
An implementation of dynamic complexity
Nils Vortmeier

Abstract
A dynamic program, as introduced by Dong, Su and Topor and Pat-

naik and Immerman, maintains the result of a fixed query for an input
database which is subject to changes. It can use an auxiliary database
whose relations are updated via first-order formulas upon changes of the
input database. Important queries like the reachability query can be main-
tained dynamically, despite the fact that they cannot be expressed in
first-order logic in the static setting. However, there is no recent prac-
tical evaluation of the performance of dynamic programs based on these
results.

In this talk I will present preliminary evaluation results on a proto-
typical implementation in SQL. We study the reachability query for undi-
rected graphs. In addition to insertions and deletions of single edges, we
also test the performance for insertions of many edges that are defined by
(unions of) conjunctive queries.

This talk is based on joint work with Thomas Schwentick, Thomas
Zeume and Dennis Ciba.

Modern data management systems handle an enormous amount of data, but
still have to react quickly to requests. If a query has to be answered frequently,
it is often more efficient to materialize the query result instead of recomputing
the query from scratch every time the result is requested. However, when the
underlying data changes, the stored query result possibly becomes invalid. In
that case, instead of evaluating the query from scratch, we update the query
result with the help of the old result and possibly further previously computed
auxiliary data. This auxiliary data then also needs to be updated whenever the
database changes.

This dynamic approach of maintaining information under changes was for-
malized from a descriptive point of view by Patnaik and Immerman [6] and,
independently, by Dong, Su and Topor [4]. Within the framework of dynamic
(descriptive) complexity, for a relational database subject to changes and a
query Q, a dynamic program maintains auxiliary relations including a distin-
guished relation representing the result of Q. If a change to the database occurs,
the auxiliary relations are updated by first-order formulas (or, equivalently, core
SQL queries). We call the class of queries that can be maintained in this way
DynFO.

Recently there has been considerable progress in maintaining important
queries. If changes are insertions or deletions of single edges, the reachabil-
ity query on arbitrary graphs can be maintained in DynFO [1], as well as every
MSO-definable query on graphs with bounded treewidth [2].

Furthermore, progress has been obtained in maintaining queries under more
complex changes. In the literature, most dynamic programs restrict the admis-
sible changes to insertions and deletions of single tuples, although in practical

1



database applications, changes of a database are often defined by queries that
are applied to the current instance. For example, using an SQL statement, one
can insert all edges (v, w) such that there are edges (w, u) and (u, v) already
present, for some node u. In [7], we studied changes to the database that are de-
fined by first-order formulas (or restrictions thereof) and reviewed which queries
can still be maintained in this setting. It turned out that the reachability query
on undirected graphs can still be maintained in DynFO if changes are first-order
defined insertions of edges and deletions of single edges, which extends results
of [6, 3].

This progress is a strong motivation to evaluate the approach in practical
scenarios. In this talk, we present a prototypical implementation in SQL of
dynamic programs for maintaining undirected reachability under changes of
single edges following [3], and under defined insertions and single-edge deletions.
For the latter, we focus on insertions that are defined by (unions of) conjunctive
queries, possibly with negations, which allow for a more efficient implementation
than full first-order logic in general. We give preliminary results of an evaluation
that compares the performance of these programs with a dynamic program
presented in [5] and with recomputation of the query result from scratch.

This talk is based on joint work with Thomas Schwentick, Thomas Zeume
and Dennis Ciba.

References
[1] Samir Datta, Raghav Kulkarni, Anish Mukherjee, Thomas Schwentick, and

Thomas Zeume. Reachability is in DynFO. In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Au-
tomata, Languages, and Programming - 42nd International Colloquium,
ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, volume
9135 of Lecture Notes in Computer Science, pages 159–170. Springer, 2015.

[2] Samir Datta, Anish Mukherjee, Thomas Schwentick, Nils Vortmeier, and
Thomas Zeume. A strategy for dynamic programs: Start over and muddle
through. In ICALP, 2017. Accepted for publication.

[3] Guozhu Dong and Jianwen Su. Arity bounds in first-order incremental eval-
uation and definition of polynomial time database queries. J. Comput. Syst.
Sci., 57(3):289–308, 1998.

[4] Guozhu Dong, Jianwen Su, and Rodney Topor. Nonrecursive incremental
evaluation of datalog queries. Annals of Mathematics and Artificial Intelli-
gence, 14, 1995.

[5] Chaoyi Pang, Guozhu Dong, and Kotagiri Ramamohanarao. Incremental
maintenance of shortest distance and transitive closure in first-order logic
and SQL. ACM Trans. Database Syst., 30(3):698–721, 2005.

[6] Sushant Patnaik and Neil Immerman. Dyn-FO: A parallel, dynamic com-
plexity class. J. Comput. Syst. Sci., 55(2):199–209, 1997.

[7] Thomas Schwentick, Nils Vortmeier, and Thomas Zeume. Dynamic com-
plexity under definable changes. In Michael Benedikt and Giorgio Orsi, edi-
tors, 20th International Conference on Database Theory, ICDT 2017, March

2



21-24, 2017, Venice, Italy, volume 68 of LIPIcs, pages 19:1–19:18. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

3


