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Abstract
We study a class of synchronous, perfect-recall
multi-agent systems with imperfect information
and broadcasting, i.e., fully observable actions. We
define an epistemic extension of strategy logic with
incomplete information and the assumption of uni-
form and coherent strategies. In this setting, we
prove that the model checking problem, and thus
rational synthesis, is non-elementary decidable. We
exemplify the applicability of the framework on
a rational secret-sharing scenario. This paper has
been accepted for publication in the proceedings of
the 26th International Joint Conference on Artifi-
cial Intelligence (IJCAI 2017).

1 Introduction
In this contribution we introduce ESL, an epistemic extension
of Strategy Logic (SL) [20; 9], based on synchronous perfect-
recall strategies (Section 2). The language introduced can ex-
press rational synthesis [12; 21; 17], but its model-checking
problem is undecidable. However, we identify a significant
class BA-iCGS of systems: those having broadcast (i.e., fully
observable) actions (Section 2) and prove that model check-
ing BA-iCGS against ESL is non-elementary decidable (Sec-
tion 4). This is a tight result as a matching lower-bound al-
ready holds in the perfect-information case. We illustrate our
formalism on a rational secret-sharing scenario with broad-
cast actions (Section 3).

Related Work. SL and knowledge have been combined
before in the context of MAS. In [7; 8], an epistemic vari-
ant of SL [20] was introduced. However, this was limited to
epistemic sentences, whereas we consider the full combined
language, and the approach assumed observational semantics,
whereas we here consider synchronous perfect recall. Al-
though not studied in these papers these formalisms have an
undecidable model checking problem if evaluated under syn-
chronous perfect recall. Also, [5] defines a variant of SL with
uniform strategies. They achieve decidability by a variation
of the tradition of assuming a hierarchy on the observations.
In this paper we do not make any hierarchical assumptions.

A key aspect of the work here presented is that it relies on
broadcasting to achieve decidability in the context of a very
expressive specification language. The notion of broadcast

has already been studied in the context of knowledge [11;
18]. A further important result in this area is that for broadcast
systems the synthesis problem of specifications in LTL and
knowledge is decidable [19]. However, ESL is strictly more
expressive and synthesis, which in our case can be expressed
via model checking, can also be shown to be decidable. An
approach to reasoning about strategies and knowledge under
broadcast was also recently presented in [4]. However, their
logic is considerably less expressive than ours, as it is based
on ATL and not SL. In particular, it cannot express Nash
equilibria and rational synthesis, which are essential features
of this contribution.

Rational synthesis has been studied before in the con-
text of perfect information. In [17] the strong-rational
synthesis problem with LTL objectives (and aggregation
of finitely many objectives), is shown to be 2EXPTIME-
complete.In [13], Equilibrium Logic is introduced to reason
about Nash equilibria in games with LTL and CTL objec-
tives. However, both cases assume perfect information of the
agents. Synthesis under imperfect information has been first
tackled in [14] albeit for a restricted class of CGS, viz. reac-
tive modules.

2 Strategy Logic with Imperfect Information
We consider concurrent game structures enriched with indis-
tinguishability relations. [15; 6].
Definition 1 (iCGS). An imperfect information concurrent
game structure (iCGS) is a tuple S = 〈Ag, AP , {Acta}a∈Ag,
S, S0, tr, {∼a}a∈Ag, λ〉, where:

1. Ag is the finite non-empty set of agent names.
2. AP is the finite non-empty set of atomic propositions.
3. Acta is the finite non-empty set of actions.
4. S is the finite non-empty set of states and S0 ⊆ S is the

non-empty set of initial states.
5. tr : S × ACT → S is the transition function, where

ACT =
∏

a∈Ag Acta is the set of all joint actions.
6. ∼a⊆ S2 is the indistinguishability relation for agent a,

which is an equivalence relation.
7. λ : AP → 2S is the labelling function that assigns to

each atom p the set of states λ(p) in which p holds.

We focus on a particular class of iCGS, those having broad-
cast actions only. This definition is reported from [4].



Definition 2 (BA-iCGS). An iCGS S only has broadcast ac-
tions if for every agent a ∈ Ag, states s, s′ ∈ S, and
joint actions J, J ′ ∈ ACT, if J 6= J ′ and s ∼a s′ then
tr(s, J) 6∼a tr(s′, J ′). In this case we call S a broadcast
iCGS. We write BA-iCGS for the set of broadcast iCGS.

Broadcast iCGS arise naturally in several MAS scenarios,
including epistemic puzzles (e.g., the muddy children puzzle)
and games (e.g., battleship). In Section 3 we discuss an ap-
plication to rational synthesis.

We introduce ESL, an epistemic extension of SL. We inter-
pret ESL on iCGS with history-based semantics. Fix a finite
set of atomic propositions (atoms) AP , a finite set of agents
Ag, and an infinite set Var of strategy variables x0, x1, . . ..
The formulas over AP , Ag, and Var are built according to
the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | 〈〈x〉〉ϕ | (x, a)ϕ | Kaϕ | CAϕ | DAϕ

where p ∈ AP , x ∈ Var, a ∈ Ag, and A ⊆ Ag. The set
of ESL formulas is the one generated by the grammar. For
a detailed account of the interpretation of ESL on iCGS we
refer to [3]

We now introduce the main decision problem of this work.
Definition 3 (Model Checking). Let C be a class of iCGS
and F a sublanguage of ESL. Model checking C against F
specifications is the following decision problem: given S ∈ C
and ϕ ∈ F as input, decide whether S |= ϕ.

Model checking iCGS against ATL is undecidable [10].
Thus, we obtain:
Proposition 1. Model checking iCGS against ESL is unde-
cidable.

3 Rational Synthesis under Imperfect
Information

Several questions in computer science can be cast as the prob-
lem of deciding if there exists a joint winning strategy for a
coalition of agents against a coalition of adversarial agents
(and computing one if it exists). In the verification literature
this problem is called synthesis.

However, as argued in [21; 17; 1], the partition of agents
into “good” and “bad” is often insufficient, and it is more
appropriate to view agents as rational. That is, agents have
preferences over outcomes and act in a way that increases
their own utility. Then, instead of reasoning about winning
strategies, one should reason about rational strategy pro-
files, i.e., that satisfy some notion of equilibrium. Applica-
tion domains include rational distributed computing and ra-
tional cryptography [1], and negotiating systems with self-
interested agents [16]. Technically, suppose we are given
an iCGS S representing the multi-agent system, and LTLK-
formulas γa representing the objective of agent a ∈ Ag. Here,
LTLK is the logic consisting of the set of path-formulas of
ATL∗K. We can then talk about Nash equilibria σ in games
of the form G = 〈S, {γa}a∈Ag〉. Rational synthesis considers
the following decision problem (sometimes called E-NASH) :
Definition 4 (Rational Synthesis for LTLK objectives, cf.
[17]). Given an iCGS S, LTLK-formulas γa for every a ∈ Ag,

and an LTLK-formula ϕ, decide whether there exists a Nash
equilibrium σ in the game G = 〈S, {γa}a∈Ag〉 such that the
path induced by σ satisfies ϕ.

The dual problem, called Strong Rational Synthesis (some-
times called A-NASH), concerns deciding whether all Nash
equilibria induce a path that satisfies ϕ [17].

We now show that rational synthesis for LTLK objectives
reduces to model checking against ESL. Suppose Ag =
{a1, a2, . . . , an}, and let x be an n-tuple of variables. The
following formula RatSynϕ(x) in ESL expresses that x is
a Nash equilibrium whose induced execution satisfies ϕ:
(x1, a1) . . . (xn, an)

[
ϕ ∧

∧
a∈Ag (〈〈y〉〉(y, a)γa → γa)

]
.

Lemma 1. Rational synthesis for LTLK objectives is
reducible to model checking against the ESL-formula
〈〈x1〉〉 . . . 〈〈xn〉〉RatSynϕ(x).

A universally quantified formula is used for Strong Ratio-
nal Synthesis. It is important to observe that ESL can express
other equilibrium concepts such as subgame-perfect equilib-
ria, concepts that capture deviations by groups of players such
as k-resilience and t-immunity, and the combination (k, t)-
robustness that captures fault-tolerance [1]. Also, ESL is able
to express the existence of Nash equilibria w.r.t. epistemic ob-
jectives, which, to the best of our knowledge, has not yet been
considered in the literature.

Rational Secret-Sharing with Broadcast. We illustrate
the model-checking problem for BA-iCGS against ESL with
a simple scenario inspired by [2] that uses broadcast. In
the classic m-out-of-n secret-sharing problem, for Ag =
{1, 2, . . . , n}, initially each agent i ∈ Ag privately holds a
“share” fi of a secret f0, and any m “good” agents can col-
laborate to learn the secret in spite of the remaining n − m
“bad” agents. In the rational version of this scenario, the ob-
jective of each agent is to learn the secret, i.e., she prefers to
learn the secret rather than not to learn it. Richer, non-binary,
preferences can also be handled, including the fact that an
agent may prefer that the least number of other agents learn
the secret. For simplicity we do not consider such extensions.

We can model this scenario as an iCGS as follows. The se-
cret is the value of a variable s initially hidden from all agents
(formally, a variable v with finite domain D is modelled as
|D|-many atomic propositions); agent i’s share is modelled
as a private variable fi; each agent has a private variable si
that represents what she thinks the secret is; at every step, ev-
ery agent broadcasts a message (from some fixed finite set of
M messages). Finally, the objective γi of each agent i can
be formalised as the LTLK-formula FGKi(si = s): from
some point on, agent i knows the secret. Thus, the ESL-
formula 〈〈x1〉〉 . . . 〈〈xn〉〉RatSynϕ(x) expresses that there is a
Nash equilibrium satisfying ϕ in the rational secret-sharing
scenario. For instance, one can use ϕ to express that agents
make “true” statements, e.g., that if agent i broadcasts “my
share is x”, then indeed fi = x. Observe that by using ESL
specifications we can naturally express secrecy and strategic
concepts.

4 Model Checking BA-iCGS against ESL
In this section we prove the main technical result of this paper.



Theorem 5. Model checking BA-iCGS against ESL specifi-
cations is decidable and non-elementary complete.

For the non-elementary lower-bound we use the obser-
vation that model-checking SL on CGS (i.e., with perfect-
information) is non-elementary [20], together with the fact
that by encoding the last joint action into the states, one can
translate a CGS S into a BA-iCGS S′ such that for all sen-
tences ϕ in ESL, we have that S |= ϕ iff S′ |= ϕ [4].

For the non-elementary upper-bound, we reduce the
model-checking problem of BA-iCGS against ESL speci-
fications to model checking regular-trees against Monadic
Second-Order Logic (MSO). The naı̈ve approach is to code
every tuple (S, h, χ) by a tuple of functions (Ŝ, ĥ, χ̂) each of
whose domain is the set ACT∗ of finite sequences of joint ac-
tions, and whose ranges are finite (to be specified later). This
encoding allows us to build, for every ESL-sentence ϕ, an
MSO-formula Φ, such that (S, h, χ) |= ϕ iff T |= Φ(Ŝ, ĥ, χ̂),
where T is the infinite ACT-ary tree generated by Ŝ, ĥ, and χ̂.
The latter problem is decidable if Ŝ, ĥ, and χ̂ are regular func-
tions (a function f : D∗ → L is regular if, for each l ∈ L,
the set f−1(l) ⊆ D∗ is accepted by a finite automaton). Since
ϕ is a sentence we can choose χ arbitrarily, in particular so
that it is regular (on the other hand, both Ŝ and ĥ are always
regular).
Application to Rational Synthesis. By the discussion in
Section 4, we immediately get the first part of the following:
Corollary 1. Rational synthesis for LTLK objectives on BA-
iCGS is decidable. Moreover, if a given instance returns
“yes”, then a finite-state Nash equilibrium can be computed.

5 Conclusions
We defined ESL, a combination of Strategy Logic and Epis-
temic Logic. We observed that model checking and synthe-
sis are undecidable under synchronous perfect-recall seman-
tics. However, we showed that a noteworthy subclass of sys-
tems, those that admit only broadcast actions, admit decidable
model checking and synthesis, and identified tight bounds for
the model-checking problem.

We have illustrated the expressivity of the formalism by
phrasing rational synthesis under incomplete information, a
previously unexplored set-up, as an instance of model check-
ing for ESL. This has the noteworthy consequence that ratio-
nal synthesis is decidable in the framework. It follows that we
can decide expressive strategic properties of rational secret-
sharing scenarios like the one presented in Section 3 under
the assumption of non-randomised strategies. We leave the
exploration of other scenarios for future work.
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