter.
However, not all classes will have been, or even should be, designed as 
synchronisable in advance on the off chance that they might be used in a multi-
threaded environment, shared between threads, and thus require synchronisation as 
an intrinsic property. It would be an unnecessary overhead in a number of cases, and 
introduce virtual functions into otherwise non-polymorphic classes. This would 
have a quantifiable impact on both their semantics and their footprint.
The synch_adaptor class provides a proxy approach that acts as a simpleton 
smart pointer: locking is available via member functions acquired through 
inheritance, but the actual target is accessed via the overloaded class member access 
operator, operator->. The synch_adaptor is an object adaptor as opposed to 
a class adaptor like synch_derived.
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Smart pointers for locking
• Main usage and synchronisation interfaces may 

be part of the same interface, but they are disjoint
• Safe access can be automated using a smart 

pointer to automatically lock the target on access

symbol_table symbols;
synch_ptr<symbol_table *> symbols_ptr = &symbols;
...
symbols_ptr->insert("Thread-safety");

symbol_table symbols;
synch_ptr<symbol_table *> symbols_ptr = &symbols;
...
symbols_ptr->insert("Thread-safety");

stack<string> raw_stack;
typedef synch_adaptor<stack<string>, mutex> synch_stack;
synch_stack safe_stack(&raw_stack);
synch_ptr<synch_stack &> stack_ptr(safe_stack);
...
stack_ptr->put("Thread-safety first");

stack<string> raw_stack;
typedef synch_adaptor<stack<string>, mutex> synch_stack;
synch_stack safe_stack(&raw_stack);
synch_ptr<synch_stack &> stack_ptr(safe_stack);
...
stack_ptr->put("Thread-safety first");

Lock required
Lock no longer 
required

Lock required
Lock no longer 
required

Externally synchronisability may loosen the coupling between synchronisation and 
usage interface, but the cohesion and simplicity of the internally locking class 
approach is also missing. Externally locked classes may be synchronised with the 
locking classes discussed previously. For long transactions that are to be treated 
atomically this is ideal. However, this can make simple function calls tedious, 
prefixing them all with temporary statement duration locks.
An alternative is to provide a smart pointer that provides function call locking 
somehow via operator->. Smart pointers are another variant of Proxy.



21

Asynchronous C++ 21

Locking pointer implementation

template<class synch>
class synch_ptr
{
public:

...
class temp_lock { ... };
temp_lock operator->() const
{

return temp_lock(target);
}

private:
synch target;

};

template<class synch>
class synch_ptr
{
public:

...
class temp_lock { ... };
temp_lock operator->() const
{

return temp_lock(target);
}

private:
synch target;

};

class temp_lock
{
public:

temp_lock(synch up)
: target(up),
locked(false) {}

~temp_lock()
{

if(locked)
(*target).unlock();

}
synch operator->()
{

(*target).lock();
locked = true;
return target;

}
private:

synch target;
bool locked;

};

class temp_lock
{
public:

temp_lock(synch up)
: target(up),
locked(false) {}

~temp_lock()
{

if(locked)
(*target).unlock();

}
synch operator->()
{

(*target).lock();
locked = true;
return target;

}
private:

synch target;
bool locked;

};
symbols_ptr->insert("Thread-safety");symbols_ptr->insert("Thread-safety");

symbols_ptr.operator->().operator->()->insert("Thread-safety");symbols_ptr.operator->().operator->()->insert("Thread-safety");

Becomes

The synch_ptr overloads operator-> to return a temporary object that will 
perform the locking. This too provides an operator->. Calls to operator->
are automatically chained by the compiler until a raw pointer type is returned. In 
temp_lock's operator-> the lock is applied and in its destructor, called at the 
end of a full expression, it is released.
The locking behaviour can easily be disabled for single threaded applications, 
requiring only modifications to temp_lock to make it a pass-through object, a 
recompile, and a relink.
Programmers should be careful about attempting to access the same object twice in 
a statement using synch_ptrs: this will cause deadlock if the synchronisation 
strategy is not re-entrant.
The class parameter should either be a pointer, a smart pointer or a reference for a 
type supporting operator* that yields a reference to a synchronised interface. For 
the above code to work with synch_adaptor, synch_adaptor must provide 
a dereference operator that implements the identity operation:

synch_adaptor &operator*()
{

return *this;
}

An alternative solution, not discussed here, is to use partial specialisation for 
synch_ptr on references.



22

Asynchronous C++ 22

Reference counted pointers

• Reference counting techniques can be used to 
automatically manage deletion

template<typename type> class counted_ptr
{
public:

explicit counted_ptr(type *ptr_to_own = 0);
template<typename other>

counted_ptr(const counted_ptr<other> &);
template<typename other>

counted_ptr &operator=(const counted_ptr<other> &);
~counted_ptr() { release(); }
type *operator->() const { return owned; }
type &operator*() const { return *owned; }

private:
void acquire(type *new_owned);
void release();
type *owned;
... // shared counter

};

template<typename type> class counted_ptr
{
public:

explicit counted_ptr(type *ptr_to_own = 0);
template<typename other>

counted_ptr(const counted_ptr<other> &);
template<typename other>

counted_ptr &operator=(const counted_ptr<other> &);
~counted_ptr() { release(); }
type *operator->() const { return owned; }
type &operator*() const { return *owned; }

private:
void acquire(type *new_owned);
void release();
type *owned;
... // shared counter

};

• A counting 
smart pointer 
holds 
pointers to

The managed 
object
A shared 
counter

Reference counting puts the responsibility for management of object ownership into 
the association, ie. smart pointers rather than the objects that use them are 
responsible for the deletion of the target object. Reference counted pointers keep a 
shared usage count of the object pointed to, updating its value when they are copied 
or destroyed, hence counted pointers are exception safe. On falling to zero the target 
object is effectively unused, and is deleted.
Reference counting can be overt or hidden. A common hidden idiom is to 
implement string copying in terms of a shared representation. The actual copy is 
only performed if and when any modifications are applied to the string. This is a 
copy-on-write strategy.
The example above is overt, and requires the users to use counted_ptr in their 
code rather than raw pointers:

counted_ptr<data> data_ptr(new data);
The explicit qualifier is used to prevent implicit copies and temporaries from 
being generated by the compiler.
Member function templates allow a new form of generalisation for smart pointers: a 
smart pointer to a derived class can be assigned to a smart pointer to a base class. 
The compiler performs the necessary type deduction:

counted_ptr<derived> leaf(new derived);
counted_ptr<base> root = leaf;
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Thread-safe counting
No guarantee that 
decrement, dereference 
and test is atomic

Provide a class that 
performs increment and 
decrement atomically

template<typename type>
class counted_ptr
{

...
void release()
{

if(count && !count->down())
{

delete count;
delete owned;

}
}
type               *owned;
threadsafe_counter *count;

};

template<typename type>
class counted_ptr
{

...
void release()
{

if(count && !count->down())
{

delete count;
delete owned;

}
}
type               *owned;
threadsafe_counter *count;

};

Thread-safe version

template<typename type>
class counted_ptr
{

...
void release()
{

if(count && !--*count)
{

delete count;
delete owned;

}
}
type   *owned;
size_t *count;

};

template<typename type>
class counted_ptr
{

...
void release()
{

if(count && !--*count)
{

delete count;
delete owned;

}
}
type   *owned;
size_t *count;

};

Typical implementation

Here be dragons! A typical reference counting implementation does not take 
atomicity into account. It is possible that a race condition could occur resulting in 
either a memory leak or memory trampling. This tends to be particularly insidious 
with hidden reference counting.
It is tempting to attempt to use one of the system synchronisation primitives for this 
count, but this has a significant overhead for such a lightweight class. It is also 
likely that if counted pointers are used extensively within an application, the system 
will run out of resources! It would also be inappropriate to reuse target object's 
synchronisation interface, assuming it supports one, as the synchronisation is on the 
count and not on the target object. Again, assuming it worked there would be a 
performance penalty to pay.
The most appropriate technique is known as lock-free synchronisation. All that is 
required is an atomic or interlocked increment and decrement operation, no locking 
is required. This can be wrapped up in a class, threadsafe_counter. If no 
such primitive operations are offered on a platform, it might be possible to use 
Dekker's or Peterson's algorithm, which only assume that reads and writes are 
atomic, to implement one.
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Thread owned heap objects
• The lifetime of an 

object can be tied 
to the lifetime of a 
given thread

Non-intrusive base 
class technique

No virtual functions
No data members

Need to guarantee 
correct destruction

class message_queue
: public thread::owned<message_queue>

{
...

};

class message_queue
: public thread::owned<message_queue>

{
...

};

thread

null

message_queue

message_queue

message_queue

In a multi-threaded system, the lifetimes of many heap objects are bound to the 
thread that created them. It is possible to implement a non-intrusive generational 
garbage collector where the 'generation' is defined as ending at the termination of 
the thread's lifecycle, i.e. after thread::main.
Any such mechanism must ensure that objects can be deleted in advance of thread 
termination, without any ill effects, but must also ensure that all remaining allocated 
objects are deallocated with destructors called correctly.
This can be achieved with a base class, but should be done without changing the 
footprint of the class or introducing any polymorphism. Such classes derive from a 
place holder class that provides customised new and delete operators. The 
thread::owned class is templated on the derived class so that it is aware of the 
exact pointers types that must be maintained.
When asked for allocation these operators allocate extra memory that precedes the 
actual object pointer returned. This extra memory is used to indirectly point to the 
owning thread, and the owning thread is also aware of all the objects that it owns, 
such as object . If an object is dissociated from a thread this effectively points to 
null, as in the case of object . This is also how objects may be disowned and 
reowned by other threads. Remaining and forgotten objects are collected at thread 
end, such as .
The effect of this approach is to implement bidirectional pointers. The thread
class needs extension to offer all of this. The support is relatively light weight and, 
if implemented correctly, has no overhead if unused.
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Implementing thread ownership

template<class derived>
class thread::owned
: public thread::owned_type

{
public:

void *operator new(size_t);
void operator delete(void *, size_t);

private:
struct entry : thread::entry
{

virtual ~entry() { delete own; }
derived *own;

};
};

template<class derived>
class thread::owned
: public thread::owned_type

{
public:

void *operator new(size_t);
void operator delete(void *, size_t);

private:
struct entry : thread::entry
{

virtual ~entry() { delete own; }
derived *own;

};
};

class thread
{
public:

...
struct owned_type {};
template<class derived> class owned;
struct entry
{

virtual ~entry() {}
thread *owner;

};
void disown(owned_type *);
void own(owned_type *);
static thread *owner(owned_type *);
...

};

class thread
{
public:

...
struct owned_type {};
template<class derived> class owned;
struct entry
{

virtual ~entry() {}
thread *owner;

};
void disown(owned_type *);
void own(owned_type *);
static thread *owner(owned_type *);
...

};

owned_type is 
a tag base 
class for all 
classes that are 
thread owned

thread holds 
pointers to 
entry, and 
deletes these 
on death

owned classes 
derive from 
thread::owned

new places entry
objects with 
current thread

The thread::entry class represents the link that the thread object manages: 
it holds pointers to objects of this type, and on deleting the object — either at thread 
death or explicitly — the thread object deletes this link object. In the 
thread::owned class the forward pointer of correct type is added to a nested 
derived entry class. The extra allocated space for objects derived from 
thread::owned also points to the entry object. This double despatch 
mechanism, based on a variant of the Visitor pattern, is how correct type safe 
deallocation is achieved without relying on virtual destructors.
Both the thread::owned and the thread::owned_type classes are empty, 
ie. devoid of any data members or virtual functions. Although they have non-
zero size when free standing, they can be implemented to have an apparently zero 
size when used as base classes. They can either be given addresses in any padding 
used to align other members, or offset halfway through a primitive data member, ie. 
a valid address that is not the address of another valid object — it is not possible to 
have half an object! As empty objects have no contents there is no fear of 
overwriting another genuine data member.
Note that the thread::owned template class is forward declared within the 
thread class, but is actually defined outside it.
Many of the types presented have been presented as unencapsulated structs for 
brevity. In truth, a careful balance of classes, privacy, friendship and safe 
constructors is the best approach.
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Mapping objects into memory
• Objects can be placed at specified addresses

const volatile void *base = ...;
const volatile input_struct &in =

*reinterpret_cast<const volatile input_struct *>(base);

const volatile void *base = ...;
const volatile input_struct &in =

*reinterpret_cast<const volatile input_struct *>(base);

• Where more complex objects are used
A placement form of new ensures correct construction
Destruction must be handled explicitly

void *operator new(size_t, void *place_at) throw()
{

return place_at;
}

void *operator new(size_t, void *place_at) throw()
{

return place_at;
}

volatile results_cache *cache = new(base) results_cache;
...
cache->~results_cache();

volatile results_cache *cache = new(base) results_cache;
...
cache->~results_cache();

Simple objects mapped at a given location in memory, such as memory mapped I/O, 
screen mapping, OS or run-time support structures, etc. can simply be taken and 
recast from a generic address to an appropriate type. It is important that the expected 
layout is matched exactly.
In the first example above, a reference is used in preference to a pointer. This binds 
in permanently to that location, permitting it to be used as a normal variable. in's
full cv-qualification specifies that it is a read-only variable whose value may change 
asynchronously — thus it is not const in the traditional sense of the word. It is 
important that the compiler does not aggressively optimise access to its value based 
on a strictly sequential execution model, hence volatile.
More complex objects may have important initialisation and finalisation semantics, 
such as the setting and clearing of control words on construction and destruction. 
The new operator provides allocation at some address and then calls the constructor. 
To provide a specific address or strategy, operator new may be overloaded and 
provided with extra arguments. In the case above, available in the standard library, 
the argument is simply the address for allocation — a remarkably trivial allocation 
operator...
Although placement forms are now possible for operator delete, these are used 
for recovering from failed constructors and cannot be called explicitly. To correctly 
destroy a placed object, its destructor must be called explicitly, as shown above.
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Shared memory issues
• Binary compatibility

Mapped structures must have the same size and layout

• Process compatibility
If shared memory is mapped to same address in all 
processes, any pointers should be within shared region
Otherwise, offsets from a base address should be used
Any other descriptors used must be unique across system

• Unless processes executed from the same image
No virtual functions or virtual base classes
No use of run-time type information

• Access must be synchronised

Shared memory and memory mapped files offer forms of inter-process 
communication and persistence. Memory may be shared between processes and, 
where distinct from shared memory, memory mapped files also allow files to be 
treated as in-core data structures. If the issues above are respected and addressed, it 
is possible to use this as a medium for session persistence.
Flat data structures without pointers seem to be the safest bet. However, if certain 
constraints can be met and conditions guaranteed, pointers to both data and 
functions can be introduced. The simplest case is if shared memory is mapped to the 
same base address in all sharing processes, then internal pointers become possible. 
If executed from the same image, function pointers and hence polymorphism 
become a possibility.
If access to certain data members is guaranteed to be from a particular process, then 
in it may contain pointers back into that process' address space. This promise can be 
checked using a simple security mechanism: access to the data is by member 
function only, and this checks the PID of the caller against a PID stored within the 
object.
These constraints are part of the reason for preferring non-polymorphic system 
primitives over polymorphic ones, relying on adaptors to build the latter from the 
former. Synchronisation primitives that are simply wrappers for OS resource 
descriptors which are unique across the system can be placed in shared memory and 
used by all attached processes.
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Managing shared allocation
• Use a class to 

encapsulate 
mapping of 
memory

• Provide a simple 
heap manager that 
sits at the base of 
the shared region

• Overload operator
new to simplify 
allocation

class shared_memory
{
public:

...
class manager;
class descriptor
{
public:

descriptor(shared_memory &);
...
manager *manager() const;
...

};
...

};

class shared_memory
{
public:

...
class manager;
class descriptor
{
public:

descriptor(shared_memory &);
...
manager *manager() const;
...

};
...

};

Creation and control of shared memory

Mapping and access of shared memory

Heap management within shared memory

There are many components to encapsulating shared memory. The physical concept 
of the shared segment is separate to actually attaching it to a process, in the same 
way that an ordinary file on a file system is different to holding an open descriptor 
to it for content access.
These roles are separated in the classes above: the outer shared_memory class is 
the one that describes the concept, the creation, and the removal of shared memory 
from a system. The nested descriptor class is responsible for its mapping. In 
practice it would have many constructors to support the many options available.
For convenience, a simple 'heap' manager can be used for allocation of objects into 
the shared memory region. The nested manager class covers this responsibility, 
and would normally reside near the base or end of the shared region. A call to 
descriptor::manager function returns the address of the manager object, or 
null if one is not being used.
The new operator can be overloaded to allocate from the shared memory heap 
manager rather than from the ordinary heap.
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Shared heap management
class shared_memory::manager
{
public:

...
template<typename type> void destroy(type *);
template<typename type> type *find(const char *) const;
...

};

typedef shared_memory::manager shared;
void *operator new(size_t, shared *);
void *operator new(size_t, shared *, const char *name);
void *operator new(size_t, shared *, size_t offset);
void *operator new(size_t, shared *, const char *, size_t);

class shared_memory::manager
{
public:

...
template<typename type> void destroy(type *);
template<typename type> type *find(const char *) const;
...

};

typedef shared_memory::manager shared;
void *operator new(size_t, shared *);
void *operator new(size_t, shared *, const char *name);
void *operator new(size_t, shared *, size_t offset);
void *operator new(size_t, shared *, const char *, size_t);

Calls destructor 
and deallocates

Finds a named 
object

shared_memory::descriptor region(...);
results_cache *cache =

new(region.manager(), "cache") results_cache(initial);
mutex *key = region.manager()->find<mutex>("lock");
...
region.manager()->destroy(cache);

shared_memory::descriptor region(...);
results_cache *cache =

new(region.manager(), "cache") results_cache(initial);
mutex *key = region.manager()->find<mutex>("lock");
...
region.manager()->destroy(cache);

Abbreviation

Create named 
object

Create object at 
a given offset

Objects can be allocated freely and anonymously within the heap space. More 
useful is the concept of object naming to allow objects to be created by one process, 
and looked up by another without having to explicitly know the offset. The template 
member function find is used for this. Alternatively objects may be allocated at 
fixed offsets, and a corresponding find function can be provided for this.
Because placement delete is not a possibility, objects are destroyed explicitly 
with respect to the shared memory manager using destroy. This template member 
function ensures, through type deduction, that the object is correctly destructed.
The issues for overloading operator new[] in shared memory are a little more 
involved and are not covered here, suffice to say that it cannot be implemented 
without significant system dependent assumptions. Alternative methods must be 
employed to allocate shared arrays.
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Summary
• Functions as objects

Callback idioms
Threads as asynchronous functions

• Adaptors
Adding polymorphic or thread-safe behaviour to classes

• Proxies and smart pointers
Control objects for synchronisation
Thread-safe object access
Thread-safe reference counting

• Application of new and advanced language 
features

A number of techniques — old and new — have been applied to the construction of 
asynchronous frameworks in C++. Patterns, idioms, and newer language features 
have been used to tackle many — although clearly not all — features of such 
systems. This talk has given an introduction and a significant foundation for further 
detailed design and implementation in this and related areas. 


