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Abstract: Reconfigurable computing is becoming ubiquitous in the form of consumer-based Internet of
Things (IoT) devices. Reconfigurable computing architectures have found their place in safety-critical
infrastructures such as the automotive industry. As the target architecture evolves, it also needs
to be updated remotely on the target platform. This process is susceptible to remote hijacking,
where the attacker can maliciously update the reconfigurable hardware target with tainted hardware
configuration. This paper proposes an architecture of establishing Root of Trust at the hardware
level using cryptographic co-processors and Trusted Platform Modules (TPMs) and enable over the
air updates. The proposed framework implements a secure boot protocol on Xilinx based FPGAs.
The project demonstrates the configuration of the bitstream, boot process integration with TPM and
secure over-the-air updates for the hardware reconfiguration.

Keywords: secure boot; cyber-physical system security; embedded systems; Field Programmable
Gate Array (FPGA); hardware primitives; Internet of Things (IoT) security

1. Introduction

Internet of Things (IoT) are ubiquitous devices with limited functionality and computational
resources, enabled with networking features and connectivity to the Internet. These devices have
a longer life cycle, where the updates/changes are deployed through software or firmware updates.
Software updates can be provided either manually or physically by using cables and programmer
interfaces. Physical access to a device for firmware upgrade is always not possible and requires the
configuration of the devices in the field through secure channels. The connected nature of IoTs makes
them accessible remotely, and firmware updates for devices can be provided using Over the Air (OTA)
firmware updates [1,2].

Software firmware updates change the functionality of the software; however, the scope is limited
by the hardware capabilities and its architecture. Depending on the application and the expected life
of a product, reconfigurable hardware architectures can improve the device updates and secure boot
processes. Reconfigurability allows the manufacturer to update the hardware design while the machine
is in the field. Using OTA, hardware updates allow for updating the device hardware configuration
without the need for physically replacing it.

Over the air (OTA) updates are critical in the embedded system consumer domain such as the
cellular phone and automotive industries. The requirements for availability and quality of service
are high in safety-critical applications. For the vehicular domain, the requirement for availability is
directly tied to safety. Furthermore, it is not feasible for a car owner to take the car to a service station
whenever there is a software update available. Instead, firmware updates can be provided remotely
with OTA updates that can be transferred via the cellular network directly by the manufacturer [3].

Root of Trust is an anchor for implementing trust in a device [4]. Maintaining Root of Trust (RoT) is
crucial once a device has been deployed in an untrusted field. Tainted firmware updates can break the
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trust. The software domain employs various techniques for maintaining Root of Trust. Some popular
examples include Universal Extensible Firmware Interface (UEFI) secure boot extensions [5] and
Microsoft Windows’ Secure Boot [6]. The former maintains Root of Trust at the boot level and the latter
extends it to the operating system (OS) level. We discuss a novel scheme for implementing Root of
Trust using cryptographic processors, such as Trust Platform Modules (TPM).

Reconfigurable hardware has become pervasive in the Internet of Things domain, this is a
requirement for extending the Root of Trust to the hardware. Current commercial FPGA vendors
provide limited security to the programmable logic fabric and those security mechanisms are limited in
application, as shown in Section 2. Additionally, the provided methods have closed access which the
users can use in their systems but cannot inspect themselves. There is a need for an open and reliable
security structure for the programmable fabric that can be integrated into the device’s Root of Trust.

In this work, we present a framework to establish the Root of Trust for secure boot and OTA
updates for reconfigurable hardware. Mutual trust is established between an FPGA device and the
server or the content provider. A symmetric encryption key update mechanism is proposed to enable
key provisioning for updates. The key update mechanism is tied to the integrity of the bitstream. If there
is an unintended change in the integrity of the bitstream, the device will no longer able to successfully
decrypt continuing updates from the server. The proposed scheme extends the integration of TPM
with the FPGA boot process to assist in secure boot, key provisioning and secure communication.
Additionally, we present schemes for runtime mitigation of malicious logic insertion. To the best of
the authors’ knowledge, this is the first work that practically provides the integration between TPMs
and FPGAs at the First Stage Boot Loader stage. The organization of the paper is as follows. Section 2
discusses the relevant background studies. Section 3 covers the proposed architecture and analysis of
the methodologies. Section 4 describes the implementation details and security analysis is discussed in
Section 5.

2. Background Studies

2.1. Secure Boot in FPGAs

The security features in FPGAs target various aspects of security, such as secure boot, encryption,
data integrity and secure communication. Commercial FPGA vendors have increasingly incorporated
new security features over the years, but they do not follow any standard and are not consistent
across the devices. In Zynq 7000 FPGAs, the FPGA SoC provides an AES 256 based encryption engine.
Additionally, RSA asymmetric authentication is used to ensure an authenticated source. These functions
are implemented as a hardware-based function on the FPGA fabric and their configuration is integrated
in the EDA tools. The implementation of this core is not open to the end-user [7]. Both the encryption and
authentication processes use keys which are defined before deployment. In the Zynq 7000 architecture,
there are two ways of key storage: Battery-Backed RAM (BBRAM) and one-time programmable fuses.
BBRAM is an on-chip volatile memory region that has to be battery powered. One-time programmable
efuses are configurable fuses that are burned into the fabric once they are programmed. There are
caveats of using these technologies for holding keys. The BBRAM is dependent on the presence of a
dependable power source. In the case there is any fluctuation in the power supply, the keys will be lost.
On the other hand, the efuses are once programmable. In the case the programmed keys leak, there is
no way to refresh them. Another serious flaw is that these keys are stored unencrypted in the memory.
Access can be gained to them through physical means [8] and through side channel attacks [9].

These cryptographic processes are invoked as part of the secure boot process implemented in the
Xilinx provided zeroth stage boot loader called BootROM [10]. BootROM code exists in non-volatile
memory on the FPGA fabric. It is executed by the Processing System on FPGA at the beginning of the
boot cycle. Once the execution is completed by the BootROM code, control is passed to user-defined
code, which can be an operating system or a user level application. The vendor provides no access to
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the code implementation of BootROM and there is neither any read nor write access to the memory
holding the BootROM code.

Recently, in the newer Zynq UltraScale architecture, Xilinx has built upon the schemes in the
Zynq 7000 architecture to add more security solutions [11,12]. The major revision is in the addition of
Physical Unclonable Function (PUF) based key support. Whenever keys are generated for encrypting
bitstreams, they are given as input to the on-board PUF to generate an encrypted key. This key can
be stored onto the efuses, the BBRAM or externally in any unencrypted space. Since an attacker
does not have access to the PUF implementation, they will not be able to decrypt the encryption key.
Once the host system sends an encrypted bitstream to the FPGA board, the encrypted key is decrypted
at runtime to reveal the bitstream decryption key. This key is used by the encryption subsystem to
decrypt the bitstream. Additionally, there are existing commercial platforms that integrate TPM with
the FPGA [13], but the security provided is limited to the OS and application layer and does not extend
to securing the bitstream.

Attacks on vendor-provisioned security, such as Xilinx’s Secure Boot, have also been documented.
Outsourced trusted third-party IPs based on their application also have access to the main memory of the
system. Since the main memory is also used by secure boot to store the unencrypted Second Stage Boot
Loader (e.g., U-boot) used by the system, a hardware trojan can target the main memory to manipulate
the Second Stage Boot Loader to execute a malicious executable. The authors of [14] suggested wrapper
logic be added to IPs before the IP is connected to the system bus. Hardcoded configuration of the
wrapper defines the scope of memory access by the connecting IP.

Xilinx FPGA bitstreams consist of a sequence of commands that are sent to the FPGA’s
Internal Configuration Access Port (ICAP) interface [15]. The ICAP interface is used to interact
with the Programmable Logic fabric. There are several registers that an ICAP register provides.
The bitstream header instructs if the bitstream is encrypted or not. This sets the FPGA to decrypt
the bitstream data using AES-CBC mode. In [16], the authors exploited CBC malleability to alter
the bitstream. The malicious modification routes the decrypted bitstream configuration to be written
to the fabric, to an alternative ICAP register. The leaked configuration is then collected to retrieve
the entire confidential bitstream configuration. Recent work on the secure bitstream configuration
at the boot level proposes the use of PUF technology and on-board peripherals for FPGA bitstream
secure boot [17]. The ICAP is used to retrieve the configuration of the current programmable logic.
A Hardware-Embedded Delay Physical Unclonable Function (HELPUF) [18] uses SHA3 digest as the
challenge input. The generated output is used as a key for decrypting the image of the operating system
and the application software to realize self-authentication. This enables the second stage boot loader to
program the programmable logic PL and processing system PS. Since vendor-provided secure boot is
not used with this system, ICAP also allows readback of on-chip memory elements such as the block
RAM and registers. If an adversary can capture the readback process, they will also be able to read the
PUF output as well and therefore will have access to decryption keys. Another scheme implements
self-authentication of the logic fabric design and extends the protection to include processor design [19].
As opposed to the work in [17], this work employs the use of Elliptic Curve Cryptography based
asymmetric keys with Diffie–Helman key exchange for the key generation for encryption. A fuzzy key
extractor is used to use extract hardware-based variations and to generate a key. This extracted key
is used in the design by various cryptographic functions such as remote attestation and encryption
key generation.

Dynamic Partial Reconfiguration (DPR) allows reconfiguration of pre-defined sections of the
FPGA fabric during runtime. Static design reconfiguration requires the FPGA to be shut down before it
can be reprogrammed. Following current security standards followed by FPGA manufacturers [7,20],
the static encryption key must also be shared with the third party. Thus, adding more actors who
would have access to the key. In [21], the authors suggested improving on the situation, with the
involvement of the hardware vendor in the distribution process. Each end device has a Unique ID.
This ID is exchanged with the IP provider during an IP purchase transaction. The IP provider passes
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the unencrypted IP bitstream and the obtained ID of the end device to the vendor. The vendor has
a database of IDs of end devices and their corresponding encryption keys. The vendor encrypts
the bitstream using the end device’s stored encryption key before it is transmitted to the device.
The solution does limit the issue of distribution of the encryption key between parties, however,
promotes the use of static symmetric encryption keys.

DPR-based approaches (e.g., [22,23]) suggest dividing the Programmable Logic (PL) fabric into
two zones, the static/security partition and the application partition. The security partition implements
functions required for authentication of the device, e.g., a PUF. It also supports cryptographic functions
such as SHA or AES. The application partition houses the application bitstream. The shortcoming
is the area overhead for application logic, which adds a constraint over the application logic design.
Additionally, since the security function lies with the application partition in the same fabric at the
same time, it thus creates a possibility for secret leakage between the two partitions.

2.2. Trusted Platform Modules

Trusted Platform Modules (TPMs) are hardware-based cryptographic processors. These processors
provide hardware-assisted capabilities for secure encryption, signing and digital certificates processes
and its storage on tamper-resistant Non-Volatile Memory (NVM). The TPM follows Trusted Computing
Group’s (TCG) TPM Profile Specification [24]. TPM provides constructs for key generation, true random
number generators, hash and a set of registers known as Platform Configuration Registers (PCR).
In TPM 2.0, there are two sets of PCRs, SHA1 and SHA256. PCRs are special registers used to hold
hash values for a block of input data and are commonly used in Secure Boot applications. The hash is
computed using the TPM’s TPM2_PCR_EXTEND function, for a block size of 256 bits. Each time the
hash is computed, it is added to the previous value of a PCR value register.

PCRn = PCRn||SHA256(x) (1)

In Equation (1), n is the PCR number and x is the 256-bit input value. In the secure boot
process, computed PCR values are compared with reference values at different times points for
verification. Hash functions are one-way functions used for integrity checking [25]. PCR registers
commute the cumulative hash, with any bit flip in the configuration will result in an incorrect response.
Other capabilities of TPM include support of symmetric and asymmetric cryptographic cores to enable
confidentiality and availability.

There are two specification versions, namely 1.2 and 2.0. TPM 2.0 supports several cryptographic
cores that are not available in the predecessor version 1.2. A complete list of supported cryptographic
engines and the comparison between the two is given in Table 1.

Table 1. Comparison between TPM 1.2 and TPM 2.0.

Algorithm RSA 1024 RSA 2048 ECC NISTP256 ECC BNP256 AES 128 AES 256 SHA1 SHA256

TPM 1.2 Yes Yes No No Optional Optional Yes No
TPM 2.0 Optional Yes Yes Yes Yes Optional Yes Yes

3. Threat Model for Secure Boot of FPGA Bitstreams

The FPGA market is dominated by proprietary tools, Intellectual Properties (IPs) and closed
hardware implementation. There are a handful of vendors that provide varying architectures and
interfaces to those architectures. The reconfigurable fabric on FPGAs is programmed using bitstreams.
The bitstream configures the Look Up Tables (LUTs) in the logic fabric. These LUTs act as combinatorial
logic and sequential data paths for the hardware design. Bitstreams also configure other fabric elements,
e.g., on-chip memory, Digital Signal Processing (DSP), clocking blocks and wire connections. An attack
on the bitstream can affect the entire system operation of a device on the field. This work focuses its
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efforts on providing bitstream security on the device and on providing security between a content
provider and a device.

3.1. Bitstream Spoofing

Bitstream spoofing updates the victim device with an update that seem to come from an authorized
source. Bitstream spoofing may compromise the security of the victim device using relay and replay
attacks [26,27]. An adversary acts as a man in the middle between a bitstream content provider and a
device. Once an authenticated session is set up between the two nodes, the adversary replaces the
original bitstream with a malicious one. In the case where the victim device is using one single key for
bitstream encryption, replay attacks can be used by an adversary. An attacker can forward an older
copy of the bitstream which has limited functionality compared to the current version.

3.2. Runtime Malicious Modification

Once a bitstream has been programmed onto an FPGA programmable logic fabric, an FPGA device
may provide interfaces to the outside world for readback and modification of the running bitstream [28].
Using these interfaces, faults or trojans can be introduced in the design [29]. Additionally, the same
interfaces can be used to make unauthorized modifications to the original design. Our work focuses
on mitigating malicious logic insertion in the bitstream during runtime.

3.3. Nonsecure Communication with Content Provider

For an FPGA device placed in the field, bitstream updates can be provided manually physically
by an engineer, through a physical update mechanism or using remote updates over a network. If a
content provider over a network is not secure, an adversary may spoof its identity to become a content
provider. Therefore, an adversary may be able to push malicious updates to the client. On the other
hand, an adversary can also impersonate a device on the field to download bitstream updates from a
content provider not meant for it.

4. The Root of Trust Architecture

In the proposed scheme, there are two actors: the content provider or the server and client nodes.
The content provider is a server that exists over a network for all client nodes. It serves the latest
bitstream to all clients. A client node is any authorized FPGA device that is connected to the network
of nodes. The authentication and authorization privileges for a client to join the network is open to
the implementation and is left at the discretion of the designer. There are two components in this
framework: the proposed hardware and the Secure First Stage Boot Loader (SFSBL).

4.1. Hardware Overview

The reference reconfigurable platform is an SRAM based FPGA SoC that has a hard-core Processing
System (PS) and a Programmable Logic (PL) fabric. The PS is a trusted verifier and the PL design
is the prover. The verifier is a trusted source, whereas the prover needs to prove its legitimacy to
the verifier. We investigate the secure co-processor integration with the SoC and export the security
functions and key provisioning onto an external cryptographic processor, such as the TPM. To provide
isolation for a higher level of security functions that is for Secure OTA update functions, the framework
uses a Trusted Execution Environment (TEE), such as ARM’s TrustZone. TPM is interfaced using the
Multiplexed Input /Output (MIO) port of the FPGA via serial SPI interface on Xilinx Zynq 7000 series
FPGA. An MIO port is directly connected to the hard core of the PS and does not require any additional
routing from the PL. The MIO-based connection to the TPM is essential since, in the case PL-based
configuration is used, the PL will need to be programmed first, thus introducing a possible attack
vector for the target platform. To mitigate any damage caused due to privilege escalation attacks,
PL programming port and the TPM are configured to be accessible only through TrustZone’s secure
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world. The prototype is tested on the Xilinx platform that incorporates external Quad Serial Peripheral
Interface (QSPI)-based flash memory to hold the SFSBL and the bitstream. The write access to the
flash memory is limited to the flash memory and is also limited to TrustZone configured secure world.
The hardware is described in Figure 1.
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Figure 1. Proposed System Architecture.

4.2. Establishing Source of Trust

A content provider/server may serve multiple client nodes, as illustrated in Figure 2. The server is
assumed to be secure. To establish the identity of the content provider and a client node, asymmetric
digital keys are used. The proposed framework uses Elliptic Curve Digital Signature Algorithm-based
NISTP256 curve keys [30] for data signing. A pair of asymmetric signing keys are generated on the
server as well as each client node. The client nodes use the equipped TPM to generate the key pairs.
Additionally, a unique shared symmetric key is generated for each client. This key acts as a base
encryption key (Kb) and is updated during the bitstream update process. The update process of the
symmetric encryption key is discussed in detail in the following subsections. A client’s private key
(Kcpr), public key (Kcpb), the server’s public key (Kps) and the encryption key are stored on a client’s
TPM, in its NVM. The exchange of keys occurs in a trusted environment, where the server’s private
key (Krs) does not leave the system. The server maintains a database of all its client’s public keys
and the base encryption keys. This system supports key renewal; however, the lifetime of the keys is
left at the discretion of the system designer. To mitigate chances for key theft, it is assumed that the
renewal process occurs in a trusted environment. Once deployed, the private key of the client cannot
be retrieved from the TPM; however, it can be addressed for use within the TPM. The key exchange
process is illustrated in Figure 3.
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Bitstreams are stored in the QSPI Flash on the hardware. The initial bitstream is stored by the
vendor in the trusted field. The proposed framework uses Platform Configuration Registers (PCR) to
measure the boot process and to maintain prolonged integrity of the bitstream. PCR register, PCRt is
used to store the cumulative SHA256 of all the bitstreams loaded onto the client. Initially, the value of
PCRt is set to the SHA256 of the initial bitstream. The server also calculates the same cumulative hash
locally (SHAt). For use during secure boot at the client, the SHA256 of the bitstream (SHAc) is stored
on the NVM in the TPM. Figure 4 shows the keys on a client node and shared between a server.
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4.3. Secure Over the Air (OTA) Update Mechanism

When the updated bitstream available on the server, the connected and authorized client nodes
receive a notification from the server. This triggers a client to initiate secure communication with
the server. At a client, the mode of operation switches from normal mode to the update mode.
The update mode is handled by the trusted execution environment at the client. In the case of
TrustZone, the processor mode switches from the non-secure world to the secure world. The update
process is assigned its own memory area, isolated from the non-secure world. The update procedure
consists of the following processes.
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4.3.1. Secure Communication Handshaking

To enable secure communication between the server and the client and maintain the integrity of
the bitstreams between two subsequent updates, we propose a handshaking scheme. The scheme is
summarized in Figure 5. A client generates a True Random Number (TRNa) using the True Random
Number Generator equipped on the TPM. The PCR register value PCRt is XORed with TRNa and is
then symmetrically encrypted using the base encryption key Kb.

me = AES128(PCRt ˆ TRNa) Kb (2)
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The construction of the encrypted message (me) is shown in Equation (2). Hash of me is
asymmetrically signed using Kcpr. Message me and its hash is sent to the server. After transmission,
the Kb is updated client side by taking a XOR with TRNa. Kb on the TPM is also replaced with the
newly computed value. Equation (3) illustrates the update process.

Kb = Kb ˆ TRNa (3)

The server using its copy of Kcpb recalculates the hash of the received message me. Once the client
has been authenticated, the server decrypts me using the stored key Kb. To retrieve TRNa, the server
computes the XOR of SHAt with the decrypted message. As in the client node, Kb is updated at the server.

4.3.2. Secure Update Packaging and Transfer

The bitstream update is compiled into an archive package before it is sent to a client. Using the
bitstream update and SHAt, the server calculates the new cumulative hash and updates SHAt.
The updated bitstream and SHAt are combined and encrypted using the updated key Kb. This encrypted
block is copied to the update archive package along with its SHA256 value. The SHA256 value is
signed using its own private key Krs. The signature is appended to the package. The update archive is
sent to the client. The client stores the package in its NVM and triggers the update process. Figure 6
shows the archive package.
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4.3.3. Applying the Update

The process of applying the update on the target platform is handled by the secure update process
running on the client FPGA. Once the bitstream package has been downloaded, SHA256 of the package
is recalculated client side and is compared with that in the download package. The signature of the
computed hash is recomputed using the key Kps on the TPM. This signature is compared against
the signature packaged in the update archive. Once the identity of the server has been verified,
the encrypted archive is decrypted using Kb. Using the TPM PCR functions, PCRt is updated and
verified against the archived SHAt value. If the updated PCRt and SHAt values are equal, the initial
bitstream on the NVM is replaced by the update; otherwise, if in case any check fails during the update
process, the node is assumed to be compromised and the server is notified. On completion of the
update process, the individual SHA256 of the bitstream calculated and SHAc is updated. The process
is described in the flowchart in Figure 7.
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4.3.4. Secure FSBL Boot Process

We designed a Secure First Stage Boot Loader (SFBSL) that is integrated with the Trusted Platform
Module with custom device drivers that enable the device to communicate with the TPM before the
device has booted. In an FPGA, the zeroth stage boot loader referred to as BootROM is executed by the
Processing System on FPGA at the beginning of the boot cycle. BootROM code exists in a non-volatile
memory of the FPGA fabric and is assumed to be secure. Once the BootROM has completed its
execution, the control is passed to the proposed SFSBL that exists in the on-board QSPI memory.
The SFSBL code extends and integrates the security functions to the FSBL. FSBL configures the device
with the hardware bitstream and configures the processing system with a bare-metal application or
loads the second stage boot loader to the RAM. This, in turn, loads the operating system. The vendor
FSBL design does not verify the integrity of the bitstream or what it is programming on the processing
system. This lack of security at the boot process can be circumvented with the proposed secure
FSBL that integrates key management and security features to validate the configuration files before
programming the device.

The proposed SFSBL begins execution with initializing on-board components and memory
elements. Once the basic devices have been initialized, the TrustZone is set up. The access to the
MIO port connected to the TPM as well as the QSPI ports is both configured to be accessible only by
TrustZone’s secure world. The secure world code is copied onto the RAM. This segment of memory is
only addressable through secure applications. Once the setup is complete, the control is switched to
the secure world. The secure world initiates the process of secure FPGA boot. To mitigate exploitation
of Time of Check Time of Use (ToCToU) [31] by an attacker, the processing system recomputes the
cumulative SHA256 of the bitstream on the TPM. This value is compared with SHAc stored on the TPM
during the bitstream update process. If the values are different, the boot process stalls, and the violation
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is recorded for later reference. Otherwise, the bitstream is configured onto the FPGA programmable
logic fabric and the boot process continues.

The secure world sets up service hooks for the non-secure world. These hooks can be used
to provide security functions for applications. One such service is the bitstream update service,
in which the control is switched to the secure world. The SFSBL process continues with loading the
non-secure world application, which can be either a bare-metal application or a second stage boot
loader, e.g., U-Boot [32]. The SFSBL process finishes by switching back to the non-secure world and
passing the control of execution to the non-secure world.

5. Results and Analysis

The proposed framework was implemented on a Xilinx Zedboard FPGA board equipped with
a Zynq-7000 XC7Z020-CLG484 [33]. The FPGA has an embedded ARM Cortex A9 hard processor.
The FPGA is integrated with the Infineon TPM SLB9670, a secure coprocessor for the key management
and secure boot processes [34]. The processor is equipped with ARM’s TrustZone for Trusted
Execution Environment (TEE). Additionally, the on-board QSPI memory is used for holding the
SFSBL implementation and the bitstream package extracted from the bitstream update process.
The experimental setup of the proposed framework is shown in Figure 8.
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The FPGA board communicates with the TPM via the Serial Peripheral Interface (SPI) over the
dedicated MIO port. The proposed SFSBL implementation is the extension of the Xilinx provided First
Stage Boot Loader (FSBL). The secure extensions are added to the existing FSBL that uses the custom
device driver library written as part of this research.

The MIO ports are accessible through the secure world configured using ARM processor
TrustZone [35]. The total RAM on the Xilinx Zedboard is 512 MB. We configured upper 64 MB of the
RAM space to be used by the secure world. This setting is controlled using the TZ_DDR_RAM register.
Additionally, to limit access to the QSPI memory, the QSPI_S_APB bit in the SECURITY6_APB_SLAVES
register is set to 0. Typically, for the configuration of peripherals in TrustZone, the value “0” signifies
that a peripheral is set to be secure or only accessible from the secure world.

To incorporate the TPM with the FPGA board at the FSBL level, we implemented a device driver
library. This library provides all necessary functions to set up the TPM and implements security
functions on the TPM. To the best knowledge of the authors, this is the first library of its kind.
The SPI interface accessible through the secure world implements the TPM transfer function driver
to communicate with the TPM device. This communication is required at the FSBL level to perform
secure boot, which is not supported until the second stage boot loader in the traditional design flow.
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The device driver library is open source and is made available online for public use [36].
The services provided by the library can be divided into two categories: device power-up services and
cryptographic functions. TPM 2.0 architecture has five layers. These layers signify the boot stage for a
target platform and are termed as localities. Each locality offers specific functionalities and implements
privileges with restrictions of allowed functions, for example, the PCR registers are resources limited
to specific localities. Our library implementation provides access to different secure boot specific
functions at all localities. In the proposed framework implementation, the TPM is only accessible from
the trusted secure world: the library exists in the scope of the secure world and is not accessible from
the non-secure world.

Timing overhead for the proposed solution is dependent on the data rate of the SPI interface and
the wait time for each operation. The data rate of the SPI interface is dependent on the host and the
TPM device. The TPM2 specifications only specify a maximum timeout for a message transfer and
timeout for primitive operations such as requesting a locality, checking the ownership of a locality, etc.

For each request sent to the TPM, the TPM can notify the host that it is busy using a wait state.
The TPM can send a maximum of 100 wait states before a timeout can occur. In the case of a timeout,
the host must send its request again.

Pseudocode of the TPM extend function driver implementation is given in Algorithm 1. The TPM
extend computes the hash of the input stream in a sequence of fixed size blocks of 32 bytes. It enables
block-by-block hash computation, which is the performance bottleneck for the bitstream processing.
Algorithm 2 shows the optimized hash computation process, that supports data streaming with the
block size 64 bytes. For the secure boot operation, the TPM structure TPM2_PCR_EXTEND reads
data in chunks of 32 bytes to extend a PCR. The bitstream for the Xilinx Zedboard is 3.85 MB in
size. Each TPM2_PCR_EXTEND operation takes an input of 32 bytes, and it takes a total of 126k
hashing operations.

Algorithm 1: tpm_pcr_extend function

Inputs: Locality (L), PCR Index I, Data Input D

Output: PCR Based Hash (H)

Buffer = []
If (!Current active locality is L) then

Request locality L from TPM
If (!Current active locality is L) then

Raise Exception
//Make TPM2_PCR_EXTEND Request
Buffer += TPM2_PCR2_EXTEND Header with Locality (L), PCR Index(I)
Buffer += DATA_LENGTH (32)
Buffer += D
Send Buffer to TPM
H = TPM2_PCR_READ(PCR=I)
Return H
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Algorithm 2: ComputeHashLoc4 Function

Inputs: Data Block (D),

Output: Hash H

If (!Current active locality is 4) then
Request locality 4 from TPM

If (!Current active locality is 4) then
Raise Exception

Send TPM_HASH_START Request to TPM
For (I: each block of length 64 in D)

If length(I) <64 then
I += Padding

Send TPM_HASH_DATA + I to TPM
Send TPM_HASH_END Request to TPM
H = TPM_READ_PCR(PCR=17)
Return H

To reduce the timing overhead for computing cumulative hash in real world applications, TPM 2.0
provides a separate locality, locality 4. It allows calling the three structures TPM_HASH_START,
TPM_HASH_DATA and TPM_HASH_END. To compute the cumulative hash of the bitstream, firstly,
the TPM_HASH_START structure is issued. It dictates the TPM to become ready to receive streaming
data. Using the TPM_HASH_DATA structure, SFSBL streams the bitstream over to the TPM iteratively.
Once the transfer is complete, the TPM_HASH_END structure is sent to denote the end of the data
input. The computation time was observed to be 40 s for the target bitstream file of size 3.85 MB.
Algorithm 2 shows the implementation of the function. In the SFSBL implementation, this function
is made part of the image_mover.c file since this file is responsible for copying bitstream images
between mediums.

The secure boot process loads the bitstream, as shown in Figure 9. The bitstream is sent to the
TPM for the integrity checking, where the cumulative hash is computed using the PCR registers with
the scheme discussed in Section 3. The TPM driver loads the PCR register with the cumulative hash
for the 3.85 MB bitstream with the 256-bit segments along with the feedback from the PCR cumulative
hash. The novel bare-metal TPM driver library uses locality 4 interface to access the PR registers
and implements the TPM_PCR_READ structure with the function tpm_pcr_read. The hash value
computed by the tpm_pcr_read function call is compared with the golden reference value stored on the
temper resistant storage. In Figure 9, the reference hash is not equal to the computed hash, therefore
the boot process halts and results in jumping to the fallback process. In the fallback process, the device
is only capable of bare-metal functionality with limited networking capabilities to mitigate the impact
of the compromised device over the network.
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6. Security Analysis

Reconfigurable computing is becoming ubiquitous combined in the IoT devices that embedded
devices with long life cycles. The primary goal of SFSBL framework is to enable security features to
establish secure boot and TPM based over the air secure hardware configuration updates on the field
to enable these devices to evolve and update with the change in device requirements, such as security
patches. In this section, we discuss the security properties of the proposed framework.

• Digital certificates are used for the identification of the server and participating nodes.
The certificates are shared before deployment by the trusted authority and can only be modified by
the trusted facility. Thus, impersonation and data spoofing are not possible in the proposed scheme.

• The encrypted configuration bitstream is packaged with the SHA256 of the encrypted bitstream,
along with the bitstream package signature signed off with the private key of the server.
Any changes in the bitstream will fail the hash comparison and the device will discard the
updates. This prohibits the man in the middle and data spoofing attacks and provides an
authentication mechanism for securely transfer the configuration files.

• The keys are stored on the tamper-resistant storage inside TPM on server and device nodes,
eliminating invasive and probe attacks to break the key. Furthermore, the private keys never leave
the premises, thus mitigates the man in the middle attack.

• The symmetric encryption key is updated on every bitstream. It ensures freshness of encryption
keys as well as mitigates replay attacks. Once the key is used, it is never used again and hence
any repeated keys can be used to identify attacks.

• During the execution, the device cannot be altered, and the keys can be accessed with the hardware
isolation protection of the SPI interface. The TPM interface is only accessed in the secure mode.

7. Conclusions

In this paper, the security extensions of reconfigurable logic-based embedded device are proposed
to enable secure boot processes and the firmware updates to reconfigure the hardware and software to
run on the device in an untrusted field. We have integrated the TPM capabilities at the boot level with
the custom drivers that are integrated at the first stage boot loader to verify the bitstream before the
programmable logic is configured or the software is loaded to identify any malicious modifications
in the device configuration files. The framework integrates the existing security features such as the
trusted execution environment and enables the trusted platform module capabilities with the custom
drivers that interface with the FSBL to implement secure boot process. We demonstrate the secure boot
and authentication processes for the over the air updates to the firmware in the field.
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