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1 Introduction

The design of critical software that respect real-time specifications is a notori-
ously difficult problem. In this context, verification of programs against formal
specifications is crucial, in order to handle the thin timing behaviours. In the
untimed setting, a logic widely used both in academia and industry is Linear
Temporal Logic (LTL) [16]. A crucial ingredient of its success is the possibility
to translate LTL formulae into (Büchi) automata. In the real-time counterpart,
Metric Interval Temporal Logic (MITL) [1] has been introduced twenty years ago
where it was established that it can be translated into (Büchi) timed automata
(TA). Beyond verification of real-time software, there are numerous interests in
MITL from other domains, e.g. automated planning and scheduling [18], control
engineering [8] and systems biology [3]. The translation from MITL to TAs is
complicated and has led to some simplified constructions, e.g. [7, 13]. However,
despite these efforts, the tool support for MITL is still lacking to this day. To the
best of our knowledge, the only implementation of an automata-based construc-
tion is described in [5,6], but is not publicly available. Since existing verification
tools based on timed automata have been around for quite some time and have
been successful (e.g. Uppaal [12] first appeared in 1995), it would be preferable
if such translation can be used with these tools.

In the present paper, we attempt to amend the situation by proposing a
more practical construction from MITL to (Büchi) timed automata. Compared
to [5, 6], our construction has the following advantages:

1. While we also use one-clock alternating timed automata (OCATA) [14] as an
intermediate formalism, our construction exploits the ‘very-weakness’ of the
structure of OCATAs obtained from MITL formulae to reduce state space. In
particular, our construction subsumes LTL2BA [9] in the case of LTL.

2. The number of clocks in the resulting TA is reduced by a factor of up to two.
This is achieved via a more fine-grained analysis of the possible clock values.
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3. The construction is compositional : for each location of the OCATA A ob-
tained from the input MITL formula, we construct a ‘component’ TA and es-
tablish a connection between the runs of A and the runs of the synchronous
product of these components. Thanks to this connection, we can give the out-
put TA in terms of components; this greatly simplifies the implementation,
and speeds up its execution.

4. The construction is compatible with off-the-shelf model-checkers: our tool
MightyL generates output automata in the Uppaal xml format which,
besides Uppaal [12] itself, can also be analysed by LTSmin [10] with opaal
front-end, TiAMo [4], ITS-tools [17], DiVinE [2], etc.

2 Implementation

We have implemented our translation from MITL formulae to generalised Büchi
timed automata in a tool called MightyL, written in OCaml. When the in-
put formula is in MITL0,∞, the translation can be done in polynomial time. For
the general case, it runs in exponential time (assuming a succinct encoding of
constants, as is the case here). We can then use Uppaal [12] to check the satis-
fiability of ϕ over finite timed words, or LTSmin [10] with opaal front-end to
check satisfiability over infinite timed words. Our tool is publicly available, and
can even be executed directly on the website

http://www.ulb.ac.be/di/verif/mightyl

We check the satisfiability of MITL formulae on examples, inspired by the bench-
marks of [6,9]. For k ∈ N and an interval I, we consider the satisfiable formulae:
F (k, I) =

∧k
i=1FIpi, G(k, I) =

∧k
i=1GIpi, U(k, I) = (· · · (p1 UI p2)UI · · · )UI

pk, R(k, I) = (· · · (p1 RI p2) RI · · · ) RI pk, and θ(k, I) = ¬((
∧k

i=1GFpi) ⇒
G(q ⇒ FIr)). We also consider an example inspired by motion planning prob-
lems [11,15]. In this benchmark, a robot must visit target points t1, t2, t3, . . . , tk
within given time frames (in our case, ti must be in [3(i−1), 3i]), while enforcing
a safety condition G¬p. This specification is modelled by the satisfiable MITL
formula µ(k) =

∧k
i=1F[3(i−1),3i]ti∧G¬p. In Table 1, we report on the time taken

by the execution of MightyL; LTSmin (split into the time taken by opaal
front-end to translate the model into C++ code, the compilation time of the re-
sulting C++ code, and the time taken by LTSmin for the actual model-checking);
and Uppaal, on all these examples (for the motion planning, only finite words
are relevant, hence we report only on the Uppaal running time).
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Table 1. Execution time for the satisfiability checks of benchmarks of [6, 9].

Formula MightyL LTSmin Uppaal
F (5, [0,∞)) 9ms 3.48s/2.18s/0.12s 0.75s
F (5, [0, 2]) 7ms 3.76s/2.23s/0.15s 0.84s
F (5, [2,∞)) 6ms 3.76s/2.26s/0.91s 1.64s
F (3, [1, 2]) 70ms 6m5.15s/38.01s/0.22s 9.00s
F (5, [1, 2]) 70ms >15m 2m6s
G(5, [0,∞)) 10ms 3.83s/2.43s/0.05s 0.75s
G(5, [0, 2]) 10ms 4.01s/2.51s/0.10s 0.82s
G(5, [2,∞)) 9ms 4.06s/2.47s/0.04s 0.85s
G(5, [1, 2]) 15ms 7.81s/2.99s/0.09s 1.12s

µ(1) 13ms - 0.39s
µ(2) 21ms - 2.33s
µ(3) 76ms - 15.77s
µ(4) 87ms - 2m23s

Formula MightyL LTSmin Uppaal
U(5, [0,∞)) 16ms 1.90s/1.44s/0.05s 0.41s
U(5, [0, 2]) 8ms 2.08s/1.54s/0.06s 0.42s
U(5, [2,∞)) 8ms 2.08s/1.53s/0.09s 0.52s
U(3, [1, 2]) 49ms 4m0.14s/23.54s/0.09s 4.92s
U(5, [1, 2]) 97ms >15m 21.80s
R(5, [0,∞)) 7ms 1.86s/1.42s/0.03s 0.40s
R(5, [0, 2]) 7ms 1.97s/1.44s/0.03s 0.40s
R(5, [2,∞)) 7ms 1.92s/1.42s/0.03s 0.42s
R(5, [1, 2]) 10ms 5.37s/2.16s/0.04s 0.62s

θ(1, [100, 1000]) 9ms 1.88s/1.74s/0.04s 0.25s
θ(2, [100, 1000]) 13ms 5.04s/3.17s/0.19s 0.86s
θ(3, [100, 1000]) 14ms 36.57s/16.27s/3.20s 21.84s
θ(4, [100, 1000]) 15ms 5m30s/4m18s/2m16s 18m39s
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