
  

Chapter 4. Interrupts and Exceptions

 An interrupt is usually defined as an event that alters the sequence of instructions 
executed by a processor. 

 Such events correspond to electrical signals generated by hardware circuits both 
inside and outside the CPU chip.

 Interrupts are often divided into synchronous and asynchronous interrupts :

 Synchronous interrupts are produced by the CPU control unit while executing 
instructions and are called synchronous because the control unit issues them 
only after terminating the execution of an instruction.

 Asynchronous interrupts are generated by other hardware devices at arbitrary 
times with respect to the CPU clock signals.

 Intel microprocessor manuals designate synchronous and asynchronous interrupts 
as exceptions and interrupts, respectively. We'll adopt this classification, although 
we'll occasionally use the term "interrupt signal" to designate both types together 
(synchronous as well as asynchronous).



  

Intro and class layout
 Interrupts are issued by interval timers and I/O devices; for instance, the arrival of a 

keystroke from a user sets off an interrupt.

 Exceptions, on the other hand, are caused either by programming errors or by 
anomalous conditions that must be handled by the kernel. 

 In the first case, the kernel handles the exception by delivering to the current 
process one of the signals familiar to every Unix programmer. 

 In the second case, the kernel performs all the steps needed to recover from the 
anomalous condition, such as a Page Fault or a request, via an assembly language 
instruction such as int or sysenter for a kernel service.

 In this Class,

 we start by describing in the next section the motivation for introducing such signals. 

 We then show how the well-known IRQs (Interrupt ReQuests) issued by I/O devices 
give rise to interrupts, and we detail how 80 x 86 processors handle interrupts and 
exceptions at the hardware level. 

 The remaining sections describe how Linux handles interrupt signals at the software 
level. 

 One word of caution before moving on: in this chapter, we cover only "classic" interrupts 
common to all PCs; we do not cover the nonstandard interrupts of some architectures.



  

4.1. The Role of Interrupt Signals 
 When an interrupt signal arrives, the CPU must stop what it's currently doing and switch to a 

new activity; 

 it does this by saving the current value of the program counter (eip and cs registers) in 
the Kernel Mode stack and by placing an address related to the interrupt type into the 
program counter.

 There are some things in this chapter that will remind you of the context switch described 
in the previous chapter, carried out when a kernel substitutes one process for another. 

 But there is a key difference between interrupt handling and process switching: the 
code executed by an interrupt or by an exception handler is not a process. Rather, it is a 
kernel control path that runs at the expense of the same process that was running when the 
interrupt occurred. 

 As a kernel control path, the interrupt handler is lighter than a process (it has less context 
and requires less time to set up or tear down).



  

Interrupt handling is one of the most sensitive tasks performed by 
the kernel, because it must satisfy the following constraints: 

 Interrupts can come anytime, when the kernel may want to finish something else it was 
trying to do. The kernel's goal is therefore to get the interrupt out of the way as soon as 
possible and defer as much processing as it can. 

 The activities that the kernel needs to perform in response to an interrupt are thus 
divided into a critical urgent part that the kernel executes right away and a deferrable 
part that is left for later. 

 Because interrupts can come anytime, the kernel might be handling one of them while 
another one (of a different type) occurs. This should be allowed as much as possible, 
because it keeps the I/O devices busy. As a result, the interrupt handlers must be coded 
so that the corresponding kernel control paths can be executed in a nested manner. 

 When the last kernel control path terminates, the kernel must be able to resume 
execution of the interrupted process or switch to another process if the interrupt signal 
has caused a rescheduling activity.

 Although the kernel may accept a new interrupt signal while handling a previous one, some 
critical regions exist inside the kernel code where interrupts must be disabled. Such 
critical regions must be limited as much as possible because, according to the previous 
requirement, the kernel, and particularly the interrupt handlers, should run most of the time 
with the interrupts enabled.



  

4.2. Interrupts and Exceptions   

 The Intel documentation classifies interrupts and exceptions as follows:

 Interrupts:

 Maskable interrupts: All Interrupt Requests (IRQs) issued by I/O devices give 
rise to maskable interrupts . A maskable interrupt can be in two states: masked 
or unmasked; a masked interrupt is ignored by the control unit as long as it 
remains masked.

 Nonmaskable interrupts: Only a few critical events (such as hardware failures) 
give rise to nonmaskable interrupts . Nonmaskable interrupts are always 
recognized by the CPU.

 Each interrupt or exception is identified by a number ranging from 0 to 255; Intel 
calls this 8-bit unsigned number a vector. 

 The vectors of nonmaskable interrupts and exceptions are fixed, while those of 
maskable interrupts can be altered by programming the Interrupt Controller. 



  

Processor detected exceptions
 Generated when the CPU detects an anomalous condition while executing an instruction. 

These are further divided into three groups, depending on the value of the eip register 
that is saved on the Kernel Mode stack when the CPU control unit raises the exception.

 Faults: Can generally be corrected; once corrected, the program is allowed to restart 
with no loss of continuity. The saved value of eip is the address of the instruction that 
caused the fault, and hence that instruction can be resumed when the exception 
handler terminates. 

 Traps: Reported immediately following the execution of the trapping instruction; after 
the kernel returns control to the program, it is allowed to continue its execution with 
no loss of continuity. The saved value of eip is the address of the instruction that 
should be executed after the one that caused the trap. A trap is triggered only when 
there is no need to reexecute the instruction that terminated. The main use of traps is 
for debugging purposes. The role of the interrupt signal in this case is to notify the 
debugger that a specific instruction has been executed (for instance, a breakpoint 
has been reached within a program).

 Aborts: A serious error occurred; the control unit is in trouble, and it may be unable 
to store in the eip register the precise location of the instruction causing the 
exception. Aborts are used to report severe errors, such as hardware failures and 
invalid or inconsistent values in system tables. The interrupt signal sent by the control 
unit is an emergency signal used to switch control to the corresponding abort 
exception handler. This handler has no choice but to force the affected process to 
terminate.



  

Programmed exceptions

 Occur at the request of the programmer. 

 They are triggered by int or int3 instructions; the into (check for overflow) and 
bound (check on address bound) instructions also give rise to a programmed 
exception when the condition they are checking is not true.

 Programmed exceptions are handled by the control unit as traps; they are often 
called software interrupts . 

 Such exceptions have two common uses: to implement system calls and to notify a 
debugger of a specific event.



  

4.2.1. IRQs and Interrupts  

 Each hardware device controller capable of issuing interrupt requests usually has a single 
output line designated as the Interrupt ReQuest (IRQ) line. 

 All existing IRQ lines are connected to the input pins of a hardware circuit called the 
Programmable Interrupt Controller, which performs the following actions:

 Monitors the IRQ lines, checking for raised signals. If two or more IRQ lines are raised, 
selects the one having the lower pin number.

 If a raised signal occurs on an IRQ line:

 Converts the raised signal received into a corresponding vector.
 Stores the vector in an Interrupt Controller I/O port, thus allowing the CPU to read 

it via the data bus.
 Sends a raised signal to the processor INTR pin, that is, issues an interrupt.
 Waits until the CPU acknowledges the interrupt signal by writing into one of the 

Programmable Interrupt Controllers (PIC) I/O ports; when this occurs, clears the 
INTR line.

 Goes back to step 1.



  

Mapping and disabling IRQs
 The IRQ lines are sequentially numbered starting from 0; therefore, the first IRQ line is 

usually denoted as IRQ 0. Intel's default vector associated with IRQ n is n+32. 

 As mentioned before, the mapping between IRQs and vectors can be modified by 
issuing suitable I/O instructions to the Interrupt Controller ports.

 The PIC can be told to stop issuing interrupts that refer to a given IRQ line, or to 
resume issuing them. 

 Disabled interrupts are not lost; the PIC sends them to the CPU as soon as they are 
enabled again. 

 This feature is used by most interrupt handlers, because it allows them to process 
IRQs of the same type serially.

 Selective enabling/disabling of IRQs is not the same as global masking/unmasking of 
maskable interrupts. 

 When the IF flag of the eflags register is clear, each maskable interrupt issued by the 
PIC is temporarily ignored by the CPU. 

 The cli and sti assembly language instructions, respectively, clear and set that flag.



  

PIC  8259 configuration

Traditional PICs are implemented by connecting "in cascade" two 8259A-style external 
chips. Each chip can handle up to eight different IRQ input lines. Because the INT output 
line of the slave PIC is connected to the IRQ 2 pin of the master PIC, the number of 
available IRQ lines is limited to 15.



  

 4.2.1.1. The Advanced Programmable 
Interrupt Controller (APIC)

 The previous description refers to PICs designed for uniprocessor systems. If the system 
includes a single CPU, the output line of the master PIC can be connected in a 
straightforward way to the INTR pin the CPU. 

 However, if the system includes two or more CPUs, this approach is no longer valid and 
more sophisticated PICs are needed.

 Being able to deliver interrupts to each CPU in the system is crucial for fully exploiting the 
parallelism of the SMP architecture. For that reason, Intel introduced starting with Pentium 
III a new component designated as the I/O Advanced Programmable Interrupt Controller 
(I/O APIC). 

 This chip is the advanced version of the old 8259A Programmable Interrupt Controller; to 
support old operating systems, recent motherboards include both types of chip. 

 Moreover, all current 80 x 86 microprocessors include a local APIC. Each local APIC has 32-
bit registers, an internal clock; a local timer device; and two additional IRQ lines, LINT 0 and 
LINT 1, reserved for local APIC interrupts. 

 All local APICs are connected to an external I/O APIC, giving rise to a multi-APIC system.



  

Multi-APIC system



  

 Multi-APIC system

 The I/O APIC consists of a set of 24 IRQ lines, a 24-entry Interrupt Redirection Table, 
programmable registers, and a message unit for sending and receiving APIC messages over 
the APIC bus. 

 Unlike IRQ pins of the 8259A, interrupt priority is not related to pin number: each entry in the 
Redirection Table can be individually programmed to indicate the interrupt vector and 
priority, the destination processor, and how the processor is selected. 

 The information in the Redirection Table is used to translate each external IRQ signal into 
a message to one or more local APIC units via the APIC bus.

 Interrupt requests coming from external hardware devices can be distributed among the 
available CPUs in two ways:

 Static distribution: The IRQ signal is delivered to the local APICs listed in the 
corresponding Redirection Table entry. The interrupt is delivered to one specific CPU, to 
a subset of CPUs, or to all CPUs at once (broadcast mode).

 Dynamic distribution: The IRQ signal is delivered to the local APIC of the processor that 
is executing the process with the lowest priority.



  

IPIs

 Besides distributing interrupts among processors, the multi-APIC system allows CPUs to 
generate interprocessor interrupts . 

 When a CPU wishes to send an interrupt to another CPU, it stores the interrupt vector 
and the identifier of the target's local APIC in the Interrupt Command Register (ICR) of its 
own local APIC. A message is then sent via the APIC bus to the target's local APIC, 
which therefore issues a corresponding interrupt to its own CPU.

 Interprocessor interrupts (in short, IPIs) are a crucial component of the SMP 
architecture. They are actively used by Linux to exchange messages among CPUs.



  

current uniprocessor systems

 Many of the current uniprocessor systems include an I/O APIC chip, which may be 
configured in two distinct ways:

 As a standard 8259A-style external PIC connected to the CPU. The local APIC 
is disabled and the two LINT 0 and LINT 1 local IRQ lines are configured, 
respectively, as the INTR and NMI pins.

 As a standard external I/O APIC. The local APIC is enabled, and all external 
interrupts are received through the I/O APIC.



  

4.2.2. Exceptions      

 The 80x86 microprocessors issue roughly 20 different exceptions (The exact 
number depends on the processor model.) The values from 20 to 31 are reserved by 
Intel for future development. 

 Each exception is handled by a specific exception handler, which usually sends a 
Unix signal to the process that caused the exception.

 The kernel must provide a dedicated exception handler for each exception type. 

 For some exceptions, the CPU control unit also generates a hardware error 
code and pushes it on the Kernel Mode stack before starting the exception 
handler.

 The following list gives the vector, the name, the type, and a brief description of the 
exceptions found in 80x86 processors. 

 0 - "Divide error" (fault): Raised when a program issues an integer division by 0.

 1- "Debug" (trap or fault): Raised when the TF flag of eflags is set (quite useful to 
implement single-step execution of a debugged program) or when the address of an 
instruction or operand falls within the range of an active debug register .



  

Exception list
 2 - Not used: Reserved for nonmaskable interrupts (those that use the NMI pin).

 3 - "Breakpoint" (trap): Caused by an int3 (breakpoint) instruction (usually inserted by a 
debugger).

 4 - "Overflow" (trap): An into (check for overflow) instruction has been executed while the OF 
(overflow) flag of eflags is set.

 5 - "Bounds check" (fault): A bound (check on address bound) instruction is executed with 
the operand outside of the valid address bounds.

 6 - "Invalid opcode" (fault): The CPU execution unit has detected an invalid opcode (the part 
of the machine instruction that determines the operation performed).

 7 - "Device not available" (fault): An ESCAPE, MMX, or SSE/SSE2 instruction has been 
executed with the TS flag of cr0 set.

 8 - "Double fault" (abort): Normally, when the CPU detects an exception while trying to call 
the handler for a prior exception, the two exceptions can be handled serially. In a few cases, 
however, the processor cannot handle them serially, so it raises this exception.

 9 - "Coprocessor segment overrun" (abort): Problems with the external mathematical 
coprocessor (applies only to old 80386 microprocessors).

 10 - "Invalid TSS" (fault): The CPU has attempted a context switch to a process having an 
invalid Task State Segment.



  

Exception list
 11 - "Segment not present" (fault): A reference was made to a segment not present in 

memory (one in which the Segment-Present flag of the Segment Descriptor was cleared).

 12 - "Stack segment fault" (fault): The instruction attempted to exceed the stack segment 
limit, or the segment identified by ss is not present in memory.

 13 - "General protection" (fault): One of the protection rules in the protected mode of the 
80x86 has been violated.

 14 - "Page Fault" (fault): The addressed page is not present in memory, the corresponding 
Page Table entry is null, or a violation of the paging protection mechanism has occurred.

 15 - Reserved by Intel

 16 - "Floating-point error" (fault): The floating-point unit integrated into the CPU chip has 
signaled an error condition, such as numeric overflow or division by 0.

 17 - "Alignment check" (fault): The address of an operand is not correctly aligned (for 
instance, the address of a long integer is not a multiple of 4).

 18 - "Machine check" (abort): A machine-check mechanism has detected a CPU or bus 
error.

 19 - "SIMD floating point exception" (fault): The SSE or SSE2 unit integrated in the CPU 
chip has signaled an error condition on a floating-point operation.



  

Table 4-1. Signals sent by the exception handlers

# Exception Exception handler Signal
0 Divide error divide_error( ) SIGFPE
1 Debug debug( ) SIGTRAP
2 NMI nmi( ) None
3 Breakpoint int3( ) SIGTRAP
4 Overflow overflow( ) SIGSEGV
5 Bounds check bounds( ) SIGSEGV
6 Invalid opcode invalid_op( ) SIGILL
7 Device not available device_not_available( ) None
8 Double fault doublefault_fn( ) None
9 Coprocessor segment overrun  coprocessor_segment_overrun( ) SIGFPE
10 Invalid TSS invalid_TSS( ) SIGSEGV
11 Segment not present segment_not_present( ) SIGBUS
12 Stack segment fault stack_segment( ) SIGBUS
13 General protection general_protection( ) SIGSEGV
14 Page Fault page_fault( ) SIGSEGV
15 Intel-reserved None None
16 Floating-point error coprocessor_error( ) SIGFPE
17 Alignment check alignment_check( ) SIGBUS
18 Machine check machine_check( ) None
19 SIMD floating point simd_coprocessor_error( ) SIGFPE



  

4.2.3. Interrupt Descriptor Table    
  

 A system table called Interrupt Descriptor Table (IDT ) associates each interrupt or 
exception vector with the address of the corresponding interrupt or exception handler.

 The IDT must be properly initialized before the kernel enables interrupts.

 Each entry corresponds to an interrupt or an exception vector and consists of an 8-byte 
descriptor. Thus, a maximum of 256 x 8 = 2048 bytes are required to store the IDT.

 The idtr CPU register allows the IDT to be located anywhere in memory: it specifies both 
the IDT base physical address and its limit (maximum length). It must be initialized before 
enabling interrupts by using the lidt assembly language instruction.

 The IDT may include three types of descriptors; Figure 4-2 illustrates the meaning of the 
64 bits included in each of them. In particular, the value of the Type field encoded in the 
bits 40-43 identifies the descriptor type.



  

Figure 4-2. Gate descriptors' format



  

descriptors

 The descriptors are:

 Task gate: Includes the TSS selector of the process that must replace the 
current one when an interrupt signal occurs.

 Interrupt gate: Includes the Segment Selector and the offset inside the segment 
of an interrupt or exception handler. While transferring control to the proper 
segment, the processor clears the IF flag, thus disabling further maskable 
interrupts.

 Trap gate: Similar to an interrupt gate, except that while transferring control to 
the proper segment, the processor does not modify the IF flag.

 As we'll see in the later section "Interrupt, Trap, and System Gates," Linux uses 
interrupt gates to handle interrupts and trap gates to handle exceptions. 

 The "Double fault " exception, which denotes a type of kernel misbehavior, is the 
only exception handled by means of a task gate (see the section "Exception 
Handling" later in this chapter.).



  



  



  

Figure 4-3. An example of nested 
execution of kernel control paths



  

4.3. Nested Execution of Exception and 
Interrupt Handlers  

 Every interrupt or exception gives rise to a kernel control path or separate sequence of 
instructions that execute in Kernel Mode on behalf of the current process. 

 Kernel control paths may be arbitrarily nested; an interrupt handler may be 
interrupted by another interrupt handler, thus giving rise to a nested execution of kernel 
control paths. 

 As a result, the last instructions of a kernel control path that is taking care of an interrupt do 
not always put the current process back into User Mode: 

 if the level of nesting is greater than 1, these instructions will put into execution the 
kernel control path that was interrupted last, and the CPU will continue to run in 
Kernel Mode.

 The price to pay for allowing nested kernel control paths is that an interrupt handler must 
never block, that is, no process switch can take place.

 all the data needed to resume a nested kernel control path is stored in the Kernel 
Mode stack, which is tightly bound to the current process.



  

Nested exceptions

 Assuming that the kernel is bug free, most exceptions can occur only while the CPU is 
in User Mode. Indeed, they are either caused by programming errors or triggered by 
debuggers. 

 However, the "Page Fault " exception may occur in Kernel Mode. 

 This happens when the process attempts to address a page that belongs to its 
address space but is not currently in RAM. 

 While handling such an exception, the kernel may suspend the current process 
and replace it with another one until the requested page is available. 

 The kernel control path that handles the "Page Fault" exception resumes execution as 
soon as the process gets the processor again.

 Because the "Page Fault" exception handler never gives rise to further exceptions, 
at most two kernel control paths associated with exceptions (the first one caused 
by a system call invocation, the second one caused by a Page Fault) may be 
stacked, one on top of the other.

 In contrast to exceptions, interrupts issued by I/O devices do not refer to data structures 
specific to the current process, although the kernel control paths that handle them run on 
behalf of that process. As a matter of fact, it is impossible to predict which process will 
be running when a given interrupt occurs.



  

KCP interleaving
 An interrupt handler may preempt both other interrupt handlers and exception 

handlers. Conversely, an exception handler never preempts an interrupt handler. 

 But interrupt handlers never perform operations that can induce page faults, 
and thus, potentially, a process switch.

 Linux interleaves kernel control paths for two major reasons:

 To improve the throughput of programmable interrupt controllers and device 
controllers. Assume that a device controller issues a signal on an IRQ line: the 
PIC transforms it into an external interrupt, and then both the PIC and the device 
controller remain blocked until the PIC receives an acknowledgment from the 
CPU. Thanks to kernel control path interleaving, the kernel is able to send the 
acknowledgment even when it is handling a previous interrupt.

 To implement an interrupt model without priority levels. Because each 
interrupt handler may be deferred by another one, there is no need to establish 
predefined priorities among hardware devices. This simplifies the kernel code 
and improves its portability.

 On multiprocessor systems, several kernel control paths may execute 
concurrently. 

 Moreover, a kernel control path associated with an exception may start 
executing on a CPU and, due to a process switch, migrate to another CPU.



  

4.4. Initializing the Interrupt Descriptor Table

 Now that we understand what the 80x86 microprocessors do with interrupts and 
exceptions at the hardware level, we can move on to describe how the Interrupt 
Descriptor Table is initialized.

 Remember that before the kernel enables the interrupts, it must load the initial 
address of the IDT table into the idtr register and initialize all the entries of that 
table. This activity is done while initializing the system.

 The int instruction allows a User Mode process to issue an interrupt signal that 
has an arbitrary vector ranging from 0 to 255. 

 Therefore, initialization of the IDT must be done carefully, to block illegal interrupts 
and exceptions simulated by User Mode processes via int instructions. This can 
be achieved by setting the DPL field of the particular Interrupt or Trap Gate 
Descriptor to 0. If the process attempts to issue one of these interrupt signals, the 
control unit checks the CPL value against the DPL field and issues a "General 
protection " exception.

 In a few cases, however, a User Mode process must be able to issue a 
programmed exception. To allow this, it is sufficient to set the DPL field of the 
corresponding Interrupt or Trap Gate Descriptors to 3 that is, as high as possible.



  

4.5. Exception Handling
 Most exceptions issued by the CPU are interpreted by Linux as error conditions. 

 When one of them occurs, the kernel sends a signal to the process that caused the 
exception to notify it of an anomalous condition. 

 If, for instance, a process performs a division by zero, the CPU raises a "Divide 
error " exception, and the corresponding exception handler sends a SIGFPE 
signal to the current process, which then takes the necessary steps to recover or 
(if no signal handler is set for that signal) abort.

 There are a couple of cases, however, where Linux exploits CPU exceptions to 
manage hardware resources more efficiently. 

 The "Device not available " exception is used together with the TS flag of the 
cr0 register to force the kernel to load the floating point registers of the CPU 
with new values. 

 A second case involves the "Page Fault " exception, which is used to defer 
allocating new page frames to the process until the last possible moment. The 
corresponding handler is complex because the exception may, or may not, 
denote an error condition.



  

Exception handlers

 Exception handlers have a standard structure consisting of three steps:

 Save the contents of most registers in the Kernel Mode stack (this part is 
coded in assembly language).

 Handle the exception by means of a high-level C function.

 Exit from the handler by means of the ret_from_exception( ) function.

 To take advantage of exceptions, the IDT must be properly initialized with an 
exception handler function for each recognized exception. 

 It is the job of the trap_init( ) function to insert the final values, the functions that 
handle the exceptions, into all IDT entries that refer to nonmaskable interrupts and 
exceptions. 



  

Filling the idt with exception 
handlers

    set_trap_gate(0,&divide_error);
    set_trap_gate(1,&debug);
    set_intr_gate(2,&nmi);
    set_system_intr_gate(3,&int3);
    set_system_gate(4,&overflow);
    set_system_gate(5,&bounds);
    set_trap_gate(6,&invalid_op);
    set_trap_gate(7,&device_not_available);
    set_task_gate(8,31);
    set_trap_gate(9,&coprocessor_segment_overrun);
    set_trap_gate(10,&invalid_TSS);
    set_trap_gate(11,&segment_not_present);
    set_trap_gate(12,&stack_segment);
    set_trap_gate(13,&general_protection);
    set_intr_gate(14,&page_fault);
    set_trap_gate(16,&coprocessor_error);
    set_trap_gate(17,&alignment_check);
    set_trap_gate(18,&machine_check);
    set_trap_gate(19,&simd_coprocessor_error);
    set_system_gate(128,&system_call);



  

4.6. Interrupt Handling 

 Interrupts frequently arrive long after the process to which they are related (for 
instance, a process that requested a data transfer) has been suspended and a 
completely unrelated process is running. So it would make no sense to send a 
Unix signal to the current process.

 Interrupt handling depends on the type of interrupt. For our purposes, we'll distinguish 
three main classes of interrupts:

 I/O interrupts: An I/O device requires attention; the corresponding interrupt 
handler must query the device to determine the proper course of action. We 
cover this type of interrupt in the later section "I/O Interrupt Handling."

 Timer interrupts: Some timer, either a local APIC timer or an external timer, has 
issued an interrupt; this kind of interrupt tells the kernel that a fixed-time interval 
has elapsed. These interrupts are handled mostly as I/O interrupts.

 Interprocessor interrupts: A CPU issued an interrupt to another CPU of a 
multiprocessor system. We cover such interrupts in the later section 
"Interprocessor Interrupt Handling."



  

4.6.1. I/O Interrupt Handling 

 In general, an I/O interrupt handler must be flexible enough to service several devices at the 
same time. 

 In the PCI bus architecture, for instance, several devices may share the same IRQ 
line. This means that the interrupt vector alone does not tell the whole story. In the 
example shown in Table 4-3, the same vector 43 is assigned to the USB port and to the 
sound card. 

 However, some hardware devices found in older PC architectures (such as ISA) do not 
reliably operate if their IRQ line is shared with other devices.

 Interrupt handler flexibility is achieved in two distinct ways, as discussed in the following 
list.

 IRQ sharing: The interrupt handler executes several interrupt service routines (ISRs). 
Each ISR is a function related to a single device sharing the IRQ line. Because it is not 
possible to know in advance which particular device issued the IRQ, each ISR is 
executed to verify whether its device needs attention; if so, the ISR performs all the 
operations that need to be executed when the device raises an interrupt.

 IRQ dynamic allocation: An IRQ line is associated with a device driver at the last 
possible moment; for instance, the IRQ line of the floppy device is allocated only when a 
user accesses the floppy disk device. In this way, the same IRQ vector may be used by 
several hardware devices even if they cannot share the IRQ line; of course, the hardware 
devices cannot be used at the same time.



  

Urgency 

 Not all actions to be performed when an interrupt occurs have the same urgency. In 
fact, the interrupt handler itself is not a suitable place for all kind of actions. 

 Long noncritical operations should be deferred, because while an interrupt handler 
is running, the signals on the corresponding IRQ line are temporarily ignored.

  Most important, the process on behalf of which an interrupt handler is executed must 
always stay in the TASK_RUNNING state, or a system freeze can occur. Therefore, 
interrupt handlers cannot perform any blocking procedure such as an I/O disk 
operation. 



  

 Linux divides the actions to be performed following an interrupt into three classes:

 Critical Actions: such as acknowledging an interrupt to the PIC, reprogramming 
the PIC or the device controller, or updating data structures accessed by both the 
device and the processor. These can be executed quickly and are critical, 
because they must be performed as soon as possible. Critical actions are 
executed within the interrupt handler immediately, with maskable interrupts 
disabled.

 Noncritical Actions: such as updating data structures that are accessed only by 
the processor (for instance, reading the scan code after a keyboard key has been 
pushed). These actions can also finish quickly, so they are executed by the 
interrupt handler immediately, with the interrupts enabled.

 Noncritical deferrable Actions: such as copying a buffer's contents into the 
address space of a process (for instance, sending the keyboard line buffer to the 
terminal handler process). These may be delayed for a long time interval without 
affecting the kernel operations; the interested process will just keep waiting for 
the data. Noncritical deferrable actions are performed by means of separate 
functions that are discussed in the later section "Softirqs and Tasklets."



  

Table 4-2. Interrupt vectors 
in Linux

Vector range Use
0-19 (0x0-0x13) Nonmaskable interrupts and exceptions

20-31 (0x14-0x1f) Intel-reserved

32-127 (0x20-0x7f) External interrupts (IRQs)

128 (0x80) Programmed exception for system calls 

129-238 (0x81-0xee) External interrupts (IRQs)

239 (0xef) Local APIC timer interrupt 

240 (0xf0) Local APIC thermal interrupt (introduced in the Pentium 4 
models)

241-250 (0xf1-0xfa) Reserved by Linux for future use

251-253 (0xfb-0xfd) Interprocessor interrupts (see the section "Interprocessor 
Interrupt Handling" later in this chapter)

254 (0xfe) Local APIC error interrupt (generated when the local APIC 
detects an erroneous condition)

255 (0xff) Local APIC spurious interrupt (generated if the CPU masks an 
interrupt while the hardware device raises it)



  

4.6.1.1. Interrupt vectors   

 As illustrated in Table 4-2, physical IRQs may be assigned any vector in the range 
32 - 238. However, Linux uses vector 128 to implement system calls.

 The IBM-compatible PC architecture requires that some devices be statically 
connected to specific IRQ lines. In particular:

 The interval timer device must be connected to the IRQ 0 line (see Chapter 6).

 The slave 8259A PIC must be connected to the IRQ 2 line (although more 
advanced PICs are now being used, Linux still supports 8259A-style PICs).

 The external mathematical coprocessor must be connected to the IRQ 13 line 
(although recent 80 x 86 processors no longer use such a device, Linux 
continues to support the hardy 80386 model).

 In general, an I/O device can be connected to a limited number of IRQ lines. (As 
a matter of fact, when playing with an old PC where IRQ sharing is not possible, 
you might not succeed in installing a new card because of IRQ conflicts with 
other already present hardware devices.)



  

Selecting a IRQ line for a device

 There are three ways to select a line for an IRQ-configurable device:

 By setting hardware jumpers (only on very old device cards).

 By a utility program shipped with the device and executed when installing it. Such 
a program may either ask the user to select an available IRQ number or probe 
the system to determine an available number by itself.

 By a hardware protocol executed at system startup. Peripheral devices declare 
which interrupt lines they are ready to use; the final values are then negotiated to 
reduce conflicts as much as possible. Once this is done, each interrupt handler 
can read the assigned IRQ by using a function that accesses some I/O ports of 
the device. 



  

example

Table 4-3 shows a fairly arbitrary arrangement of devices and IRQs, such as those that 
might be found on one particular PC.

IRQ INT Hardware device
0 32 Timer
1 33 Keyboard
2 34 PIC cascading
3 35 Second serial port
4 36 First serial port
6 38 Floppy disk
8 40 System clock
10 42 Network interface
11 43 USB port, sound card
12 44 PS/2 mouse
13 45 Mathematical coprocessor
14 46 EIDE disk controller's first chain
15 47 EIDE disk controller's second chain

The kernel must discover which I/O device corresponds to the IRQ number before 
enabling interrupts. Otherwise, for example, how could the kernel handle a signal from a 
SCSI disk without knowing which vector corresponds to the device? The correspondence 
is established while initializing each device driver.



  

Basic actions performed by I/O 
interrupt handlers

 Regardless of the kind of circuit that caused the interrupt, all I/O interrupt handlers 
perform the same four basic actions:

 Save the IRQ value and the register's contents on the Kernel Mode stack.

 Send an acknowledgment to the PIC that is servicing the IRQ line, thus allowing 
it to issue further interrupts.

 Execute the interrupt service routines (ISRs) associated with all the devices that 
share the IRQ.

 Terminate by jumping to the ret_from_intr( ) address.

 Several descriptors are needed to represent both the state of the IRQ lines and the 
functions to be executed when an interrupt occurs. 



  

hardware circuits and the 
software functions used to 

handle an interrupt



  

4.6.1.2. IRQ data structures



  

PIC object

 In addition to the 8259A chip that was mentioned near the beginning of this chapter, 
Linux supports several other PIC circuits such as the SMP IO-APIC, Intel PIIX4's 
internal 8259 PIC, and SGI's Visual Workstation Cobalt (IO-)APIC. 

 To handle all such devices in a uniform way, Linux uses a PIC object, consisting of 
the PIC name and seven PIC standard methods. 

 The advantage of this object-oriented approach is that drivers need not to be aware 
of the kind of PIC installed in the system. 

 Each driver-visible interrupt source is transparently wired to the appropriate controller. 
The data structure that defines a PIC object is called hw_interrupt_type (also called 
hw_irq_controller).



  

Example: i8259A_irq_type

For the sake of concreteness, let's assume that our computer is a uniprocessor with two 
8259A PICs, which provide 16 standard IRQs. In this case, the handler field in each 

of the 16 irq_desc_t descriptors points to the i8259A_irq_type variable, which 
describes the 8259A PIC. This variable is initialized as follows:

struct hw_interrupt_type i8259A_irq_type = {
        .typename     = "XT-PIC",
        .startup      = startup_8259A_irq,
        .shutdown     = shutdown_8259A_irq,
        .enable       = enable_8259A_irq,
        .disable      = disable_8259A_irq,
        .ack          = mask_and_ack_8259A,
        .end          = end_8259A_irq,
        .set_affinity = NULL
    };



  

4.6.1.3. IRQ distribution in 
multiprocessor systems

 Linux sticks to the Symmetric Multiprocessing model (SMP ); this means, 
essentially, that the kernel should not have any bias toward one CPU with respect to 
the others. 

 As a consequence, the kernel tries to distribute the IRQ signals coming from the 
hardware devices in a round-robin fashion among all the CPUs. 

 Therefore, all the CPUs should spend approximately the same fraction of their 
execution time servicing I/O interrupts.

 In the earlier section "The Advanced Programmable Interrupt Controller (APIC)," we 
said that the multi-APIC system has sophisticated mechanisms to dynamically 
distribute the IRQ signals among the CPUs.



  

Configuring dynamic distribution 
of interrupts among CPUs

 In short, when a hardware device raises an IRQ signal, the multi-APIC system selects one 
of the CPUs and delivers the signal to the corresponding local APIC, which in turn interrupts 
its CPU. No other CPUs are notified of the event.

 All this is magically done by the hardware, so it should be of no concern for the kernel 
after multi-APIC system initialization. Unfortunately, in some cases the hardware fails to 
distribute the interrupts among the microprocessors in a fair way (for instance, some 
Pentium 4-based SMP motherboards have this problem). 

 Therefore, Linux 2.6 makes use of a special kernel thread called kirqd to correct, if 
necessary, the automatic assignment of IRQs to CPUs.

 The kernel thread exploits a nice feature of multi-APIC systems, called the IRQ affinity of a 
CPU: by modifying the Interrupt Redirection Table entries of the I/O APIC, it is possible to 
route an interrupt signal to a specific CPU. 

 The kirqd kernel thread periodically executes the do_irq_balance( ) function, which keeps 
track of the number of interrupt occurrences received by every CPU in the most recent time 
interval. If the function discovers that the IRQ load imbalance between the heaviest 
loaded CPU and the least loaded CPU is significantly high, then it either selects an 
IRQ to be "moved" from a CPU to another, or rotates all IRQs among all existing 
CPUs. 



  

4.7. Softirqs and Tasklets

 We mentioned earlier in the section "Interrupt Handling" that several tasks among 
those executed by the kernel are not critical: they can be deferred for a long period of 
time, if necessary. 

 Remember that the interrupt service routines of an interrupt handler are serialized, 
and often there should be no occurrence of an interrupt until the corresponding 
interrupt handler has terminated. 

 Conversely, the deferrable tasks can execute with all interrupts enabled. Taking 
them out of the interrupt handler helps keep kernel response time small. This is a 
very important property for many time-critical applications that expect their interrupt 
requests to be serviced in a few milliseconds.

 Linux 2.6 answers such a challenge by using two kinds of non-urgent interruptible 
kernel functions: the so-called deferrable functions (softirqs and tasklets ), and 
those executed by means of some work queues.



  

Softirqs and tasklets
 Softirqs and tasklets are strictly correlated, because tasklets are implemented on 

top of softirqs. 

 As a matter of fact, the term "softirq," which appears in the kernel source code, often 
denotes both kinds of deferrable functions. 

 Linux 2.6 uses a limited number of softirqs . For most purposes, tasklets are good 
enough and are much easier to write because they do not need to be reentrant.

 Another widely used term is interrupt context : it specifies that the kernel is currently 
executing either an interrupt handler or a deferrable function.

 Some differences:

 Softirqs are statically allocated (i.e., defined at compile time), while tasklets can 
also be allocated and initialized at runtime (for instance, when loading a kernel 
module). 

 Softirqs can run concurrently on several CPUs, even if they are of the same type. 
Thus, softirqs are reentrant functions and must explicitly protect their data 
structures with spin locks. Tasklets do not have to worry about this, because their 
execution is controlled more strictly by the kernel. Tasklets of the same type are 
always serialized.



  

4.7.1. Softirqs  
Table 4-9. Softirqs used in Linux 2.6

Softirq Index (priority) Description

HI_SOFTIRQ 0 Handles high priority tasklets

TIMER_SOFTIRQ 1 Tasklets related to timer interrupts

NET_TX_SOFTIRQ 2 Transmits packets to network cards

NET_RX_SOFTIRQ 3 Receives packets from network cards

SCSI_SOFTIRQ 4 Post-interrupt processing of SCSI commands

TASKLET_SOFTIRQ 5 Handles regular tasklets

The index of a sofirq determines its priority: a lower index means higher priority because softirq 
functions will be executed starting from index 0.



  

Checking for pending softirqs

 Checks for active (pending) softirqs should be perfomed periodically, but without 
inducing too much overhead. They are performed in a few points of the kernel code. 

 Here is a list of the most significant points (be warned that number and position of the 
softirq checkpoints change both with the kernel version and with the supported 
hardware architecture):

 When the kernel invokes the local_bh_enable( ) function to enable softirqs on 
the local CPU. The name local_bh_enable( ) refers to a special type of deferrable 
function called "bottom half" that no longer exists in Linux 2.6.

 When the do_IRQ( ) function finishes handling an I/O interrupt and invokes the 
irq_exit( ) macro

 If the system uses an I/O APIC, when the smp_apic_timer_interrupt( ) 
function finishes handling a local timer interrupt

 In multiprocessor systems, when a CPU finishes handling a function triggered 
by a CALL_FUNCTION_VECTOR interprocessor interrupt

 When one of the special ksoftirqd/n kernel threads is awakened (see later)



  

4.7.1.5. The ksoftirqd kernel threads

In recent kernel versions, each CPU has its own ksoftirqd/n kernel thread (where n is 
the logical number of the CPU). 

Each ksoftirqd/n kernel thread runs the ksoftirqd( ) function, which essentially executes 
the following loop:

    for(;;) {
        set_current_state(TASK_INTERRUPTIBLE );
        schedule( );
        /* now in TASK_RUNNING state */
        while (local_softirq_pending( )) {
            preempt_disable();
            do_softirq( );
            preempt_enable();
            cond_resched( );
        }
    }
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