

Chapter 4. Interrupts and Exceptions

 An interrupt is usually defined as an event that alters the sequence of instructions
executed by a processor.

 Such events correspond to electrical signals generated by hardware circuits both
inside and outside the CPU chip.

 Interrupts are often divided into synchronous and asynchronous interrupts :

 Synchronous interrupts are produced by the CPU control unit while executing
instructions and are called synchronous because the control unit issues them
only after terminating the execution of an instruction.

 Asynchronous interrupts are generated by other hardware devices at arbitrary
times with respect to the CPU clock signals.

 Intel microprocessor manuals designate synchronous and asynchronous interrupts
as exceptions and interrupts, respectively. We'll adopt this classification, although
we'll occasionally use the term "interrupt signal" to designate both types together
(synchronous as well as asynchronous).

Intro and class layout
 Interrupts are issued by interval timers and I/O devices; for instance, the arrival of a

keystroke from a user sets off an interrupt.

 Exceptions, on the other hand, are caused either by programming errors or by
anomalous conditions that must be handled by the kernel.

 In the first case, the kernel handles the exception by delivering to the current
process one of the signals familiar to every Unix programmer.

 In the second case, the kernel performs all the steps needed to recover from the
anomalous condition, such as a Page Fault or a request, via an assembly language
instruction such as int or sysenter for a kernel service.

 In this Class,

 we start by describing in the next section the motivation for introducing such signals.

 We then show how the well-known IRQs (Interrupt ReQuests) issued by I/O devices
give rise to interrupts, and we detail how 80 x 86 processors handle interrupts and
exceptions at the hardware level.

 The remaining sections describe how Linux handles interrupt signals at the software
level.

 One word of caution before moving on: in this chapter, we cover only "classic" interrupts
common to all PCs; we do not cover the nonstandard interrupts of some architectures.

4.1. The Role of Interrupt Signals
 When an interrupt signal arrives, the CPU must stop what it's currently doing and switch to a

new activity;

 it does this by saving the current value of the program counter (eip and cs registers) in
the Kernel Mode stack and by placing an address related to the interrupt type into the
program counter.

 There are some things in this chapter that will remind you of the context switch described
in the previous chapter, carried out when a kernel substitutes one process for another.

 But there is a key difference between interrupt handling and process switching: the
code executed by an interrupt or by an exception handler is not a process. Rather, it is a
kernel control path that runs at the expense of the same process that was running when the
interrupt occurred.

 As a kernel control path, the interrupt handler is lighter than a process (it has less context
and requires less time to set up or tear down).

Interrupt handling is one of the most sensitive tasks performed by
the kernel, because it must satisfy the following constraints:

 Interrupts can come anytime, when the kernel may want to finish something else it was
trying to do. The kernel's goal is therefore to get the interrupt out of the way as soon as
possible and defer as much processing as it can.

 The activities that the kernel needs to perform in response to an interrupt are thus
divided into a critical urgent part that the kernel executes right away and a deferrable
part that is left for later.

 Because interrupts can come anytime, the kernel might be handling one of them while
another one (of a different type) occurs. This should be allowed as much as possible,
because it keeps the I/O devices busy. As a result, the interrupt handlers must be coded
so that the corresponding kernel control paths can be executed in a nested manner.

 When the last kernel control path terminates, the kernel must be able to resume
execution of the interrupted process or switch to another process if the interrupt signal
has caused a rescheduling activity.

 Although the kernel may accept a new interrupt signal while handling a previous one, some
critical regions exist inside the kernel code where interrupts must be disabled. Such
critical regions must be limited as much as possible because, according to the previous
requirement, the kernel, and particularly the interrupt handlers, should run most of the time
with the interrupts enabled.

4.2. Interrupts and Exceptions

 The Intel documentation classifies interrupts and exceptions as follows:

 Interrupts:

 Maskable interrupts: All Interrupt Requests (IRQs) issued by I/O devices give
rise to maskable interrupts . A maskable interrupt can be in two states: masked
or unmasked; a masked interrupt is ignored by the control unit as long as it
remains masked.

 Nonmaskable interrupts: Only a few critical events (such as hardware failures)
give rise to nonmaskable interrupts . Nonmaskable interrupts are always
recognized by the CPU.

 Each interrupt or exception is identified by a number ranging from 0 to 255; Intel
calls this 8-bit unsigned number a vector.

 The vectors of nonmaskable interrupts and exceptions are fixed, while those of
maskable interrupts can be altered by programming the Interrupt Controller.

Processor detected exceptions
 Generated when the CPU detects an anomalous condition while executing an instruction.

These are further divided into three groups, depending on the value of the eip register
that is saved on the Kernel Mode stack when the CPU control unit raises the exception.

 Faults: Can generally be corrected; once corrected, the program is allowed to restart
with no loss of continuity. The saved value of eip is the address of the instruction that
caused the fault, and hence that instruction can be resumed when the exception
handler terminates.

 Traps: Reported immediately following the execution of the trapping instruction; after
the kernel returns control to the program, it is allowed to continue its execution with
no loss of continuity. The saved value of eip is the address of the instruction that
should be executed after the one that caused the trap. A trap is triggered only when
there is no need to reexecute the instruction that terminated. The main use of traps is
for debugging purposes. The role of the interrupt signal in this case is to notify the
debugger that a specific instruction has been executed (for instance, a breakpoint
has been reached within a program).

 Aborts: A serious error occurred; the control unit is in trouble, and it may be unable
to store in the eip register the precise location of the instruction causing the
exception. Aborts are used to report severe errors, such as hardware failures and
invalid or inconsistent values in system tables. The interrupt signal sent by the control
unit is an emergency signal used to switch control to the corresponding abort
exception handler. This handler has no choice but to force the affected process to
terminate.

Programmed exceptions

 Occur at the request of the programmer.

 They are triggered by int or int3 instructions; the into (check for overflow) and
bound (check on address bound) instructions also give rise to a programmed
exception when the condition they are checking is not true.

 Programmed exceptions are handled by the control unit as traps; they are often
called software interrupts .

 Such exceptions have two common uses: to implement system calls and to notify a
debugger of a specific event.

4.2.1. IRQs and Interrupts

 Each hardware device controller capable of issuing interrupt requests usually has a single
output line designated as the Interrupt ReQuest (IRQ) line.

 All existing IRQ lines are connected to the input pins of a hardware circuit called the
Programmable Interrupt Controller, which performs the following actions:

 Monitors the IRQ lines, checking for raised signals. If two or more IRQ lines are raised,
selects the one having the lower pin number.

 If a raised signal occurs on an IRQ line:

 Converts the raised signal received into a corresponding vector.
 Stores the vector in an Interrupt Controller I/O port, thus allowing the CPU to read

it via the data bus.
 Sends a raised signal to the processor INTR pin, that is, issues an interrupt.
 Waits until the CPU acknowledges the interrupt signal by writing into one of the

Programmable Interrupt Controllers (PIC) I/O ports; when this occurs, clears the
INTR line.

 Goes back to step 1.

Mapping and disabling IRQs
 The IRQ lines are sequentially numbered starting from 0; therefore, the first IRQ line is

usually denoted as IRQ 0. Intel's default vector associated with IRQ n is n+32.

 As mentioned before, the mapping between IRQs and vectors can be modified by
issuing suitable I/O instructions to the Interrupt Controller ports.

 The PIC can be told to stop issuing interrupts that refer to a given IRQ line, or to
resume issuing them.

 Disabled interrupts are not lost; the PIC sends them to the CPU as soon as they are
enabled again.

 This feature is used by most interrupt handlers, because it allows them to process
IRQs of the same type serially.

 Selective enabling/disabling of IRQs is not the same as global masking/unmasking of
maskable interrupts.

 When the IF flag of the eflags register is clear, each maskable interrupt issued by the
PIC is temporarily ignored by the CPU.

 The cli and sti assembly language instructions, respectively, clear and set that flag.

PIC 8259 configuration

Traditional PICs are implemented by connecting "in cascade" two 8259A-style external
chips. Each chip can handle up to eight different IRQ input lines. Because the INT output
line of the slave PIC is connected to the IRQ 2 pin of the master PIC, the number of
available IRQ lines is limited to 15.

 4.2.1.1. The Advanced Programmable
Interrupt Controller (APIC)

 The previous description refers to PICs designed for uniprocessor systems. If the system
includes a single CPU, the output line of the master PIC can be connected in a
straightforward way to the INTR pin the CPU.

 However, if the system includes two or more CPUs, this approach is no longer valid and
more sophisticated PICs are needed.

 Being able to deliver interrupts to each CPU in the system is crucial for fully exploiting the
parallelism of the SMP architecture. For that reason, Intel introduced starting with Pentium
III a new component designated as the I/O Advanced Programmable Interrupt Controller
(I/O APIC).

 This chip is the advanced version of the old 8259A Programmable Interrupt Controller; to
support old operating systems, recent motherboards include both types of chip.

 Moreover, all current 80 x 86 microprocessors include a local APIC. Each local APIC has 32-
bit registers, an internal clock; a local timer device; and two additional IRQ lines, LINT 0 and
LINT 1, reserved for local APIC interrupts.

 All local APICs are connected to an external I/O APIC, giving rise to a multi-APIC system.

Multi-APIC system

 Multi-APIC system

 The I/O APIC consists of a set of 24 IRQ lines, a 24-entry Interrupt Redirection Table,
programmable registers, and a message unit for sending and receiving APIC messages over
the APIC bus.

 Unlike IRQ pins of the 8259A, interrupt priority is not related to pin number: each entry in the
Redirection Table can be individually programmed to indicate the interrupt vector and
priority, the destination processor, and how the processor is selected.

 The information in the Redirection Table is used to translate each external IRQ signal into
a message to one or more local APIC units via the APIC bus.

 Interrupt requests coming from external hardware devices can be distributed among the
available CPUs in two ways:

 Static distribution: The IRQ signal is delivered to the local APICs listed in the
corresponding Redirection Table entry. The interrupt is delivered to one specific CPU, to
a subset of CPUs, or to all CPUs at once (broadcast mode).

 Dynamic distribution: The IRQ signal is delivered to the local APIC of the processor that
is executing the process with the lowest priority.

IPIs

 Besides distributing interrupts among processors, the multi-APIC system allows CPUs to
generate interprocessor interrupts .

 When a CPU wishes to send an interrupt to another CPU, it stores the interrupt vector
and the identifier of the target's local APIC in the Interrupt Command Register (ICR) of its
own local APIC. A message is then sent via the APIC bus to the target's local APIC,
which therefore issues a corresponding interrupt to its own CPU.

 Interprocessor interrupts (in short, IPIs) are a crucial component of the SMP
architecture. They are actively used by Linux to exchange messages among CPUs.

current uniprocessor systems

 Many of the current uniprocessor systems include an I/O APIC chip, which may be
configured in two distinct ways:

 As a standard 8259A-style external PIC connected to the CPU. The local APIC
is disabled and the two LINT 0 and LINT 1 local IRQ lines are configured,
respectively, as the INTR and NMI pins.

 As a standard external I/O APIC. The local APIC is enabled, and all external
interrupts are received through the I/O APIC.

4.2.2. Exceptions

 The 80x86 microprocessors issue roughly 20 different exceptions (The exact
number depends on the processor model.) The values from 20 to 31 are reserved by
Intel for future development.

 Each exception is handled by a specific exception handler, which usually sends a
Unix signal to the process that caused the exception.

 The kernel must provide a dedicated exception handler for each exception type.

 For some exceptions, the CPU control unit also generates a hardware error
code and pushes it on the Kernel Mode stack before starting the exception
handler.

 The following list gives the vector, the name, the type, and a brief description of the
exceptions found in 80x86 processors.

 0 - "Divide error" (fault): Raised when a program issues an integer division by 0.

 1- "Debug" (trap or fault): Raised when the TF flag of eflags is set (quite useful to
implement single-step execution of a debugged program) or when the address of an
instruction or operand falls within the range of an active debug register .

Exception list
 2 - Not used: Reserved for nonmaskable interrupts (those that use the NMI pin).

 3 - "Breakpoint" (trap): Caused by an int3 (breakpoint) instruction (usually inserted by a
debugger).

 4 - "Overflow" (trap): An into (check for overflow) instruction has been executed while the OF
(overflow) flag of eflags is set.

 5 - "Bounds check" (fault): A bound (check on address bound) instruction is executed with
the operand outside of the valid address bounds.

 6 - "Invalid opcode" (fault): The CPU execution unit has detected an invalid opcode (the part
of the machine instruction that determines the operation performed).

 7 - "Device not available" (fault): An ESCAPE, MMX, or SSE/SSE2 instruction has been
executed with the TS flag of cr0 set.

 8 - "Double fault" (abort): Normally, when the CPU detects an exception while trying to call
the handler for a prior exception, the two exceptions can be handled serially. In a few cases,
however, the processor cannot handle them serially, so it raises this exception.

 9 - "Coprocessor segment overrun" (abort): Problems with the external mathematical
coprocessor (applies only to old 80386 microprocessors).

 10 - "Invalid TSS" (fault): The CPU has attempted a context switch to a process having an
invalid Task State Segment.

Exception list
 11 - "Segment not present" (fault): A reference was made to a segment not present in

memory (one in which the Segment-Present flag of the Segment Descriptor was cleared).

 12 - "Stack segment fault" (fault): The instruction attempted to exceed the stack segment
limit, or the segment identified by ss is not present in memory.

 13 - "General protection" (fault): One of the protection rules in the protected mode of the
80x86 has been violated.

 14 - "Page Fault" (fault): The addressed page is not present in memory, the corresponding
Page Table entry is null, or a violation of the paging protection mechanism has occurred.

 15 - Reserved by Intel

 16 - "Floating-point error" (fault): The floating-point unit integrated into the CPU chip has
signaled an error condition, such as numeric overflow or division by 0.

 17 - "Alignment check" (fault): The address of an operand is not correctly aligned (for
instance, the address of a long integer is not a multiple of 4).

 18 - "Machine check" (abort): A machine-check mechanism has detected a CPU or bus
error.

 19 - "SIMD floating point exception" (fault): The SSE or SSE2 unit integrated in the CPU
chip has signaled an error condition on a floating-point operation.

Table 4-1. Signals sent by the exception handlers

Exception Exception handler Signal
0 Divide error divide_error() SIGFPE
1 Debug debug() SIGTRAP
2 NMI nmi() None
3 Breakpoint int3() SIGTRAP
4 Overflow overflow() SIGSEGV
5 Bounds check bounds() SIGSEGV
6 Invalid opcode invalid_op() SIGILL
7 Device not available device_not_available() None
8 Double fault doublefault_fn() None
9 Coprocessor segment overrun coprocessor_segment_overrun() SIGFPE
10 Invalid TSS invalid_TSS() SIGSEGV
11 Segment not present segment_not_present() SIGBUS
12 Stack segment fault stack_segment() SIGBUS
13 General protection general_protection() SIGSEGV
14 Page Fault page_fault() SIGSEGV
15 Intel-reserved None None
16 Floating-point error coprocessor_error() SIGFPE
17 Alignment check alignment_check() SIGBUS
18 Machine check machine_check() None
19 SIMD floating point simd_coprocessor_error() SIGFPE

4.2.3. Interrupt Descriptor Table

 A system table called Interrupt Descriptor Table (IDT) associates each interrupt or
exception vector with the address of the corresponding interrupt or exception handler.

 The IDT must be properly initialized before the kernel enables interrupts.

 Each entry corresponds to an interrupt or an exception vector and consists of an 8-byte
descriptor. Thus, a maximum of 256 x 8 = 2048 bytes are required to store the IDT.

 The idtr CPU register allows the IDT to be located anywhere in memory: it specifies both
the IDT base physical address and its limit (maximum length). It must be initialized before
enabling interrupts by using the lidt assembly language instruction.

 The IDT may include three types of descriptors; Figure 4-2 illustrates the meaning of the
64 bits included in each of them. In particular, the value of the Type field encoded in the
bits 40-43 identifies the descriptor type.

Figure 4-2. Gate descriptors' format

descriptors

 The descriptors are:

 Task gate: Includes the TSS selector of the process that must replace the
current one when an interrupt signal occurs.

 Interrupt gate: Includes the Segment Selector and the offset inside the segment
of an interrupt or exception handler. While transferring control to the proper
segment, the processor clears the IF flag, thus disabling further maskable
interrupts.

 Trap gate: Similar to an interrupt gate, except that while transferring control to
the proper segment, the processor does not modify the IF flag.

 As we'll see in the later section "Interrupt, Trap, and System Gates," Linux uses
interrupt gates to handle interrupts and trap gates to handle exceptions.

 The "Double fault " exception, which denotes a type of kernel misbehavior, is the
only exception handled by means of a task gate (see the section "Exception
Handling" later in this chapter.).

Figure 4-3. An example of nested
execution of kernel control paths

4.3. Nested Execution of Exception and
Interrupt Handlers

 Every interrupt or exception gives rise to a kernel control path or separate sequence of
instructions that execute in Kernel Mode on behalf of the current process.

 Kernel control paths may be arbitrarily nested; an interrupt handler may be
interrupted by another interrupt handler, thus giving rise to a nested execution of kernel
control paths.

 As a result, the last instructions of a kernel control path that is taking care of an interrupt do
not always put the current process back into User Mode:

 if the level of nesting is greater than 1, these instructions will put into execution the
kernel control path that was interrupted last, and the CPU will continue to run in
Kernel Mode.

 The price to pay for allowing nested kernel control paths is that an interrupt handler must
never block, that is, no process switch can take place.

 all the data needed to resume a nested kernel control path is stored in the Kernel
Mode stack, which is tightly bound to the current process.

Nested exceptions

 Assuming that the kernel is bug free, most exceptions can occur only while the CPU is
in User Mode. Indeed, they are either caused by programming errors or triggered by
debuggers.

 However, the "Page Fault " exception may occur in Kernel Mode.

 This happens when the process attempts to address a page that belongs to its
address space but is not currently in RAM.

 While handling such an exception, the kernel may suspend the current process
and replace it with another one until the requested page is available.

 The kernel control path that handles the "Page Fault" exception resumes execution as
soon as the process gets the processor again.

 Because the "Page Fault" exception handler never gives rise to further exceptions,
at most two kernel control paths associated with exceptions (the first one caused
by a system call invocation, the second one caused by a Page Fault) may be
stacked, one on top of the other.

 In contrast to exceptions, interrupts issued by I/O devices do not refer to data structures
specific to the current process, although the kernel control paths that handle them run on
behalf of that process. As a matter of fact, it is impossible to predict which process will
be running when a given interrupt occurs.

KCP interleaving
 An interrupt handler may preempt both other interrupt handlers and exception

handlers. Conversely, an exception handler never preempts an interrupt handler.

 But interrupt handlers never perform operations that can induce page faults,
and thus, potentially, a process switch.

 Linux interleaves kernel control paths for two major reasons:

 To improve the throughput of programmable interrupt controllers and device
controllers. Assume that a device controller issues a signal on an IRQ line: the
PIC transforms it into an external interrupt, and then both the PIC and the device
controller remain blocked until the PIC receives an acknowledgment from the
CPU. Thanks to kernel control path interleaving, the kernel is able to send the
acknowledgment even when it is handling a previous interrupt.

 To implement an interrupt model without priority levels. Because each
interrupt handler may be deferred by another one, there is no need to establish
predefined priorities among hardware devices. This simplifies the kernel code
and improves its portability.

 On multiprocessor systems, several kernel control paths may execute
concurrently.

 Moreover, a kernel control path associated with an exception may start
executing on a CPU and, due to a process switch, migrate to another CPU.

4.4. Initializing the Interrupt Descriptor Table

 Now that we understand what the 80x86 microprocessors do with interrupts and
exceptions at the hardware level, we can move on to describe how the Interrupt
Descriptor Table is initialized.

 Remember that before the kernel enables the interrupts, it must load the initial
address of the IDT table into the idtr register and initialize all the entries of that
table. This activity is done while initializing the system.

 The int instruction allows a User Mode process to issue an interrupt signal that
has an arbitrary vector ranging from 0 to 255.

 Therefore, initialization of the IDT must be done carefully, to block illegal interrupts
and exceptions simulated by User Mode processes via int instructions. This can
be achieved by setting the DPL field of the particular Interrupt or Trap Gate
Descriptor to 0. If the process attempts to issue one of these interrupt signals, the
control unit checks the CPL value against the DPL field and issues a "General
protection " exception.

 In a few cases, however, a User Mode process must be able to issue a
programmed exception. To allow this, it is sufficient to set the DPL field of the
corresponding Interrupt or Trap Gate Descriptors to 3 that is, as high as possible.

4.5. Exception Handling
 Most exceptions issued by the CPU are interpreted by Linux as error conditions.

 When one of them occurs, the kernel sends a signal to the process that caused the
exception to notify it of an anomalous condition.

 If, for instance, a process performs a division by zero, the CPU raises a "Divide
error " exception, and the corresponding exception handler sends a SIGFPE
signal to the current process, which then takes the necessary steps to recover or
(if no signal handler is set for that signal) abort.

 There are a couple of cases, however, where Linux exploits CPU exceptions to
manage hardware resources more efficiently.

 The "Device not available " exception is used together with the TS flag of the
cr0 register to force the kernel to load the floating point registers of the CPU
with new values.

 A second case involves the "Page Fault " exception, which is used to defer
allocating new page frames to the process until the last possible moment. The
corresponding handler is complex because the exception may, or may not,
denote an error condition.

Exception handlers

 Exception handlers have a standard structure consisting of three steps:

 Save the contents of most registers in the Kernel Mode stack (this part is
coded in assembly language).

 Handle the exception by means of a high-level C function.

 Exit from the handler by means of the ret_from_exception() function.

 To take advantage of exceptions, the IDT must be properly initialized with an
exception handler function for each recognized exception.

 It is the job of the trap_init() function to insert the final values, the functions that
handle the exceptions, into all IDT entries that refer to nonmaskable interrupts and
exceptions.

Filling the idt with exception
handlers

 set_trap_gate(0,÷_error);
 set_trap_gate(1,&debug);
 set_intr_gate(2,&nmi);
 set_system_intr_gate(3,&int3);
 set_system_gate(4,&overflow);
 set_system_gate(5,&bounds);
 set_trap_gate(6,&invalid_op);
 set_trap_gate(7,&device_not_available);
 set_task_gate(8,31);
 set_trap_gate(9,&coprocessor_segment_overrun);
 set_trap_gate(10,&invalid_TSS);
 set_trap_gate(11,&segment_not_present);
 set_trap_gate(12,&stack_segment);
 set_trap_gate(13,&general_protection);
 set_intr_gate(14,&page_fault);
 set_trap_gate(16,&coprocessor_error);
 set_trap_gate(17,&alignment_check);
 set_trap_gate(18,&machine_check);
 set_trap_gate(19,&simd_coprocessor_error);
 set_system_gate(128,&system_call);

4.6. Interrupt Handling

 Interrupts frequently arrive long after the process to which they are related (for
instance, a process that requested a data transfer) has been suspended and a
completely unrelated process is running. So it would make no sense to send a
Unix signal to the current process.

 Interrupt handling depends on the type of interrupt. For our purposes, we'll distinguish
three main classes of interrupts:

 I/O interrupts: An I/O device requires attention; the corresponding interrupt
handler must query the device to determine the proper course of action. We
cover this type of interrupt in the later section "I/O Interrupt Handling."

 Timer interrupts: Some timer, either a local APIC timer or an external timer, has
issued an interrupt; this kind of interrupt tells the kernel that a fixed-time interval
has elapsed. These interrupts are handled mostly as I/O interrupts.

 Interprocessor interrupts: A CPU issued an interrupt to another CPU of a
multiprocessor system. We cover such interrupts in the later section
"Interprocessor Interrupt Handling."

4.6.1. I/O Interrupt Handling

 In general, an I/O interrupt handler must be flexible enough to service several devices at the
same time.

 In the PCI bus architecture, for instance, several devices may share the same IRQ
line. This means that the interrupt vector alone does not tell the whole story. In the
example shown in Table 4-3, the same vector 43 is assigned to the USB port and to the
sound card.

 However, some hardware devices found in older PC architectures (such as ISA) do not
reliably operate if their IRQ line is shared with other devices.

 Interrupt handler flexibility is achieved in two distinct ways, as discussed in the following
list.

 IRQ sharing: The interrupt handler executes several interrupt service routines (ISRs).
Each ISR is a function related to a single device sharing the IRQ line. Because it is not
possible to know in advance which particular device issued the IRQ, each ISR is
executed to verify whether its device needs attention; if so, the ISR performs all the
operations that need to be executed when the device raises an interrupt.

 IRQ dynamic allocation: An IRQ line is associated with a device driver at the last
possible moment; for instance, the IRQ line of the floppy device is allocated only when a
user accesses the floppy disk device. In this way, the same IRQ vector may be used by
several hardware devices even if they cannot share the IRQ line; of course, the hardware
devices cannot be used at the same time.

Urgency

 Not all actions to be performed when an interrupt occurs have the same urgency. In
fact, the interrupt handler itself is not a suitable place for all kind of actions.

 Long noncritical operations should be deferred, because while an interrupt handler
is running, the signals on the corresponding IRQ line are temporarily ignored.

 Most important, the process on behalf of which an interrupt handler is executed must
always stay in the TASK_RUNNING state, or a system freeze can occur. Therefore,
interrupt handlers cannot perform any blocking procedure such as an I/O disk
operation.

 Linux divides the actions to be performed following an interrupt into three classes:

 Critical Actions: such as acknowledging an interrupt to the PIC, reprogramming
the PIC or the device controller, or updating data structures accessed by both the
device and the processor. These can be executed quickly and are critical,
because they must be performed as soon as possible. Critical actions are
executed within the interrupt handler immediately, with maskable interrupts
disabled.

 Noncritical Actions: such as updating data structures that are accessed only by
the processor (for instance, reading the scan code after a keyboard key has been
pushed). These actions can also finish quickly, so they are executed by the
interrupt handler immediately, with the interrupts enabled.

 Noncritical deferrable Actions: such as copying a buffer's contents into the
address space of a process (for instance, sending the keyboard line buffer to the
terminal handler process). These may be delayed for a long time interval without
affecting the kernel operations; the interested process will just keep waiting for
the data. Noncritical deferrable actions are performed by means of separate
functions that are discussed in the later section "Softirqs and Tasklets."

Table 4-2. Interrupt vectors
in Linux

Vector range Use
0-19 (0x0-0x13) Nonmaskable interrupts and exceptions

20-31 (0x14-0x1f) Intel-reserved

32-127 (0x20-0x7f) External interrupts (IRQs)

128 (0x80) Programmed exception for system calls

129-238 (0x81-0xee) External interrupts (IRQs)

239 (0xef) Local APIC timer interrupt

240 (0xf0) Local APIC thermal interrupt (introduced in the Pentium 4
models)

241-250 (0xf1-0xfa) Reserved by Linux for future use

251-253 (0xfb-0xfd) Interprocessor interrupts (see the section "Interprocessor
Interrupt Handling" later in this chapter)

254 (0xfe) Local APIC error interrupt (generated when the local APIC
detects an erroneous condition)

255 (0xff) Local APIC spurious interrupt (generated if the CPU masks an
interrupt while the hardware device raises it)

4.6.1.1. Interrupt vectors

 As illustrated in Table 4-2, physical IRQs may be assigned any vector in the range
32 - 238. However, Linux uses vector 128 to implement system calls.

 The IBM-compatible PC architecture requires that some devices be statically
connected to specific IRQ lines. In particular:

 The interval timer device must be connected to the IRQ 0 line (see Chapter 6).

 The slave 8259A PIC must be connected to the IRQ 2 line (although more
advanced PICs are now being used, Linux still supports 8259A-style PICs).

 The external mathematical coprocessor must be connected to the IRQ 13 line
(although recent 80 x 86 processors no longer use such a device, Linux
continues to support the hardy 80386 model).

 In general, an I/O device can be connected to a limited number of IRQ lines. (As
a matter of fact, when playing with an old PC where IRQ sharing is not possible,
you might not succeed in installing a new card because of IRQ conflicts with
other already present hardware devices.)

Selecting a IRQ line for a device

 There are three ways to select a line for an IRQ-configurable device:

 By setting hardware jumpers (only on very old device cards).

 By a utility program shipped with the device and executed when installing it. Such
a program may either ask the user to select an available IRQ number or probe
the system to determine an available number by itself.

 By a hardware protocol executed at system startup. Peripheral devices declare
which interrupt lines they are ready to use; the final values are then negotiated to
reduce conflicts as much as possible. Once this is done, each interrupt handler
can read the assigned IRQ by using a function that accesses some I/O ports of
the device.

example

Table 4-3 shows a fairly arbitrary arrangement of devices and IRQs, such as those that
might be found on one particular PC.

IRQ INT Hardware device
0 32 Timer
1 33 Keyboard
2 34 PIC cascading
3 35 Second serial port
4 36 First serial port
6 38 Floppy disk
8 40 System clock
10 42 Network interface
11 43 USB port, sound card
12 44 PS/2 mouse
13 45 Mathematical coprocessor
14 46 EIDE disk controller's first chain
15 47 EIDE disk controller's second chain

The kernel must discover which I/O device corresponds to the IRQ number before
enabling interrupts. Otherwise, for example, how could the kernel handle a signal from a
SCSI disk without knowing which vector corresponds to the device? The correspondence
is established while initializing each device driver.

Basic actions performed by I/O
interrupt handlers

 Regardless of the kind of circuit that caused the interrupt, all I/O interrupt handlers
perform the same four basic actions:

 Save the IRQ value and the register's contents on the Kernel Mode stack.

 Send an acknowledgment to the PIC that is servicing the IRQ line, thus allowing
it to issue further interrupts.

 Execute the interrupt service routines (ISRs) associated with all the devices that
share the IRQ.

 Terminate by jumping to the ret_from_intr() address.

 Several descriptors are needed to represent both the state of the IRQ lines and the
functions to be executed when an interrupt occurs.

hardware circuits and the
software functions used to

handle an interrupt

4.6.1.2. IRQ data structures

PIC object

 In addition to the 8259A chip that was mentioned near the beginning of this chapter,
Linux supports several other PIC circuits such as the SMP IO-APIC, Intel PIIX4's
internal 8259 PIC, and SGI's Visual Workstation Cobalt (IO-)APIC.

 To handle all such devices in a uniform way, Linux uses a PIC object, consisting of
the PIC name and seven PIC standard methods.

 The advantage of this object-oriented approach is that drivers need not to be aware
of the kind of PIC installed in the system.

 Each driver-visible interrupt source is transparently wired to the appropriate controller.
The data structure that defines a PIC object is called hw_interrupt_type (also called
hw_irq_controller).

Example: i8259A_irq_type

For the sake of concreteness, let's assume that our computer is a uniprocessor with two
8259A PICs, which provide 16 standard IRQs. In this case, the handler field in each

of the 16 irq_desc_t descriptors points to the i8259A_irq_type variable, which
describes the 8259A PIC. This variable is initialized as follows:

struct hw_interrupt_type i8259A_irq_type = {
 .typename = "XT-PIC",
 .startup = startup_8259A_irq,
 .shutdown = shutdown_8259A_irq,
 .enable = enable_8259A_irq,
 .disable = disable_8259A_irq,
 .ack = mask_and_ack_8259A,
 .end = end_8259A_irq,
 .set_affinity = NULL
 };

4.6.1.3. IRQ distribution in
multiprocessor systems

 Linux sticks to the Symmetric Multiprocessing model (SMP); this means,
essentially, that the kernel should not have any bias toward one CPU with respect to
the others.

 As a consequence, the kernel tries to distribute the IRQ signals coming from the
hardware devices in a round-robin fashion among all the CPUs.

 Therefore, all the CPUs should spend approximately the same fraction of their
execution time servicing I/O interrupts.

 In the earlier section "The Advanced Programmable Interrupt Controller (APIC)," we
said that the multi-APIC system has sophisticated mechanisms to dynamically
distribute the IRQ signals among the CPUs.

Configuring dynamic distribution
of interrupts among CPUs

 In short, when a hardware device raises an IRQ signal, the multi-APIC system selects one
of the CPUs and delivers the signal to the corresponding local APIC, which in turn interrupts
its CPU. No other CPUs are notified of the event.

 All this is magically done by the hardware, so it should be of no concern for the kernel
after multi-APIC system initialization. Unfortunately, in some cases the hardware fails to
distribute the interrupts among the microprocessors in a fair way (for instance, some
Pentium 4-based SMP motherboards have this problem).

 Therefore, Linux 2.6 makes use of a special kernel thread called kirqd to correct, if
necessary, the automatic assignment of IRQs to CPUs.

 The kernel thread exploits a nice feature of multi-APIC systems, called the IRQ affinity of a
CPU: by modifying the Interrupt Redirection Table entries of the I/O APIC, it is possible to
route an interrupt signal to a specific CPU.

 The kirqd kernel thread periodically executes the do_irq_balance() function, which keeps
track of the number of interrupt occurrences received by every CPU in the most recent time
interval. If the function discovers that the IRQ load imbalance between the heaviest
loaded CPU and the least loaded CPU is significantly high, then it either selects an
IRQ to be "moved" from a CPU to another, or rotates all IRQs among all existing
CPUs.

4.7. Softirqs and Tasklets

 We mentioned earlier in the section "Interrupt Handling" that several tasks among
those executed by the kernel are not critical: they can be deferred for a long period of
time, if necessary.

 Remember that the interrupt service routines of an interrupt handler are serialized,
and often there should be no occurrence of an interrupt until the corresponding
interrupt handler has terminated.

 Conversely, the deferrable tasks can execute with all interrupts enabled. Taking
them out of the interrupt handler helps keep kernel response time small. This is a
very important property for many time-critical applications that expect their interrupt
requests to be serviced in a few milliseconds.

 Linux 2.6 answers such a challenge by using two kinds of non-urgent interruptible
kernel functions: the so-called deferrable functions (softirqs and tasklets), and
those executed by means of some work queues.

Softirqs and tasklets
 Softirqs and tasklets are strictly correlated, because tasklets are implemented on

top of softirqs.

 As a matter of fact, the term "softirq," which appears in the kernel source code, often
denotes both kinds of deferrable functions.

 Linux 2.6 uses a limited number of softirqs . For most purposes, tasklets are good
enough and are much easier to write because they do not need to be reentrant.

 Another widely used term is interrupt context : it specifies that the kernel is currently
executing either an interrupt handler or a deferrable function.

 Some differences:

 Softirqs are statically allocated (i.e., defined at compile time), while tasklets can
also be allocated and initialized at runtime (for instance, when loading a kernel
module).

 Softirqs can run concurrently on several CPUs, even if they are of the same type.
Thus, softirqs are reentrant functions and must explicitly protect their data
structures with spin locks. Tasklets do not have to worry about this, because their
execution is controlled more strictly by the kernel. Tasklets of the same type are
always serialized.

4.7.1. Softirqs
Table 4-9. Softirqs used in Linux 2.6

Softirq Index (priority) Description

HI_SOFTIRQ 0 Handles high priority tasklets

TIMER_SOFTIRQ 1 Tasklets related to timer interrupts

NET_TX_SOFTIRQ 2 Transmits packets to network cards

NET_RX_SOFTIRQ 3 Receives packets from network cards

SCSI_SOFTIRQ 4 Post-interrupt processing of SCSI commands

TASKLET_SOFTIRQ 5 Handles regular tasklets

The index of a sofirq determines its priority: a lower index means higher priority because softirq
functions will be executed starting from index 0.

Checking for pending softirqs

 Checks for active (pending) softirqs should be perfomed periodically, but without
inducing too much overhead. They are performed in a few points of the kernel code.

 Here is a list of the most significant points (be warned that number and position of the
softirq checkpoints change both with the kernel version and with the supported
hardware architecture):

 When the kernel invokes the local_bh_enable() function to enable softirqs on
the local CPU. The name local_bh_enable() refers to a special type of deferrable
function called "bottom half" that no longer exists in Linux 2.6.

 When the do_IRQ() function finishes handling an I/O interrupt and invokes the
irq_exit() macro

 If the system uses an I/O APIC, when the smp_apic_timer_interrupt()
function finishes handling a local timer interrupt

 In multiprocessor systems, when a CPU finishes handling a function triggered
by a CALL_FUNCTION_VECTOR interprocessor interrupt

 When one of the special ksoftirqd/n kernel threads is awakened (see later)

4.7.1.5. The ksoftirqd kernel threads

In recent kernel versions, each CPU has its own ksoftirqd/n kernel thread (where n is
the logical number of the CPU).

Each ksoftirqd/n kernel thread runs the ksoftirqd() function, which essentially executes
the following loop:

 for(;;) {
 set_current_state(TASK_INTERRUPTIBLE);
 schedule();
 /* now in TASK_RUNNING state */
 while (local_softirq_pending()) {
 preempt_disable();
 do_softirq();
 preempt_enable();
 cond_resched();
 }
 }

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

