
Mikio Sato, a visionary of mathematics ∗

Pierre Schapira

Figure 1: Mikio Sato, around 1972

Like singularities in mathematics and physics, ideas propagate, and the
speed of propagation depends highly on the energy put into promoting them.
From this point of view, it is clear that Sato did not spend a great deal of
time or energy popularizing his ideas. We can hope that his receipt of the
2002/2003 Wolf Prize will help make better known his deep work, which is
perhaps too original to be immediately accepted. Sato does not write a lot,

∗Translation of a paper appearing in “La Gazette des Mathématiciens” 97 (2003) on
the occasion of Sato’s reception of the 2002/2003 Wolf prize
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does not communicate easily and attends very few meetings. But he invented
a new way of doing analysis, “Algebraic Analysis”, and created a school, “the
Kyoto school”.

Born in 19281, Sato became known in mathematics only in 1959-60 with
his theory of hyperfunctions. Indeed, his studies had been seriously disrupted
by the war, particularly by the bombing of Tokyo. After his family home
burned down, he had to work as a coal delivery man and later as a school
teacher. At age 29 he became an assistant at Tokyo University. He studied
mathematics and physics, on his own.

To understand the originality of Sato’s theory of hyperfunctions, one has
to place it in the mathematical landscape of the time. Mathematical Analysis
from the 1950s to the 1970s was under the domination of functional analysis,
marked by the success of the theory of distributions. People were essentially
looking for existence theorems for linear partial differential equations (PDE)
and most of the proofs were reduced to finding “the right functional space”,
to prove some a priori estimate and apply the Hahn-Banach theorem.

It was in this environment that Mikio Sato defined hyperfunctions in
1959-1960 as boundary values of holomorphic functions, a discovery which
allowed him to obtain a position at Tokyo University thanks to the clever
patronage of Professor Iyanaga, an exceptionally open-minded person and
a great friend of French culture. Next, Sato spent two years in the USA,
in Princeton, where he unsuccessfully tried to convince André Weil of the
relevance of his cohomological approach to Analysis.

Sato’s method was radically new, in no way using the notion of limit.
His hyperfunctions are not limits of functions in any sense of the word, and
the space of hyperfunctions has no natural topology other than the trivial
one. For his construction, Sato invented local cohomology in parallel with
Grothendieck. This was truly a revolutionary vision of Analysis.

But, besides its evident originality, Sato’s approach had deep implications
since it naturally led to microlocal analysis, as I will try to explain.

The theory of linear PDE with variable coefficients was at its early begin-
nings in the years 1965–1970 and under the shock of Hans Lewy’s example
which showed that the first order linear equation (−

√
−1∂1 + ∂2 − 2(x1 +

1In 1990, Sato gave an interview to Emmanuel Andronikof who unfortunately passed
away in 1994. I have made use of his notes, which were edited by A. D’Agnolo. I also
have benefitted from the scientific comments of J-B. Bost and A. Chambert-Loir, whom I
warmly thank.
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√
−1x2)∂3)u = v had no solution, even a local solution, in the space of dis-

tributions 2. The fact that an equation had no solution was quite disturbing
at that time. People thought it was a defect of the theory, that the spaces
one had considered were too small to admit the solutions. Of course, often
just the opposite is true and one finds that the occurrence of a cohomologi-
cal obstruction heralds interesting phenomena: the lack of a solution is the
demonstration of some deep and hidden geometrical phenomena. In the case
of the Hans Lewy equation, the hidden geometry is “microlocal” and this
equation is microlocally equivalent to an induced Cauchy-Riemann equation
on a real hypersurface of the complex space.

In Mathematics, as in Physics, in order to treat phenomena in a given
(affine) space, one is naturally led to compute in the dual space. One way, the
most commonly used in Analysis, is the Fourier transform. This transform,
far from being of a local nature, is not easily adapted to calculus on mani-
folds. By contrast, Sato’s method is perfectly suited for this case: you can
complexify a real analytic manifold and, instead of looking at the behavior at
infinity of the Fourier transform, you look “where the boundary values come
from”. In technical terms, one regards the cotangent bundle (more precisely,√
−1-times the cotangent bundle) as the conormal bundle to the real space

in the complex space. This is how Sato defines the analytic wave front set
of hyperfunctions (in particular, of distributions), a closed conic subset of
the cotangent bundle, and he shows that if a hyperfunction u is a solution
of the equation Pu = 0, then its wave front set is contained in the real part
of the characteristic variety of the operator P . This is the starting point of
Microlocal Analysis, invented by Sato, a kind of revolution in Analysis.

Of course, at this time other mathematicians (especially L. Hörmander)
and physicists (e.g., D. Iagolnitzer) had the intuition that the cotangent space
was the natural space for analysis, and in fact this intuition arose much earlier
(in the work of J. Hadamard, F. John and J. Leray, in particular). Indeed,
pseudo-differential operators did exist before the wave front set. But Sato
was the first to make the objects of Analysis, such as distributions, live in
the cotangent space and for that purpose he constructed a key tool of sheaf
theory, the microlocalization functor, that is, the “Fourier-Sato” transform
of the specialization functor. This is also the origin of the microlocal theory

2The slightly simpler equation (∂1 +
√
−1x1∂2)u = v does not have any solution in the

space of germs at the origin of distributions in R
2 either, nor even in the space of germs

of hyperfunctions.
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of sheaves of [3]. In 1973, Sato and his two students, M. Kashiwara and
T. Kawai, published a treatise on the microlocal analysis of PDE. Certainly
this work had a considerable impact, although most analysts didn’t under-
stand a single word. Hörmander and his school then adapted the classical
Fourier transform to these new ideas, leading to the now popular theory of
Fourier-integral operators.

Already in the 1960s, Sato had the intuition of D-module theory, of holo-
nomic systems and of the b-function (the so-called Bernstein-Sato b-function).
He gave a series of talks on these topics at Tokyo University but had to stop
for lack of combatants. His ideas were reconsidered and systematically devel-
oped by Masaki Kashiwara in his 1969 thesis ([1], [2]). As its name indicates,
a D-module is a module over the (sheaf of) ring(s) D of differential operators,
and a module over a ring essentially means “a system of linear equations”
with coefficients in this ring. The task is now to treat (general) systems
of linear PDE. This theory, which also simultaneously apeared in Moscow
in the more algebraic framework developed by Gelfand’s student J. Bern-
stein, quickly had considerable success in several branches of mathematics.
In 1970-1980, Kashiwara obtained almost all the fundamental results of the
theory, in particular those concerned with holonomic modules, such as his
constructibility theorem, his index theorem for holomorphic solutions of holo-
nomic modules, the proof of the rationality of the zeroes of the b-function
and his theory of regular holonomic modules.

The mathematical landscape of 1970–1980 had thus considerably changed.
Not only did one treat equations with variable coefficients, but one treated
systems of such equations and moreover one worked microlocally, that is,
in the cotangent bundle, the phase space of the physicists. But there were
two schools in the world: the C∞ school issueing from classical analysis and
headed by Hörmander, who developed the calculus of Fourier integral op-
erators3, and the analytic school that Sato established, which was almost
nonexistent outside Japan and France.

France was a strategic place to receive Sato’s ideas since they are based
on those of both Jean Leray and Alexandre Grothendieck. Like Leray, Sato
understood that singularities have to be sought in the complex domain, even
for the understanding of real phenomena. Sato’s algebraic analysis is based
on sheaf theory, a theory invented by Leray in 1944 when he was a prisoner of

3Many names should be quoted at this point, in particular those of V. Maslov, and
Yu. Egorov.
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war, clarified by Cartan and made extraordinarily efficient by Grothendieck
and his formalism of derived categories and the six opérations.

Sato, motivated by physics as usual, then tackled the analysis of the S-
matrix in light of microlocal analysis. With his two new students, M. Jimbo
and T. Miwa, he explicitly constructed the solution of the n-points function
of the Ising model in dimension 2 using Schlesinger classical theory of isomon-
odromic deformations of ordinary differential equations. This naturally led
him to the study of KdV-type non-linear equations. In 1981, with his wife
Yasuko Sato, he interpreted the solutions of the KP-hierarchies as points
of an infinite Grasmannian manifold and introduced his famous τ -function.
These results would be applied to other classes of equations and would have
a great impact in Mathematical Physics in the study of integrable systems
and field theory in dimension 2.

In parallel with his work in Analysis and in Mathematical Physics, Sato
obtained remarkable results in group theory and in number theory.

He introduced the theory of “prehomogeneous vector spaces”, that is, of
linear representations of complex reductive groups with a dense orbit. The
important case where the complement of this orbit is a hypersurface gives
good examples of b-functions.

In 1962, Sato also discovered how to deduce the Ramanujan conjecture
on the coefficients of the modular form ∆ from Weil’s conjectures concern-
ing the number of solutions of polynomial equations on finite fields. His
ideas allowed Kuga and Shimura to treat the case of compact quotients of
the Poincaré half-space and it would be necessary to wait another 10 years
for P. Deligne to definitely prove that Weil’s conjectures imply Ramanujan-
Petersson’s conjecture.

While M. Sato and J. Tate share the Wolf prize, they also share a famous
conjecture4 in number theory concerning the repartition of Frobenius angles.
Let P be a degree 3 polynomial with integer coefficients and simple roots.
Hasse has shown that for any prime p which does not divide the discriminant
of P , the number of solutions of the congruence y2 = P (x) (mod p) is like
p− ap, with |ap| ≤ 2

√
p. When writing ap = 2

√
p cos θp with 0 ≤ θp ≤ π, the

Sato-Tate conjecture predicts that these angles θp follow the law (2/π) sin2 θ.
Note that Tate was led to this conjecture by the study of algebraic cycles
and Sato by computing numerical data.

4For recent developments on this conjecture, see [4].
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Sato’s most recent works are essentially unpublished and have been pre-
sented in seminars attended only by a small group of people. They treat an
algebraic approach of non-linear systems of PDE, in particular of holonomic
systems, of which theta functions are examples of solutions!

Looking back, 40 years later, we realize that Sato’s approach to Mathe-
matics is not so different from that of Grothendieck, that Sato did have the
incredible temerity to treat analysis as algebraic geometry and was also able
to build the algebraic and geometric tools adapted to his problems.

His influence on mathematics is, and will remain, considerable.

Figure 2: Mikio Sato and P. Schapira, around 1972
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