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ABSTRACT One of the greatest challenges facing the physical layer design of the internet of things (IoT)
resides in the imposed constraint of very low power consumption. Recently, new modulation scheme termed
OFDM with sparse index modulation (OFDM-SIM) has been introduced as an energy efficient multicarrier
scheme (MCS). Although of its high energy efficiency (EE) and spectral efficiency (SE), OFDM-SIM
cannot fulfill the IoT energy requirements owing to its high PAPR. In this regard, an enhanced OFDM-SIM
is proposed in this paper as an energy efficient MCS for IoT communications. In particular, a novel
clipping-compressive sensing (CS) based PAPR reduction technique for OFDM-SIM is proposed. In the
transmitter (TX) side, considering the complexity constraints for IoT devices, the simple and low complex
clipping method is exploited to deal with the PAPR issue. On the receiver (RX) side, a robust CS signal
recovery scheme is proposed to deal with tough resulting clipping noise. Unlike high complex conventional
CS-based schemes, the proposed scheme exploits the inherent sparsity of the received enhanced OFDM-SIM
signal rather than clipping noise sparsity to achieve a low complex CS signal detection. Moreover, in this
paper, the information-theoretic limits on sparsity recovery are exploited to derive an upper bound measure
of the bit error rate (BER). The simulation results demonstrate the superiority of the proposed scheme, as it
significantly enhances the overall system performance in terms of EE and PAPR reduction compared to the
conventional clipped coded-OFDM.

INDEX TERMS IoT, OFDM-sparse index modulation (OFDM-SIM), PAPR, clipping, compressive
sensing (CS).

I. INTRODUCTION
Internet of things (IoT) assumes very low-power consumption
through various strategies on different layers [1]. However,
the power saving in physical layer for radio transmission
and data acquisition has high impact on the overall energy
efficiency (EE) of the system [2]. Single carrier or con-
stant envelop modulation schemes with ideal high peak-
to-average power ratio (PAPR) seems to as a natural choice
for IoT. However, the most leading partners in wireless
communication standardization 3GPP and IEEE have agreed
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on extending the orthogonal frequency division multiplex-
ing (OFDM) scheme on the physical layer of IoT [3].
PAPR represents the main drawback of OFDM system that
leads to a large power lose for preserving signal linearity.
Traditionally, PAPR reducing without bit-error-rate (BER)
performance degradation usually implies a corresponding
complexity/overhead increase that may not be recognized
in low cost and simple realization. In literature, OFDM
with index modulation (OFDM-IM) has drawn intriguing
attention owing to its superior performance enhancement
in terms of energy efficiency (EE) and spectral efficiency
(SE) [4]–[6]. In OFDM-IM is subset of space modula-
tion (SM) techniques [7]–[9], whereas the information is
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conveyed through both the combinatorial pattern of activated
subcarriers and the conventional M-ary amplitude-phase
modulation. Thus, OFDM-IM can provide higher EE, noise
immunity and lower complexity than the conventional
OFDM. Motivated by its advantages, a special emphasize
on the energy saving introduced by OFDM-IM in the con-
text of IoT and wireless sensor network (WSN) [10]–[12].
Although of its appealing advantages, there are some chal-
lenges such as PAPR problem still need to be overcome in
OFDM-IM.

Unfortunately, PAPR problem introduces a non-linear dis-
tortion that degrades the overall OFDM/OFDM-IM perfor-
mance and limits its usage for IoT. In fact, even though it
usually only activates the half number of subcarriers, both
OFDM-IM and conventional OFDM have nearly the same
high PAPR levels as reported in [5]. This is due to the fact that,
PAPR is not significantly affected by the number of activated
subcarriers [13]. Lately, sparse indexmodulation with OFDM
(OFDM-SIM) [14]–[16] has been introduced as an elegant
low power subclass of index modulation. In OFDM-SIM,
the data is only conveyed by the indices of a very few active
subcarriers without subcarrier grouping nor QAM modula-
tion. This sparse activation in frequency domain is intended to
maximize the EE of the OFDM system with comparable SE.
Actually, the sparsity nature OFDM-SIM can be exploited to
reduce PAPR without any PAPR reduction technique [15].
However, PAPR performance of OFDM-SIM is still needed
to be further improved to meet the low power requirements
for IoT systems.

Literately, many approaches have been introduced to
reduce PAPR, which can be broadly classified into three
groups: clipping, coding and probabilistic approaches [17].
With clipping method, a significant PAPR reduction can
be obtained by simply cut the peak signal exceeds a
specific threshold. Coding-based method give a good
performance, but at the cost of spectral efficiency (SE) degra-
dation. Finally, the probabilistic approaches associated with
high computational complexity. Among these approaches,
the low complex clipping method has been selected in
most of the practical OFDM systems for PAPR issue
mitigation.

Generally, the transmitted data of OFDM/OFDM-IM sig-
nal resides in its frequency domain. Hence, the detec-
tion process can be regarded as a spectral estimation
problem. Conventionally, fast Fourier transform (FFT) is
used at the OFDM/OFDM-IM receiver (RX) side, as a
spectral detection algorithm. However, FFT belongs to
non-parametric spectral estimation family, in which there
is no prior information about the received signal is con-
sidered. Therefore, any distortion (i.e., clipping noise), will
lead to spectral leakage and/or inter-carrier interference
(ICI) and results in a sever bit-error-rate (BER) degra-
dation. Many works have been proposed in literature to
mitigate clipping noise at the RX to improve the BER
performance. For example, channel coding rate is adapted
in [18], [19] to cope with the rough clipping noise, but this

solution associated with low SE and high system hardware
complexity.

Furthermore, compressive sensing (CS)-based solu-
tions [20] has been proposed in literature to mitigate clipping
noise during signal detection, which will be explained in
details in the related wok Section. The work in [21], is based
on sparsity of the clipping distortion to enable the estimation
of the clipping distortion effect before symbol detection.
However, according to [21], the clipping level should be
relatively high to ensure this sparsity, which in turns limits
the achievable PAPR reduction levels.

In this paper, an enhanced OFDM-SIM scheme is intro-
duced as an energy efficient multicarrier scheme for IoT
networks. Specifically, the PAPR issue of the OFDM-SIM is
investigated and a novel clipping-CS based PAPR reduction
technique is proposed. In line with the requirements of IoT
systems, the proposed scheme utilizes the simple and low
complex clipping technique in the transmitter (TX) side to
reduce the PAPR to the desired levels. On the RX side, CS is
adapted to alleviate clipping noise and to support the signal
detection process. Mainly, the proposed scheme is supported
by high degree of embedded sparsity in frequency domain of
the OFDM-SIM signal and the prior-knowledge of the ampli-
tudes of the activated/inactivated subcarriers. Specifically,
the inherent sparsity is exploited to resolve the RX signal
under severe noise/distortion contamination. On the other
hand, the activated/inactivated subcarriers prior information
enable the proposed scheme to perform the detection utilizing
the sparsity of RX signal rather than the estimation clipping
noise. Thus, low clipping levels can be used in the proposed
scheme to achieve significant PAPR reduction without any
overhead /BER degradation in the TX/RX. Although the
proposed CS-based clipping technique is based on sparsity
in the time domain, it can be easily extended by embedding
essential sparsity in any domain. Thus, there are many oppor-
tunities for applying the proposed PAPR reduction scheme on
many OFDM systems as long as the sparsity in any domain
is guaranteed.

The paper contribution can be summarized as follow:
• OFDM-SIM is introduced and investigated as a promis-
ing candidate solution for IoT systems.

• Exploring how the PAPR reduction meets sparse data
detection in the OFDM-SIM.

• Enhanced OFDM-SIM scheme is proposed as an energy
efficient / extremely low PAPR multicarrier scheme for
IoT uplink transmission.

• Clipping-CS based PAPR reduction technique is pro-
posed. The clipped signal is formulated into proper
CS-based spectral estimation. Unlike conventional
CS-based PAPR reduction approaches, a completely
new formulation for CS-based PAPR reduction is intro-
duced. Whereas the signal intrinsic sparsity is exploited
instead of relying on the limited/ uncontrollable sparsity
of the clipping interference. Thus, the limitations on
clipping ratios are relaxed, which improves the proposed
system flexibility in choosing between a wide range
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of PAPR reduction levels to fulfill the IoT low power
requirements. In other words, the proposed approach
guarantees extremely low PAPR (under low clipping
level) without increasing the detection complexity nor
BER degradation.

• BER performance is verified through driving the upper
bound of average probability of error by the aid of
information-theoretic limits of CS.

• Monte Carlo simulations for BER performance over
additive white Gaussian noise (AWGN) and Rayleigh
fading channels are performed and compered with the
theoretical ones.

The rest of the paper is organized as follows: Section II
discusses the related work. Section III presents the model-
ing of both the proposed scheme and the clipping distor-
tion. The proposed scheme is presented in Section IV along
analytical analysis of the error probability upper bound of
the perfect support detection. Section VI presents simulation
results and discussion. Finally, the paper is concluded in
Section VII.

II. RELATED WORK
As mentioned previously, there are many challenges such as
PAPR problem still need to be overwhelmed in OFDM-SIM
scheme to be applicable for IoT applications. It is notable
that PAPR results in nonlinear distortion which substantially
decrease system performance.

In literature, many PAPR reduction technique have been
proposed for OFDM systems [15]–[18], [22]. Among these
techniques, clipping is implemented in OFDM practical sys-
tems to combat high PAPR because it is a very simple
and effective. However, clipping could cause a significant
increase in BER of the decoded signal at the RX. To address
this problem, authors in [18], [19] introduced a channel
coding-based technique to mitigate the rough clipping noise.
However, this solution reduces the system SE and increases
the system hardware complexity. In general, alleviating the
clipping distortion impact comes at the expense of increased
complexity, bandwidth expansion or data rate reduction.

Among the above works, CS-based solutions based on
exploiting the sparse modeling of the clipping distortion have
been proposed in literature to alleviate the clipping impact.
However, most of CS-based schemes are associated with poor
BER performance due to the vulnerability of CS scheme to
the channel noise. In [23], [24], exploiting the sparsity of
the clipping noise, the clipping noise estimation techniques
have been introduced as a pre-processing step to compensate
the clipping distortion effect before symbol detection at RX.
However, according to [21], the clipping level should be
relatively high to ensure this sparsity, which in turns limits
the achievable PAPR reduction levels.

Works in [20], [21], are based the exploiting the amplitude
feature of the clipped signal. Specifically, the samples with
high amplitudes have higher probability to be clipped than
those with smaller amplitudes. Hence, in [20], [21], samples
with higher amplitudes were classified as unreliable samples

and excluded while the detection process, and only the reli-
able ones with smaller amplitudes were considered.

Regarding the PAPR reduction for OFDM-IM systems, the
conventional techniques for the plain OFDM can be reused,
but with regarding of the special features of OFDM-IM
signals. In [25], the conventional active constellation exten-
sion (ACE) technique have been extended to the OFDM-IM
systems. Particularly, an optimized dither signal in idle sub-
carriers through the convex programming solution have been
introduced to mitigate the PAPR issue [25]. However, this
solution associated with very high computational cost regard-
ing mobile TX. Hence, the multicarrier transmission remains
a problematic choice for uplink transmission even under
index modulation OFDM as well as in the plain OFDM.

Authors in [26] introduced an iterative search algorithm
instead of convex optimization while extending ACE to
OFDM-IM systems, which significantly enhanced the system
performance.

In this paper, a novel clipping-CS based PAPR reduc-
tion technique for OFDM-SIM is proposed. In the proposed
scheme, clipping technique is applied to combat high PAPR
because it is a very simple and effective, but with regarding
of the unique features of the OFDM-SIM signals.

Particularly, the unique frequency domain embedded spar-
sity feature of OFDM-SIM signals is considered, which in
turns allow hard and low-level clipping implementation with-
out overhead or BER degradation.

Accordingly, higher levels of PAPR reduction can be
reached with the proposed scheme than clipping noise
estimation-based techniques such as in [26], [27]. Besides
sparsity feature exploitation, prior-knowledge of the ampli-
tudes of the activated/inactivated subcarriers are exploited by
the proposed scheme to perform a low complex CS-based
detection at RX. Unlike [18], [19], due to robustness and reli-
ability of the proposed scheme, there is no need for channel
coding for mitigating the clipping distortion and the channel
noise As will be indicated in the simulation Section, EE and
humble hardware complexity of the proposed OFDM-SIM
scheme make it a promising candidate for IoT systems.

III. SIGNAL MODEL
In this Section, the system model of the OFDM-SIM is intro-
duced. In this model, the detection process of is interpreted
and formulated as a spectral estimation problem regarding the
information resides in the frequency domain. Moreover, the
modeling of the clipping process is introduced in this Section.

A. OFDM-SIM SYSTEM MODEL
The transceiver structure of the OFDM-SIM system is
depicted in Fig. 1. Considering Ns sparse active subcarriers
out of a total available NT orthogonal subcarriers. Therefore,
there are NC =

(
NT
NS

)
different pattern combinations, where(

.

.

)
is the binomial operator. Any combination pattern Cj of
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FIGURE 1. The block diagram of the enhanced OFDM-SIM system.

subcarriers can be written as a set of indices as follows:

Cj =
{
iNs , iNs−1, . . . , ik, . . . , i2, i1

}
, ik ∈ [1,NT ] (1)

Accordingly, the combinatorial coded bits which could be
selected can be expressed as bSIM = 2

⌊
log2

(
NT
NS

)⌋
bits,

where b.c denotes to the floor to the nearest integer operator.
Moreover, the double indexing on real/imaginary spaces

is employed. The bit combinations are assumed to be sorted
in a predefined order such as lexicographic order avoiding
the exhaustive listing for all combinations such introduced
in [27]. For each possible combination, the corresponding
index can be simply expressed as follows [15], [16]:

I =
(
iNs
Ns

)
+ . . .+

(
i2
2

)
+

(
i1
1

)
. (2)

As shown in Fig. 1, in TX side, the incoming block of b bits
to be transmitted at any specific time is divided into two dis-
tinct sets for both indexing the real and the imaginary spaces
independently. Therefore, the generated NT × 1 frequency
domain signal is X = XR + JXI , where XR and XI represent
the real and the imaginary of X and can be represented as:

XR/I =

{
±1, ∀i ∈ Cj
0, otherwise

(3)

Both XR and XI consist of (NT − NS ) null subcarriers and
NS � NT active subcarriers which are selected based on
incoming bit stream. Then, X is converted into NT × 1 time
domain signal, x, by applying the IFFT as follows:

x (n) =
1
NT

NT−1∑
k=0

X (k) ej
2π
NT

kn for 0 ≤ n ≤ NT − 1 (4)

Or equivalently in matrix form as:

x = FHX , (5)

where, FH denotes the NT × NT Hermitian transpose of the
discrete Fourier transform (DFT) matrix.

Each column of the DFTmatrix represents a complex sinu-
soidal (subcarrier). Hence, the resulting time domain vector
x becomes a sparse in frequency domain as a sparse linear
combination of subcarriers.

Actually, the main differences between OFDM-IM [28]
and OFDM-SIM [15], [16] reside in: 1) OFDM-SIM is
supported by inherit sparsity feature enabling CS-based
detection. 2) OFDM-SIM characterized by a high noise
immunity because it does not employ QAM for the activated
subcarriers (i.e., it hardly depends on the amplitude infor-
mation). 3) OFDM-SIM has a larger combinatorial space
than OFDM-IM, this due to the fact that in OFDM-SIM
combinatorial indexing is performed on the overall frequency
space by selecting small number of active subcarriers from
a whole space. On the other hand, in OFDM-IM grouping
is utilized and half number of subcarriers from each group
is activated. 4) unlike OFDM-IM, channel coding is not no
longer needed for OFDM-SIM due to it inherits robustness
against noise. 5)The same sparse detection algorithm can be
applied for sparsity detection of data in frequency domain and
the channel sparsity in frequency domain [14].

B. PAPR MODEL
The PAPR of the time domain signal can be given as:

PAPR ,
Pmax
Pavg

=

max
0≤n≤NT−1

{
|x (n)|2

}
1
NT

∑NT−1
n=0 |x (n)|

2
, (6)

where Pmax and Pavg are the maximum and average power of
the transmitted OFDM-SIM symbol, respectively.
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Peak amplitudes of the generated OFDM-SIM symbol can
be clipped according to the following criterion:

xc (n) =

{
x (n) , for |x (n)| ≤ γ
γ ejarg[x(n)], for |x (n)| > γ

(7)

where γ is the clipping threshold.
It is better to express the degree of clipping in-terms-of the

well-known clipping ratio (CR), where CR = γ
√
Pavg

.

C. CLIPPING DISTORTION MODEL
Mainly, modeling the clipping distortion depends on the clip-
ping threshold γ , which in turns affect the achievable PAPR
reduction PAPR level [29]. Consequently, the most common
clipping distribution schemes have been reported in literature
can be classified in the two following categories

1) ADDITIVE SPARSE (IMPULSIVE) MODEL
In this model, the clipping range may be limited to high
clipping ratios (CR ≥ 1.5). Hence, the clipping event happens
in few (sparse) times during one symbol interval.

xc (n) = x (n)+ c, (8)

where c (n) represents a sparse impulsive noise (distortion).
However, for maintaining clipping noise sparsity in time

domain, high clipping levels are applied. Which in turns
limits the achievable PAPR reduction levels [20]–[24], [30].

2) AWGN MODEL
In this model, hard clipping is applied through lower clipping
ratio (CR < 1.5), which results in sparsity degree reduction
for the clipped samples. This modeled can be mathematically
expressed as attenuated signal pulse AWGN component as
follow [31]:

xc (n) = αx (n)+ d (n) , (9)

where d represents AWGN component. α is the attenuation
factor and can be expressed as follows:

α = 1− e−CR +
√
πCR
2

erfc(CR), (10)

Obviously, according to the AWGN model the overall dis-
tortion is modeled also as severe Gaussian noise enabling to
deal with the clipping effect just as signal to noise ratio (SNR)
loss [31].

In the proposed scheme, the AWGN clipping model will
be exploited where a hard clipping is used to achieve higher
PAPR reduction levels.

IV. PROPOSED CLIPPING AND CS-BASED PAPR
REDUCTION SCHEME
In this Section, the proposed clipping-CS based PAPR reduc-
tion technique for OFDM-SIM will be discussed. Whereas
a simple and low-cost clipping technique with lower clip-
ping levels is applied in the proposed scheme TX to reduce
the PAPR. In the RX side, exploiting the sparsity feature,

a CS-based approach is applied for signal detection and clip-
ping noise mitigation.

A. CLIPPING SCHEME AT TX
As shown in Fig. 1, the signal is generated though a simple
IFFT operation. Then, a hard clipping with low threshold
applied to address the PAPR issue in the TX side. Sensibly,
the achievable PAPR reduction levels will be depending on
the clipping degree, i.e., lower clipping threshold results in
high PAPR reduction value and vice versa.

On the other hand, hard clipping at the TX results in more
distortion at the RX, which in turns complicates the detection
process at the RX. As, the clipping distortion should be
evaluated before deciding the optimal parameters that fitting
the operating spectral estimator at RX. From this perspective,
the relation between the clipping distortion and the achievable
PAPR levels should be investigated to bound the performance
limits of the proposed scheme.

By decreasing clipping ratio (through lowering clipping
threshold), the percentage of clipped samples increases.
Hence, the spectral estimation process is performed based
on a lower number of unaffected samples. In this paper,
the signal clipping distortion is represented as percentage of
clipped samples to the total number samples per symbol.

Mathematically, the percentage of clipped samples during
one symbol interval may be approximated according to the
level-crossing rate approximation as [13]:

P (r > γ ) ≈
γ e−γ

2

r̄e−r̄2
(11)

where r = |x| represents the envelop of a Rayleigh distribu-
tion with the probability density function (pdf) of:

f (r) = 2re−r
2

(12)

Also, r̄ represents certain threshold less than clipping
threshold γ .

B. PROPOSED CS-BASED SCHEME AT RX
In this paper, to overcome the degradation of FFT perfor-
mance under clipping distortion, CS-based super-resolution
spectral estimation is utilized to perform the signal detection
task at RX.

Specifically, the high sparsity feature of OFDM-SIM is
exploited to perform a robust CS-based sparsity detection to
handle the tough clipping distortion at RX.

In this Section the problem formulation for the proposed
CS-based detection scheme is introduced along with the sup-
ported theoretical bases from CS theory.

Aiming to formulate the proposed CS problem, we propose
two directions for considering the intercepted clipping signal
distortion at the RX side. Specifically, the received clipped
signal is interpreted as highly noisy signal or as a signal with
missing samples.

According to the first direction, the clipping noise is
regarded as an additional source of additive white Gaussian
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noise which results in the overall system SNR degradation.
Accordingly, the CS problem is reformulated as a compres-
sive spectral estimation under sever noise conditions. Particu-
larly, the sparsity constraint on OFDM-SIM signal introduces
a higher order of noise immunity for sparse vector estimation
under heavy noise contaminated measurements [32], [33].

On the other hand, the second direction is based on drop-
ping out the severely clipped samples from the detection pro-
cess. Hence, the problem ismodeled as compressive sampling
problem where the high dimensional sparse signal can be
extracted from the lower dimensional measurements (under
sampled). According to the second direction, the received
signal is considered as irregularly sampled signal or a sig-
nal with randomly missing samples. The missing/unequally
sampled signal corresponds to an underdetermined linear
system that has not a unique solution, however, the sparsity
constraint enables finding unique solution according to CS
theory [30], [33]. The CS problem formulation according to
the previously mentioned directions can be mathematically
formulated as following:

1) HIGHLY NOISY RECEIVED SIGNAL
In general, Eq. (7) can be rewritten in the summation form as
follows where the transmitting channel is assumed as AWGN
for simplicity:

yrec (n) = αx (n)+ d (n)+ v (n)︸ ︷︷ ︸
eT

, (13)

where d (n) is the clipping distortion and it can be formed as,

d (n) =

{
0, |x (n)| ≤ γ

(γ − |x (n)|) ejarg[x(n)], |x (n)| > γ

Under low clipping ratio, the effect of the clipping distor-
tion can be modeled as AWGN noise, d ∼ (µclip, σ clip). The
transmitted signal incurs the clipping distortion besides to
the channel additive noise ν (n) ∼ (µn, σn), so, the received
signal yr (n) can be rewritten as :

yrec (n) ≈ αx (n)+ eT (14)

where eT = ν (n) + d (n) , combines all sources of errors
(even equalization error that may be neglected under full
channel knowledge).

By regarding the fact that, the total distortion eT is as a
summation of two independent random variables with normal
distributions, the total distortion follows the same normal
distribution with eT ∼

(
µclip + µn, σclip + σ n

)
. At this end,

the receiver detection problem can be reformulated as the
sparsity-based spectral estimation problem as follows:

yrec = DX + eT . (15)

2) CLIPPED SAMPLES DROPPING OUT
Here the clipping problem is formulated as a CS problemwith
underdetermined linear system. Whereas, during the signal
estimation process, the system is classified the samples of
the received signal. In which, the samples with the highly

likelihood that they were clipped in the TX side, are dropped
from the received signal. Thus, a short length version of the
received signal is generated based on the process. Hence,
the generated signal yM has M < N samples, where N
is the number of samples of the original received signal.
Hence, the samples of the new signal yM are seemed to be
randomly selected from the original received signal. Conse-
quently, the problem can be mathematically formulated as the
well-known compressive sensing model [10]:

yl = 89X+ e, yM
def
= ∀yl 6= 0 (16)

where yM has M < N random samples of the original
measurement signal yrec that has NS sparse representation
in a given orthogonal dictionary 9, and 8 represents the
measurement matrix that randomly selects the samples.

The orthogonal matrix 9 is N × N full rank Fourier
dictionary, whose columns are complex sinusoids of orthog-
onal frequencies. While the measurement matrix 8 in our
case is look like N × N semi-identity matrix I with rank
equal to M < N . We mean by semi-identity matrix that,
8with zero off diagonal elements and its diagonal is given by
diag (8(l, l))∈ [0, 1] where diag (.) gives the matrix diago-
nal and diag (8) has M ones elements and N − M random
zero elements. Thus, the measurement matrix 8 is working
as spike (randomly) basis selection over orthogonal dictio-
nary 9. Fortunately, the spike matrix 8 and the Fourier
Dictionary are maximally incoherent (minimum coherence,
µ = 1), as it was reported in [10], which improves the
performances of proposed system.

Here,8 is constructed randomly and independently in each
OFDM symbol detection process. Specifically, the received
time domain samples with the highest absolute value are
most likely clipped samples, thus they are dropped i.e., their
corresponding elements/locations in diag (8) are set to zero.
Therefore, 8 will contains M < N rows, and each row
contains one nonzero element in different locations while the
other N −M rows contain only zeros in their elements. Thus,
when the zero rows in8 are eliminated its sizewill be reduced
to M × N , The result of 89 is then will be 89 ≡ D and
D isM × N .
One example of a sampling pattern that used for construct-

ing the measurement matrix is provided in Fig. 6. Moreover,
in the proposed scheme, the DFT matrix is exploited as
orthogonal dictionary.

By take a deep look in the proposed system Eq. (15) and
Eq. (16), we will find that the two system are nearly apply the
same concept. We can say that89 ≡ D, where8 in Eq. (15)
is N × N identity matrix I , thus D becomes over-complete
dictionary.While in Eq. (16),8 isN×N semi-identity matrix
Iwith rank equal toM or the sparse signal is sampled in lower
rate than traditional Nyquist rate where, the measurement
matrix excludes samples with the highly likelihood that they
were clipped. And since the samples are naturally clipped
random, thus we can confirm that 8 in Eq. (16) is a random
measurement matrix.
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In terms-of the sparsity detection, the sparseness of the
solution for the problems in Eq. (15) and Eq. (16) can be
imposed explicitly (with l0-norm) while minimizing the error
as follow:

min ‖X‖0 S.t ‖y− DX‖22 < ε. (17)

where ‖‖0 denotes l0-norm, that always be replaced
by another measures of sparsity for its computational
unfeasibility.

Many sparsity-based estimators can be addressed for solv-
ing the problem in Eq. (17). For instance, the standardized
Least Absolute Shrinkage and Selection Operator (LASSO)
optimization problem [34] can be applied, through implicitly
enforcing the sparsity constraint on the parameter vector by
including l1-norm in a convex optimization problem while
minimizing the noise through including l2-norm on the noisy
term:

X̂ = arg
(
1
2
‖y− D X‖

2
+ µ ‖X‖1

)
(18)

The main solving approaches [12] for the formulated
problem in Eq. (18) go around either convex optimiza-
tion [34], [35] or iterative greedy algorithms [36], [37]. How-
ever, iterative greedy algorithms have lower computational
complexities, thus it will be recommended.

Several iterative approaches [34] can be addressed for
solving the sparse linear regression formulated in LASSO
problem Eq. (18). Without loss of generality, in this paper
the iterative adaptive approach (IAA) and missing data
IAA (MIAA) [38] will be exploited here to validating the
two CS-based proposed systems in Eq.(15) and Eq.(16),
respectively.

However, the IAA/MIAA is adapted to cope with the tough
clipping distortion problem in the proposed scheme. More-
over, the adopted IAA andMIAA are applied on two different
version of preprocess input single yp. Whereas the yp for
IAA is just the channel equalized received signal. With the
assumption that the channel state information (CSI) is known
at the RX, it is easily to equalize the received signal.

The pseudo-code of the adapted IAA for estimating the
sparse vector support is summarized in Algorithm 1.

As shown in Algorithm 1, the spectral estimation at any
frequency ωk from the orthogonal frequency grid (k = 0,
1, . . . ,NT − 1), is found iteratively by estimating X (k) and
the covariance matrix R (initialized by identity matrix I) until
convergence.
X (k) and R can be expressed as follows:

X (k) =
aH (ωk)R−1y

aH (kωk)R−1a (ωk)
(19)

R =
NT−1∑
k=0

|X (k)|2 a(ωk )aH (ωk) (20)

where a (ωk) denotes the complex exponential subcarrier in
time domain which represents the k-th column vector in the
dictionary matrix D.

Algorithm 1 Pseudo Code for the Proposed Algorithm
1- Inputs: yp, No. of iterations: i, sparsity order: Ns/NT .
2- Initialize estimator: covariance matrix R← I .
3- Processing the equalized received signal yeq as follow:

-
4- For j = 1 : i
• For k = 0: NT − 1

X (k) =
aH (wk)R−1yp

aH (wk)R−1a(wk )
.

• End for

R =
NT−1∑
k=0

|X (k)|2 a(wk )aH (wk)

5- End for
6- Return estimated spectra vector X .
7- Applying energy detection on X in the real/imaginary

spaces to detect the high energy Ns indices.

IndR = (|real(X (k))|)

Ind I = (|img(X (k))|)

8- Output: Index → Bits // combinatorial conversion.

Under IAA approach, the introduced CS-based solution
just tries to enhance the noise immunity of the sparse esti-
mation process. The receiver is interested in estimating the
sparse frequency activation represented in X over Fourier
dictionary D ≡ FH in the presence of the combined channel
and clipping noise eT . In other words, the clipping noise is
simply regarded as a naturally added noise as in Eq. (13).
Thus, the sparsity estimation problem Eq. (15) can be thought
as an estimation of the subspace (subcarriers) in theD domain
where, the received signal yrce is approximately defined in
that domain under sparse mapping constraint.

While, to solve Eq. (16) the MIAA approach is exploited.
However, Algorithm 1 is also used to implement the MIAA,
but with a different yp. To find yp for the MIAA approach
more preprocessing steps are applied received signal yrec
before apply Algorithm 1. After applying the channel equal-
ization process on the received signal and with knowledge of
the clipping ratio (i.e.,CR), the indices of the samples that
they most likely were clipped are estimated then excluded
from the received equalized vector as well as its correspond-
ing rows in the dictionary, D.

yM = 8MNyrec ≡ 89X+ e ≡ θX + e, (21)

and aM (ω) = 8M ,NT a(ω),
where, 8 denotes a M × NT measurements matrix, that

excludes Nmiss time samples corresponding to the estimated
clipped samples and θ ≡ 89 is called the sensing matrix.
After obtaining yM and aM (ω), Algorithm 1 is used with

yp = yM and a (ω) = aM (ω) to solve Eq.(16).
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However, by excluding excessively clipped samples from
the spectral estimation operation, the impact of clipping
noise is relaxed to some extent. Moreover, this approach has
lower computational complexity arising from involving lower
number of samples in the estimation process. The overall
performance of the systemwill be discussed in the simulation
analysis Section.

From another side, the selection of measurement/sensing
matrix has high impact on the performance of the CS estima-
tion. The CS imposes two essential conditions (i.e., restricted
isometry property and basis incoherence) on the employed
sensing matrix to ensure a comprisable representation of a
higher dimension signal in-terms-of lower dimensional mea-
surements [12].

µ (8,9) =
√
N max

1≤k,j≤N
|〈ϕk , 9j〉| (22)

The basis coherence (correlation) µ (8,9) between mea-
surement matrix and the representing dictionary should be
kept as minimum as possible where µ (8,9) ∈ [1,

√
N ].

Minimizing coherence factor leads to minimum number of
needed measurements [12]. Roughly, the number of measure-
ments M should obey the following rule for extracting the
correct sparse support with overwhelming probability.

M ≥ Cµ2 (8;9)NS logNT , (23)

where C is a small constant, it may be assumed C = 2 [12].
Since the8 is a spik matrix, and9 is an orthogonal Fourier

matrix, hence theminimal coherence ormaximal incoherence
will be attained i.e., µ (8,9) = 1 as it was reported in [10],
and M ≥ 2NS logNT .

V. THEORITICAL ANALYSIS OF ERROR
From the communication point-of-view, it is common to
drive the analytic expressions of the BER performance (in
a closed-form) that often agrees with the exact performance
arising from Monte Carlo simulation. However, under com-
pressive sensing solutions, it is convenient to have only an
upper-bound error probability where the derivation of the
exact error expression is too exhaustive [39].

The sparsity recovery of X means the recapture of the
non-zero values NS . The estimated vector X̂ appears as
approximate sparse vector where the supposed null elements
may have finite non-zero values due to additive noise. Hence,
after applying the CS-based estimating algorithm, the energy
detection is applied for largest NS supporting bases. So, the
estimated support regards only the Ns-largest elements of
the estimated vector X̂ as Ŝ =

{
i : X̂i1 ≥ X̂i2 ≥ . . . ≥ X̂iNs

}
indices of the activated (the most salient in energy) subcarri-

ers, i.e., identifying the exact set of indices among
(
NT
NS

)
possible different sets. However, this problem is defined
as the exact (perfect) support recovery of sparsity pattern.
Whereas element (index) missing/mismatch leads to erro-
neous sparsity recovery because each combination maps to
a different bit stream.

Generally, the error probability of exact support recovery
can be analyzed in-terms-of a maximum likelihood (ML)
decoder by assuming that all

(
NT
NS

)
possible subsets within

NS elements are equiprobable [11], [40]. However, the error
event happens when the estimated support does not coincide
with the true support, Pe = Pr (S 6= Ŝ). Hence, the average
error probability of exact support recovery is defined as:

P (E) =
1(
NT
NS

)∑
i
Pr
(
Ŝ 6= Si|Si

)
(24)

Then the average error probability can be stated as [40]:

P (E) ≤
∑K≡NS

i=1
2−Mf (ρ), (25)

and

f (ρ) =
1
2
log

(
1+ (1− ρ)

2iσ 2SNR
M

)

−
1
4M

log 4−
log

((
N−NS

i

) (
NS
i

))
M

(26)

where M represents number of measurements, N total
number of samples, ρ∈ [ 1

√
N
, 1] denotes the correlation coef-

ficient (related to coherence) between columns of the sens-
ing matrix and the coefficient of the support and it may be
assumed fixed and equal (for the non-zero elements only)
σ = |Xi|, hence, σ 2

=
SNR
NS
. It is worth to that, ρ =

√
M ,

where the sensing matric is resulting from the multiplication
of spike matrix and Fourier matrix.

FIGURE 2. Upper bound of the error prob. for exact support
recovery-based on 60% of signal samples (CR = 1).

The upper bound of error probability can be demonstrates
as shown in Fig. 2, where the clipping ratio is fixed at
CR=1 that corresponds to clipping/missing about 40 % of
the signal samples, for the two sparsity levels, Ns ∈ [5, 12].
Whereas the sparsity level corresponds to the amount of data
conveyed by the signal. Thus, this figure reflects the impact
of the signal sparsity on the probability of error. Signal with
high sparsity (less activation) enjoys more noise immunity
than less sparse signals. It is worth to note the abrupt dropping
of probability of error at certain critical SNRs points may be
defined as critical points. For SNRs lower than critical points,
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almost there is low probability for detecting the correct signal
support. It may be called as SNR cutoff.

From design point of view, the conditions of guaranteed
exact support recovery may appear more helpful through
introducing bounds for minimum SNR and the minimum
number of measurements (M ) at certain sparsity level
(S = NS

NT
) as follows.

SNRmin = �
(
log2 (NT )

)
(27)

M = �

 NS log2
(
N
NS

)
log2

(
1+

(
1− 1

√
N

)
SNR
NS

)
 (28)

By preserving the minimum required SNR, the number of
measurements (M ) remains a function of sparsity level and
the operating SNR. Clear representation of that relation can
be found in [39] as

M >

4 log
(
exp (1)

√
α − 1

)
log

(
SNR2

2Ns exp(1)

) + 1

NS (29)

where α ≡ NT
NS

.

FIGURE 3. Sufficient number of samples for exact support recovery
corresponding to different SNRs levels, with N = 256 samples.

Fig. 3 demonstrates the dependence of the required lower
bound of the number of samples on the operating SNR
for guaranteed support recovery. For too little measure-
ments (samples), the correct support recovery fails with
high probability. Similar to SNR cutoff, there is a measure-
ment cutoff for number of measurements lower than critical
measurements,M .

VI. SIMULATION RESULTS
In this section, the superiority of the proposed clipped sparse
indexmodulation (OFDM-SIM) is examined in terms of BER
enhancement against the conventional coded and clipped
OFDM scheme (with BPSK/QPSK) under the same effec-
tive SE and clipping ratio (similar PAPR levels) for fair
comparison.

A. SIMULATION SETUP
Our simulation parameters are similar to that used in [19].
The simulation is running on NT = 256 under AWGN and
slow Rayleigh fading channels. To reduce the clipping effect,
the coded OFDM in [19] relies on two stages of convolutional
channel coding with rate 1/2, that correspond to a net chan-
nel coding rate of 1/4. Both BPSK and QPSK are applied
on subcarrier modulation. On the other hand, the proposed
scheme relies on a sparse subcarrier activation with orders of
Ns/NT = 5/256 and 12/256 subcarriers per real/imaginary
spaces for providing almost the same effective SE of the
conventional OFDM [19]. Proposed scheme does not employ
QAM modulation nor channel coding. The sparsity adapta-
tion, Ns ∈ [5, 12], corresponds to the conventional concept of
adaptive modulation. Moreover, the key simulation parame-
ters are shown in Table 1.

TABLE 1. Simulation setup parameters.

The modified IAA/MIAA (Algorithm 1) is applied for a
detection algorithm with 50 iterations as upper bound condi-
tion for convergence.

B. RESULTS AND DISCUSSION
Figure. 4 shows an example for indexing recovery from
real/ imaginary subcarrier spaces under SNR = 4dB and
CR = 1. The activated subcarriers estimated amplitudes may
vary slightly from actual amplitudes due to the channel noise
and clipping distortion. However, the activated subcarriers
still can be distinguished from null subcarriers clearly.

The relationship between the percentage of clipped sam-
ples and the average PAPR at different CR values via Monte
Carlo simulation is indicated in Fig.5. For example, under
CR = 1, PAPR = 2dB, γ ≈ 4.89, and r̄ = 4.8, the resulting
clipping percentage is nearly 40% of total samples.

As indicated in Fig. 5 that; due to the inverse proportion
relation it is a matter of trading off between the mount of
clipping distortion and the achievable PAPR level ratio.

In the proposedCS-based scheme, regarding to our strategy
of dropping out the clipped samples, the measurement matrix
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FIGURE 4. Sparsity detection (Ns/Nt = 5/256) through IAA/MIAA under
SNR = 4dB and CR = 1. (a) Estimated subcarriers for real indexing space
(b) Estimated subcarriers for Imaginary indexing space.

FIGURE 5. Impact of clipping ratio on the percentage of affected samples
& average PAPR.

excludes clipped samples that are random in nature. For
instance, Fig. 6, demonstrates an example of the random sens-
ing patterns where the estimated missed samples instances
correspond to clipping events.

Fig. 7, shows the PAPR performance for clipped and
unclipped OFDM and OFDM-SIM schemes according to
different Ns and CR values. As shown, all unclipped schemes
exhibit nearly the same PAPR levels around 11 dB. On the

FIGURE 6. Example of sensing pattern in time domain, where the missed
samples corresponds to clipping instances.

other hand, an extremely low PAPR about 2 dB is achieved
through applying the clipping technique with CR = 1 (0 dB)
on the conventional OFDM and the proposed OFDM-SIM
schemes. Moreover, less than 2 dB PAPR is attained at
CR = 0.8. For, example, as shown in Fig. 7, the proposed
OFDM-SIM without clipping with Ns = 5 archives about
9.8 dB PAPR value, while this value is reduced to be about
1.9 dB using the proposed OFDM-SIM with Ns = 5 and
CR = 0.8. Which clearly highlight the superiority of the
proposed scheme with the clipping technique in alleviating
the PAPR issue.

The BER performance comparisons of the proposed
scheme, the unclipped SIM scheme, the coded-OFDM [19]
under both AWGN and a slowly fading channel is shown
in Fig. 8, and Fig. 9, respectively. The simulations in Fig. 8,
and Fig. 9 are performed with CR = 1, andPAPR = 2 dB for
the clipped schemes. As shown in these figures, the proposed
scheme outperforms corresponding coded-OFDM scheme
under the same effective SE and PAPR level. Thanks to the
enhanced sparsity structure of the proposed scheme, the spar-
sity based-spectral estimation exhibits higher noise immunity
than conventional coding protection.

Anyway, in terms of BER, the proposed scheme out-
performs the clipped and coded-OFDM scheme. Moreover,
Fig.8 shows comparisons among the different simulation
results for the different schemes and the theoretical analysis
results of the theoretical upper bound of error. These com-
parisons indicate the accuracy of the upper bound theoretical
analysis of error, where all the compared simulations respect
this theoretical upper bound. Also, the simulating error prob-
ability respects theoretical upper bound of error as shown
in Fig.8. More specifically, by regarding IAA performance,
the proposed clipped SIM-OFDM (Ns = 5) outperforms cor-
responding coded and clipped OFDM (BPSK) by about 6 dB.
Also, the clipped SIM-OFDM (Ns = 12) outperforms the
corresponding the coded and clipped OFDM (QPSK) with
about 8 dB gain. The introduced BER performance gain may
be exploited for further reducing PAPR levels lower than 2 dB
through applying lower clipping ratios as (CR=0.8).

However, by observing the performance difference
between the two followed estimators IAA and MIAA,
it seems that MIAA trades the gain of IAA by the computa-
tional complexity. It reduces the number of samples involved
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FIGURE 7. PAPR comparisons.

FIGURE 8. BER under AWGN channel.

FIGURE 9. BER under slowly fading Rayleigh.

in the processing on the cost of gain reduction. IAA approach
exhibits better performance than MIAA by about 4 dB.

This can be justified due to some errors in detecting the
truly clipped samples at receiver side in the presence of

FIGURE 10. Errors in estimating the clipped samples indices, (CR = 1,
clipping 105 samples from 256, with 28 sample index error).

additive noise as demonstrated in Fig.10. As shown in the
figure, there are 105 clipped samples from 256 sample in
this symbol. By regarding the samples of largest amplitude
as a clipped or missed, we have 28 of un-correctly estimated
clipped samples from the estimated 105 samples. However,
that performance may be enhanced through following more
sophisticated algorithms in detecting clipped samples indices.
Also, the noise sensitivity increases under reduced number
of measurements where the lower bound of the number of
measurements (samples) is in reverse proportional to the
operating SNR.

The BER performance under Rayleigh fading channel is
demonstrated in Fig.9. With the IAA approach, the proposed
clipped SIM-OFDM (Ns = 5) outperforms the corresponding
coded and clipped OFDM (BPSK) by about 8 dB. However,
the performance of both IAA and MIAA estimators seems
almost the same. This can be justified by regarding that the
deep fading effect dominates over the noise and clipping
distortions even for wide range of SNRs values.
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VII. CONCLUSION
In this paper, an improved OFDM-SIM is introduced as an
energy efficient multicarrier scheme for IoT communica-
tions. Mainly, the explicit sparsity in frequency domain of
OFDM-SIM which provides a higher degree of freedom is
exploited in the proposed scheme to enhance the performance
in terms of EE. In particular, a novel clipping-CS based PAPR
reduction technique for OFDM-SIM is proposed in this paper.
Considering the complexity constraints for IoT devices,
the simple and low complex clipping method is used to alle-
viate the PAPR issue. Moreover, supported with the inherent
sparsity of the received OFDM-SIM signal, CS is introduced
to deal with clipping noise and to help in the signal recovery
process. Furthermore, in this paper the information-theoretic
limits on sparsity recovery are exploited to derive an upper
bound measure of BER. The simulation results demonstrate
that the proposed scheme significantly enhance the system
performance in terms EE, PAPR reduction and BER com-
pared to the conventional clipped coded-OFDM. As a future
work, the possibility of utilizing the proposed scheme for
other OFDM system through guaranteeing the sparsity in
other domains in addition to time domain can be investigated.
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