
MightyL: A Compositional Translation
from MITL to Timed Automata?

Thomas Brihaye1, Gilles Geeraerts2, Hsi-Ming Ho1, Benjamin Monmege3

1 Université de Mons, Belgium, thomas.brihaye,hsi-ming.ho@umons.ac.be
2 Université libre de Bruxelles, Belgium, gigeerae@ulb.ac.be

3 Aix Marseille Univ, CNRS, LIF, France, benjamin.monmege@lif.univ-mrs.fr

1 Introduction

The design of critical software that respect real-time specifications is a notori-
ously difficult problem. In this context, verification of programs against formal
specifications is crucial, in order to handle the thin timing behaviours. In the
untimed setting, a logic widely used both in academia and industry is Linear
Temporal Logic (LTL) [16]. A crucial ingredient of its success is the possibility
to translate LTL formulae into (Büchi) automata. In the real-time counterpart,
Metric Interval Temporal Logic (MITL) [1] has been introduced twenty years ago
where it was established that it can be translated into (Büchi) timed automata
(TA). Beyond verification of real-time software, there are numerous interests in
MITL from other domains, e.g. automated planning and scheduling [18], control
engineering [8] and systems biology [3]. The translation from MITL to TAs is
complicated and has led to some simplified constructions, e.g. [7, 13]. However,
despite these efforts, the tool support for MITL is still lacking to this day. To the
best of our knowledge, the only implementation of an automata-based construc-
tion is described in [5,6], but is not publicly available. Since existing verification
tools based on timed automata have been around for quite some time and have
been successful (e.g. Uppaal [12] first appeared in 1995), it would be preferable
if such translation can be used with these tools.

In the present paper, we attempt to amend the situation by proposing a
more practical construction from MITL to (Büchi) timed automata. Compared
to [5, 6], our construction has the following advantages:

1. While we also use one-clock alternating timed automata (OCATA) [14] as an
intermediate formalism, our construction exploits the ‘very-weakness’ of the
structure of OCATAs obtained from MITL formulae to reduce state space. In
particular, our construction subsumes LTL2BA [9] in the case of LTL.

2. The number of clocks in the resulting TA is reduced by a factor of up to two.
This is achieved via a more fine-grained analysis of the possible clock values.

? This work has been supported by the FRS/F.N.R.S. PDR grant SyVeRLo, and (par-
tially) funded by the DeLTA project (ANR-16-CE40-0007) and the SensAS project
(INS2I JCJC’17).



3. The construction is compositional : for each location of the OCATA A ob-
tained from the input MITL formula, we construct a ‘component’ TA and es-
tablish a connection between the runs of A and the runs of the synchronous
product of these components. Thanks to this connection, we can give the out-
put TA in terms of components; this greatly simplifies the implementation,
and speeds up its execution.

4. The construction is compatible with off-the-shelf model-checkers: our tool
MightyL generates output automata in the Uppaal xml format which,
besides Uppaal [12] itself, can also be analysed by LTSmin [10] with opaal
front-end, TiAMo [4], ITS-tools [17], DiVinE [2], etc.

2 Implementation

We have implemented our translation from MITL formulae to generalised Büchi
timed automata in a tool called MightyL, written in OCaml. When the in-
put formula is in MITL0,∞, the translation can be done in polynomial time. For
the general case, it runs in exponential time (assuming a succinct encoding of
constants, as is the case here). We can then use Uppaal [12] to check the satis-
fiability of ϕ over finite timed words, or LTSmin [10] with opaal front-end to
check satisfiability over infinite timed words. Our tool is publicly available, and
can even be executed directly on the website

http://www.ulb.ac.be/di/verif/mightyl

We check the satisfiability of MITL formulae on examples, inspired by the bench-
marks of [6,9]. For k ∈ N and an interval I, we consider the satisfiable formulae:
F (k, I) =

∧k
i=1FIpi, G(k, I) =

∧k
i=1GIpi, U(k, I) = (· · · (p1 UI p2)UI · · · )UI

pk, R(k, I) = (· · · (p1 RI p2) RI · · · ) RI pk, and θ(k, I) = ¬((
∧k

i=1GFpi) ⇒
G(q ⇒ FIr)). We also consider an example inspired by motion planning prob-
lems [11,15]. In this benchmark, a robot must visit target points t1, t2, t3, . . . , tk
within given time frames (in our case, ti must be in [3(i−1), 3i]), while enforcing
a safety condition G¬p. This specification is modelled by the satisfiable MITL
formula µ(k) =

∧k
i=1F[3(i−1),3i]ti∧G¬p. In Table 1, we report on the time taken

by the execution of MightyL; LTSmin (split into the time taken by opaal
front-end to translate the model into C++ code, the compilation time of the re-
sulting C++ code, and the time taken by LTSmin for the actual model-checking);
and Uppaal, on all these examples (for the motion planning, only finite words
are relevant, hence we report only on the Uppaal running time).

References

1. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal
of the ACM 43(1), 116–146 (1996)

2. Barnat, J., Brim, L., Havel, V., Havlícek, J., Kriho, J., Lenco, M., Rockai, P., Still,
V., Weiser, J.: DivinE 3.0 - an explicit-state model checker for multithreaded C &
C++ programs. In: CAV’13. LNCS, vol. 8044, pp. 863–868. Springer (2013)

2

http://www.ulb.ac.be/di/verif/mightyl


Table 1. Execution time for the satisfiability checks of benchmarks of [6, 9].

Formula MightyL LTSmin Uppaal
F (5, [0,∞)) 9ms 3.48s/2.18s/0.12s 0.75s
F (5, [0, 2]) 7ms 3.76s/2.23s/0.15s 0.84s
F (5, [2,∞)) 6ms 3.76s/2.26s/0.91s 1.64s
F (3, [1, 2]) 70ms 6m5.15s/38.01s/0.22s 9.00s
F (5, [1, 2]) 70ms >15m 2m6s
G(5, [0,∞)) 10ms 3.83s/2.43s/0.05s 0.75s
G(5, [0, 2]) 10ms 4.01s/2.51s/0.10s 0.82s
G(5, [2,∞)) 9ms 4.06s/2.47s/0.04s 0.85s
G(5, [1, 2]) 15ms 7.81s/2.99s/0.09s 1.12s

µ(1) 13ms - 0.39s
µ(2) 21ms - 2.33s
µ(3) 76ms - 15.77s
µ(4) 87ms - 2m23s

Formula MightyL LTSmin Uppaal
U(5, [0,∞)) 16ms 1.90s/1.44s/0.05s 0.41s
U(5, [0, 2]) 8ms 2.08s/1.54s/0.06s 0.42s
U(5, [2,∞)) 8ms 2.08s/1.53s/0.09s 0.52s
U(3, [1, 2]) 49ms 4m0.14s/23.54s/0.09s 4.92s
U(5, [1, 2]) 97ms >15m 21.80s
R(5, [0,∞)) 7ms 1.86s/1.42s/0.03s 0.40s
R(5, [0, 2]) 7ms 1.97s/1.44s/0.03s 0.40s
R(5, [2,∞)) 7ms 1.92s/1.42s/0.03s 0.42s
R(5, [1, 2]) 10ms 5.37s/2.16s/0.04s 0.62s

θ(1, [100, 1000]) 9ms 1.88s/1.74s/0.04s 0.25s
θ(2, [100, 1000]) 13ms 5.04s/3.17s/0.19s 0.86s
θ(3, [100, 1000]) 14ms 36.57s/16.27s/3.20s 21.84s
θ(4, [100, 1000]) 15ms 5m30s/4m18s/2m16s 18m39s

3. Bartocci, E., Bortolussi, L., Nenzi, L.: A temporal logic approach to modular de-
sign of synthetic biological circuits. In: CMSB’13. LNCS, vol. 8130, pp. 164–177.
Springer (2013)

4. Bouyer, P., Colange, M., Markey, N.: Symbolic optimal reachability in weighted
timed automata. In: CAV’16. LNCS, vol. 9779, pp. 513–530. Springer (2016)

5. Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed au-
tomata. In: FORMATS’13. LNCS, vol. 8053, pp. 47–61. Springer (2013)

6. Brihaye, T., Estiévenart, M., Geeraerts, G.: On MITL and alternating timed au-
tomata of infinite words. In: FORMATS’14. LNCS, vol. 8711. Springer (2014)

7. D’Souza, D., Matteplackel, R.: A clock-optimal hierarchical monitoring automaton
construction for mitl. Research Report 2013-1, IIS (2013), http://www.csa.iisc.
ernet.in/TR/2013/1/lics2013-tr.pdf

8. Fu, J., Topcu, U.: Computational methods for stochastic control with metric in-
terval temporal logic specifications. In: CDC’15. pp. 7440–7447. IEEE (2015)

9. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: CAV’01.
LNCS, vol. 2102, pp. 53–65. Springer (2001)

10. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:
High-performance language-independent model checking. In: TACAS’15. LNCS,
vol. 9035, pp. 692–707. Springer (2015)

11. Karaman, S.: Optimal Planning with Temporal Logic Specifications. Master’s the-
sis, Massachussetts Institute of Technology (2009)

12. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

13. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: FOR-
MATS’06. LNCS, vol. 4202, pp. 274–289. Springer (2006)

14. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal
logic over finite words. Logical Methods in Computer Science 3(1) (2007)

15. Plaku, E., Karaman, S.: Motion planning with temporal-logic specifications:
Progress and challenges. AI Communications 29, 151–162 (2016)

16. Pnueli, A.: The temporal logic of programs. In: FOCS’77. pp. 46–57. IEEE (1977)
17. Thierry-Mieg, Y.: Symbolic model-checking using ITS-tools. In: TACAS’15. LNCS,

vol. 9035, pp. 231–237. Springer (2015)
18. Zhou, Y., Maity, D., Baras, J.S.: Timed automata approach for motion planning

using metric interval temporal logic. Research Report 1603.08246, arXiv (2016)

3

http://www.csa.iisc.ernet.in/TR/2013/1/lics2013-tr.pdf
http://www.csa.iisc.ernet.in/TR/2013/1/lics2013-tr.pdf

