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In 1611 Kepler conjectured that the standard
way of packing unit spheres is actually the dens-
est. In 1993 the International Journal of Mathe-
matics published a purported proof by Wu-Yi
Hsiang. The incredible features were that the proof
considered only close neighbors (centers within
2.18) and used mainly trigonometry. As far as I
know, there are no counterexamples to the method,
and the first observed mistakes have been repaired;
but Hsiang’s proof has not been generally accepted
by the mathematics community. Thomas Hales,
soon to announce his own proof, published a sharp
criticism in the Mathematical Intelligencer (1994),
soon followed by a rejoinder by Hsiang (1995). The
review by Gábor Fejes Tóth in Mathematical Reviews
provides interesting reading.

Hales submitted his proof to Annals of Mathe-
matics. In his expository article “Cannonballs and
Honeycombs” in the April 2000 Notices, he re-
ported that

a jury of twelve referees has been de-
liberating on the proof since September
1998.

They did have a tough job. It was a momentous re-
sult. After the controversies over Hsiang’s pub-
lished proof, they had to be careful. And it was a

tough body of work
to referee, consist-
ing of six papers, in-
cluding the thesis of
Hales’s Ph.D. stu-
dent Samuel Fergu-
son. The proof in-
volved extensive
computer analysis.
Many cases initially
would have required
more computation
time than the age of
the universe. The
proof had to be con-
tinually modified
and aided by intri-
cate analysis and

geometry. In their paper on “A Formulation of the
Kepler Conjecture”, Ferguson and Hales wrote:

As our investigations progressed, we
found that it was necessary to make
some adjustments. However, we had no
desire to start over, abandoning the re-
sults of “Sphere Packings I” and “Sphere
Packings II.” “A Formulation” gives a
new decomposition of space [but] shows
that all of the main theorems from
“Sphere Packings I” and “Sphere Pack-
ings II” can be easily recovered in this
new context with a few simple lemmas.

After years of effort, the referees gave up. Mean-
while, Hales and the world were waiting for the ref-
erees’ conclusions. Annals finally decided on an un-
precedented course of action: to publish the work
with a disclaimer that the referees had been unable
to verify the proof.
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At the Joint Mathematics Meetings in Baltimore
in January 2003, Hales received the Chauvenet
Prize of the Mathematical Association of America
for his Notices article. In his acceptance speech, he
read from a letter he received from the editors of
the Annals, leaving the impression that they would
be unable to publish his result. According to Hales,
Annals had written:

The news from the referees is bad….
They have not been able to certify the
correctness of the proof, and will not be
able to certify it in the future, because
they have run out of energy…. One can
speculate whether their process would
have converged to a definitive answer
had they had a more clear manuscript
from the beginning, but this does not
matter now. [S]

In the lively discussions after the prize ceremony,
it was apparent that Hales was not at all satisfied
with the Annals’ delays and with its eventual de-
cision to publish the work with a disclaimer.

The Annals then decided to call on another ref-
eree, who got Hales to reorganize his papers into
more readable, checkable mathematics. Annals
now intends to publish without disclaimer a sin-
gle paper with the overall mathematical strategy of
the proof. The entire mathematical proof, in six pa-
pers, is to appear in a special issue of Discrete and
Computational Geometry, edited by some of the ref-
erees. Some of the computer programs and data will
be on an Annals website. Some further revising
and refereeing may occur before the papers are in
final form and accepted, although I think it unlikely
that even all of the mathematics can be checked by
then, never mind the computer programs.

Meanwhile, Hales has launched a worldwide co-
operative project called “Flyspeck” (based on the let-
ters FPK, for “Formal Proof of Kepler”) to produce
a verification of the proof by computer, which
sounds to me orders of magnitude harder than a
check by referees.

The Hexagonal Honeycomb
Shortly after Hales finished his proof of Kepler’s
Conjecture, Denis Weaire recommended to him an
even older problem, the Hexagonal Honeycomb
Conjecture. It says that regular hexagons, as in
Figure 1, provide the least-perimeter way to parti-
tion the plane into unit areas. Widely believed and
often asserted as fact, even by such notables as Her-
mann Weyl [W], it was the longest standing open
problem in mathematics, going back thousands of
years. Around 36 BC, before his death, Marcus Ter-
entius Varro wrote an epistle “On Agriculture” [V]
to his young wife on how to take care of their farm-
ing estate, including honeybees. He gave two

easons for the hexagonal shape in their honey-
combs: first, that a bee has six feet; second,

The geometricians prove that this hexa-
gon inscribed in a circular figure en-
closes the greatest amount of space.

Actually the Greek mathematician Zenodorus (200
BC) probably had considered only hexagons, tri-
angles, and parallelograms [He]. Varro’s knowl-
edge of bees was not perfect. He also observed
that

They follow their king wherever he goes.

The fact that the leader is not a king but a queen
was not discovered until the seventeenth century.

So Weaire recommended the Hexagonal Honey-
comb problem to Hales: “Given its celebrated his-
tory, it seems worth a try.” Hales promptly dispatched
it in under a year. “In contrast with the years of forced
labor that gave the proof of the Kepler Conjecture,
I felt as if I had won a lottery.” (Quotations from the
book under review, Chapter 14).

One major difficulty in proving regular hexagons
optimal is that the result is not true locally. A hexa-
gon is not the least-perimeter way to enclose unit
area; a circle is. Of course you cannot partition the
plane into unit circular regions. Figure 2 shows
the best-known ways to enclose and separate
3 ≤ n ≤ 8 unit areas. For the case n = 7, there is a
hexagon at the center, and larger such clusters
have approximations of regular hexagons near the
center; but for even the largest computed clusters,
a true regular hexagon appears only in an occa-
sional, especially symmetric case, and then only as
the single region at the center.

For a single region, a circle is best, but its fa-
vorable outward convexity would cause adjacent re-
gions to have unfavorable inward concavity, so
such outward convexity should carry a penalty,
and inward concavity a corresponding credit.

Figure 1. Hales’s Hexagonal Honeycomb Conjecture says that
regular hexagons provide the least-perimeter way to partition
the plane into unit areas.
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Hales’s Proof of Kepler’s Conjecture
Just as for the Hexagonal Honeycomb Conjecture,
a major difficulty in proving Kepler’s Conjecture
is that the result is not true locally. The densest way
to pack spheres around one central sphere is mod-
eled on the regular dodecahedron, but such an
arrangement cannot be continued, because do-
decahedra do not tile space.

Hales added local penalties and credits (which
cancel out globally) to produce a new problem for
which the standard packing would even locally
beat the dodecahedral and all other packings. The
appropriate penalties are very hard to find. Simple
convexity and extra faces do not work; for starters,
there is no formula for the average number of
faces of a polyhedral partition of space. Earlier
workers had tried to fix on features of the associ-
ated polyhedral partition into so-called Voronoi
cells. (Each Voronoi cell consists of the set of points
in space closer to the center of one particular
sphere than to the center of any other.) Hales orig-
inally had the idea of using instead features of the
so-called Delaunay triangulation, with vertices at
the centers of the spheres, dual to the Voronoi
decomposition. His main conceptual breakthrough
may have been when he decided to use both.

Unlike for the planar Hexagonal Honeycomb
Conjecture, there were thousands of cases to check,
some too difficult for the computer. As he ad-
vanced to more and more difficult cases, Hales
had to make intricate revisions of the penalties to
get the proof to work. (This makes the proof all the
harder to check.) The set of penalties finally used
was arrived at in collaboration with Ferguson,
whose Ph.D. thesis handled the most difficult case.

So despite similarities, Kepler’s Conjecture on
sphere packing in R3 was orders of magnitude
more difficult than the Hexagonal Honeycomb Con-
jecture in R2 , mainly because R3 provides so many
more geometric possibilities than R2. But it was eas-
ier in one aspect: it is a packing problem, whereas
the Honeycomb Conjecture is a partitioning prob-
lem. The optimal two-dimensional packing, with six
circles fitting perfectly around every circle, is rel-
atively easy and was proved in 1890 by Thue. (See
Klarreich [K] for a beautiful account.) Packing prob-
lems are in general much easier because you “just”
have to determine where to put the centers of the
circles or spheres. For partitioning problems, you
have to find the shape or shapes of the regions:
hexagons in R2 , still open in R3 . Indeed, in R3 , not
only the shape and arrangement of the regions but
even the existence of a perimeter-minimizing par-
tition are open. In 1887 Lord Kelvin conjectured that
certain relaxed truncated octahedra provide the
best partition of R3 into unit volumes. Kelvin’s
conjecture was disproved in 1994 by D. Weaire and
R. Phelan, who exhibited a better partitioning into

n=3 n=4 n=5

n=6 n=7 n=8

Figure 2. Optimal finite clusters as computed by Cox et al. [C] .

Similarly, polygons with more than six edges can
do better than hexagons, but by Euler the average
number of edges should be six, so that extra edges
should also carry a penalty and fewer edges a
credit. Using such penalties and credits, Hales cre-
ated a new problem in which the regular hexagons
are best locally as well as globally. Because glob-
ally the penalties and credits must all cancel out,
hexagons also solve the original Hexagonal Hon-
eycomb Conjecture.

Here is Hales’s local theorem, penalties and all:

Hexagonal Isoperimetric Inequality [H, Thm. 4].
Let P0 denote the perimeter of a regular hexagon
of unit area. Consider another curvilinear planar
polygon, of N edges, unit area, and perimeter P. For
each edge, let ai denote how much more area is en-
closed than by a straight line with the same end-
points; truncate ai so that −1/2 ≤ ai ≤ 1/2. Then

(1) P/P0 ≥ 1− .5Σai − c(N − 6),

with for example c = .0505/2 4√12 ∼ .013 , with
equality only for the regular hexagon.

Given inequality (1), the idea of the proof of the
Hexagonal Honeycomb Conjecture is to sum over
all hexagons and let the penalty terms cancel out.

There are of course some technical difficulties.
There are infinitely many regions. A region need
not be connected. Even the existence of a best par-
tition of the plane was open.

The proof of the inequality (1) involves careful
consideration of maybe a dozen cases and subcases,
depending for example on whether truncation ac-
tually occurred in the definition of ai and on the
size of the penalty terms.
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two different shapes: regular dodecahedra and
tetrakaidecahedra with 12 pentagonal faces and 2
hexagonal faces. Proving the Weaire-Phelan struc-
ture optimal looks perhaps a century beyond
current mathematics to me, but I understand that
Hales is already thinking about it.

Szpiro’s Book
Szpiro’s book Kepler’s Conjecture is a rich account
of both the mathematics and the people involved.
The story begins:

Somewhere toward the end of the
1590s, stocking his ships for yet an-
other expedition, [Sir Walter] Raleigh
asked his sidekick and mathematical
assistant Thomas Harriot to develop a
formula [for the number] of cannon-
balls in a given stack….

This inspired Harriot’s letter to Kepler, and 
Kepler’s Conjecture of 1611 on the densest way to
pack spheres in space. In 1831 Gauss proved the 
result for regular (lattice) packings in a book review.
In 1900, Hilbert included the problem in his famous
list for the coming century. Every character who ap-
pears in the book gets a short biography. In general
these biographies are quite interesting. I must ad-
mit, however, that in some exciting sections I would
get a bit scared that still another character might 
appear and delay the story with yet another little 
biography. The appropriately extensive section on 
Kepler was good, but I thought that the story of his
predecessor Tycho Brahe was more than necessary.
An account of Andrew Odlyzko’s life, including 
a joint paper with Neil Sloane, leads not only to a 
biography of Sloane but also to a biography of his
eccentric and brilliant coauthor John H. Conway, and
then to Conway’s work in group theory and the 
Monster Group, and then to Conway’s other work, 
including the book On Being a Department Head, 
actually by the other, John B. Conway. (Wouldn’t it 
be interesting, though, to see someone as brilliant and
allegedly disorganized as John H. Conway as Prince-
ton department head?)

Incredibly, Szpiro has a lot more related bio-
graphical material at http://www.GeorgeSzpiro.
com (where it belongs, probably along with the
mathematical appendices to the book).

Although Szpiro is a published Ph.D. in mathe-
matical economics, the book has all the virtues
one would find in a book by a scholarly nonmath-
ematician. Lots of detailed mathematics is covered
in a descriptive, interesting, and understandable
way. The book includes the famous controversy be-
tween Gregory and Newton on whether 13 or merely
12 spheres can touch (“kiss”) a fixed central sphere,
finally settled in Newton’s favor (it’s 12) by Schütte
and van der Waerden in 1953. Szpiro adds:

By the way, in 128-dimensional space
there exists a grid that allows 218 bil-
lion balls to kiss one ball in the center.
Quite a crowd, you may say. But if one
doesn’t care much about neatness, there
is a nonlattice arrangement that allows
at least 8,863,556,495,104 balls…. Nei-
ther of these numbers is thought to be
the last word on the subject, however.

Szpiro makes a few amusing gaffes. He reports
that according to Gödel’s Incompleteness Theo-
rem, “Both a statement and its opposite may be true
simultaneously.” He calls nonconvex tiles “con-
cave”. He misrepresents duality as the trivial ob-
servation that minimizing loss is the same as max-
imizing gain. He calls a certain algorithm “the
simplex” instead of “the simplex method”. He says
that with “Lindemann’s proof in 1882 that π is a
trancendental number, it was established that this
number has infinitely many digits,” whereas that
conclusion actually follows from mere irrational-
ity. He mistakenly calls the face-centered-cubic
(FCC) and hexagonal-close-pack (HCP) sphere pack-
ings identical (whereas a correct picture of HCP on
page 23(b) would have the three spheres on top ro-
tated by 60 degrees). Both packings arise from
stacking identical layers modeled on the hexago-
nal honeycomb. There are two choices for placing
each new layer, yielding even among periodic pack-
ings infinitely many essentially equivalent solu-
tions to the sphere packing problem. If you find this
topic interesting, you have Szpiro to thank, not
only for including it in his book, but also for gen-
erously sending me, in response to a draft of this
review, this “one more gaffe”.

On the whole, Kepler’s Conjecture is a wonder-
ful book, chock full of interesting mathematics, bi-
ography, and drama. I enjoyed and learned a lot
from every section, as would, I think, anyone in-
terested in mathematics.
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