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Markov decision processes (MDPs) are a stan-
dard model for dynamic systems that exhibit both
stochastic and controlled behavior [18]. The system
starts in the initial state and makes a sequence
of transitions between states. Depending on the
type of the current state, either the controller gets
to choose an enabled transition (or a distribution
over transitions), or the next transition is chosen
randomly according to a defined distribution. By
fixing a strategy for the controller, one obtains a
probability space of plays of the MDP. The goal of
the controller is to optimize the expected value of
some objective function on the plays of the MDP.
The fundamental questions are “what is the opti-
mal value that the controller can achieve?”, “does
there exist an optimal strategy, or only ε-optimal
approximations?”, and “which types of strategies are
optimal or ε-optimal?”.

Such questions have been studied extensively
for finite MDPs (see e.g. [7] for a survey) and
also for certain types of countably infinite MDPs
[18], [16]. However, the literature on countable
MDPs is mainly focused on objective functions
defined w.r.t. numeric costs (or rewards) that are
assigned to transitions, e.g. (discounted) expected
total reward or limit-average reward. In contrast, we
study qualitative objectives that are expressed by
Parity conditions and which are motived by formal
verification questions.

There are works that studied particular classes
of countably infinite, but finitely branching, MDPs
that arise from models in automata theory [10],
[2], [5], [4], [1]. In each of these papers, a crucial
part of the analysis is establishing the existence
of optimal strategies of particular structure and
memory requirements, but none of them looked

at proving such properties for general countable
MDPs. Countable MDPs also naturally occur in the
analysis of queueing systems [14], gambling [3],
and branching processes [17], which have multiple
applications. They also show up in the analysis
of finite-state models, e.g. in two-player stochastic
games [19], [9] when reasoning about an optimal
strategy against a fixed (randomised and memory-
full) strategy of the opponent.

Finite MDPs vs. Infinite MDPs: It should be
noted that many standard properties (and proof
techniques) of finite MDPs do not carry over to
infinite MDPs.

E.g., given some objective, consider the set of all
states in an MDP that have nonzero value. If the
MDP is finite then this set is finite and thus there
exists some minimal nonzero value. This property
does not carry over to infinite MDPs. Here the set
of states is infinite and the infimum over the nonzero
values can be zero. As a consequence, even for a
reachability objective, it is possible that all states
have value > 0, but still the value of some states
is < 1. Such phenomena appear already in infinite-
state Markov chains like the classic Gambler’s ruin
problem with unfair coin tosses in the player’s favor
(0.6 win, 0.4 lose). The value, i.e., the probability
of ruin, is always > 0, but still < 1 in every state
except the ruin state itself; cf. [11] (Chapt. 14). An-
other difference is that optimal strategies need not
exist, even for qualitative objectives like reachability
or parity. Even if some state has value 1, there might
not be any single strategy that attains the value 1,
but only an infinite family of ε-optimal strategies
for every ε > 0.

Parity objectives: We study general countably infi-
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Fig. 1: For countable MDPs, these diagrams show the memory requirements of optimal and ε-optimal
strategies for objectives in the Mostowski hierarchy. An objective in a level of the hierarchy subsumes
all objectives in lower levels, e.g., {0, 1, 2}-Parity subsumes {1, 2}-Parity. We have extended the
Mostowski hierarchy to include reachability and safety. The magenta (resp., blue) regions enclose
objectives where memoryless deterministic (MD) strategies are sufficient for optimal (resp., ε-optimal)
strategies; for objectives outside the regions, infinite-memory strategies are necessary. The left diagram
is for infinitely branching MDPs; e.g., ε-optimal strategies for all but reachability objectives require
infinite memory, whereas MD-strategies are sufficient for reachability. The right diagram is for finitely
branching MDPs; e.g., optimal strategies (if they exist) can be chosen MD for all objectives subsumed
by {0, 1, 2}-Parity.

nite MDPs with parity objectives. Parity conditions
are widely used in temporal logic and formal veri-
fication, e.g., they can express ω-regular languages
and modal µ-calculus [12]. Every state has a color,
out of a finite set of colors encoded as natural
numbers. An infinite play is winning iff the highest
color that is seen infinitely often in the play is even.
The controller wants to maximize the probability
of winning plays. Subclasses of parity objectives
are defined by restricting the set of used colors;
these are classified in the Mostowski hierarchy [15]
which includes, e.g., Büchi and co-Büchi objectives.
Such prefix-independent infinitary objectives cannot
generally be encoded by numeric transition rewards
as in [18], though both types subsume the simpler
reachability and safety objectives.

There are different types of strategies, depending
on whether one can take the whole history of
the play into account (history-dependent; (H)), or
whether one is limited to a finite amount of mem-
ory (finite memory; (F)) or whether decisions are
based only on the current state (memoryless; (M)).
Moreover, the strategy type depends on whether

the controller can randomize (R) or is limited to
deterministic choices (D). The simplest type MD
refers to memoryless deterministic strategies.

The type of strategy needed for an optimal (resp.
ε-optimal) strategy for some objective is also called
the strategy complexity of the objective. For finite
MDPs, MD-strategies are sufficient for all types
of qualitative and quantitative parity objectives [6],
[8], but the picture is more complex for countably
infinite MDPs.

Since optimal strategies need not exist in general,
we consider both the strategy complexity of ε-
optimal strategies, and the strategy complexity of
optimal strategies under the assumption that they
exist. E.g., if an optimal strategy exists, can it be
chosen MD?

We provide a complete picture of the memory
requirements for objectives in the Mostowski hier-
archy, which is summarized in Figure 1.

In particular, our results show that there is a
strong dichotomy between two different classes of
objectives. For objectives of the first class, optimal
strategies, where they exist, can be chosen MD. For
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objectives of the second class, optimal strategies
require infinite memory in general, in the sense
that all FR-strategies achieve the objective only
with probability zero. A similar dichotomy applies
to ε-optimal strategies. For certain objectives, ε-
optimal MD-strategies exist, while for all others
even ε-optimal strategies require infinite memory in
general. This is a strong dichotomy because there
are no objectives in the Mostowski hierarchy for
which other types of strategies (MR, FD, or FR)
are both necessary and sufficient. Put differently,
for all objectives in the Mostowski hierarchy, if FR-
strategies suffice then MD-strategies suffice as well.

We also consider the subclass of countable MDPs
that are finitely branching. (Note that these generally
still have an infinite number of states.) The above
mentioned dichotomies apply here as well, though
the classes of objectives where optimal (resp. ε-
optimal) strategies can be chosen MD are larger than
for general countable MDPs.

This extended abstract is based on [13].
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