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Instituto de Matemática y Estad́ıstica “Prof. Ing. Rafael Laguardia”

Facultad de Ingenieŕıa
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Abstract

Following the techniques used by Loz and Širáň (Australasian Journal
of Combinatorics 41 63-80), we improve some of the best available lower
bounds on the order of graphs with given maximum degree and diameter.
For maximum degree up to 15 and diameter up to 10, a table with the best
values is maintained online by Comellas, Delorme and Loz. Our results
have already been updated in that table.

1 Introduction

The problem of degree/diameter is the study of the maximum number of nodes
N∆,k that a graph with degree at most ∆ and diameter k can have. Except for
the trivial cases ∆ = 1 or 2 and k = 1, the exact value, is known only for seven
values of the pair (∆, k) [8]. Therefore most studies focus on finding upper and
lower bounds, as well as in the asymptotic behavior of these bounds when either
∆ or k tends to infinity.

The topology of a network (telecommunications, microprocessors or comput-
ers) can clearly be modeled by a graph. The construction of large networks is
usually bounded by the degree and diameter of such network. In these contexts
those approximations or solutions for the degree/diameter problem are relevant.

It is easy to see that N∆,k, has as upper bound the following expression:

N∆,k ≤
∆(∆− 1)k − 2

∆− 2
,

known as the Moore bound. Except for the trivial cases ∆ = 1 or 2 and k = 1,
the Moore bound could only be achieved for k = 2 and ∆ ∈ {2, 3, 7, 57}, see
[7, 1, 4]. The existence and uniqueness of graphs that reach the bound for
∆ ∈ {2, 3, 7} is proved in [7]. The case ∆ = 57, is one of the outstanding
open problems in the area. Further work has just led to slight improvements in
Moore’s bound [11].

Regarding lower bounds, these are often found through the explicit construc-
tion of graphs with maximum degree ∆ and diameter k. The best lower bounds
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for ∆ ≤ 16 and k ≤ 10 are maintained by Charles Delorme, Francesc Comellas
and more recently by Eyal Loz [3, 5, 8]. Currently, most of the values in that
table were obtained by using a technique known as voltage graphs. From now
on we will call this table the Table.

1.1 Voltage graphs

The voltage graph technique was first used by Ringel and Young in the proof of
the Headwood conjecture [12]. In the context of the degree/diameter problem,
the technique has been successfully applied by Loz and Širáň improving most
entries in the Table, particularly for large values of ∆ and k. Next we present
a brief description of the technique; refer to [10, 9] for further details.

Let Γ(V,E) be a graph with loops, multi-edges and semi-edges, i.e., edges
with a free extreme. Given a group G we will call voltages assignment on the
graph Γ, to any function α : E → G such that if e ∈ E is a semi-edge, then
α(e) = α(e)−1 and if e is a loop, then α(e) 6= α(e)−1. Finally let us define the
lift of G by α as the graph Γα = (V α, Eα) where:

V α = V ×G = {vg : v ∈ V, g ∈ G},
Eα = {{ug, vgα(e)} : e = {u, v} ∈ E, g ∈ G} ∪

{{ug, ugα(e)} : e semi-edge of u, g ∈ G}.

The graph Γ is called quotient graph of the lift. Note that:

1. The degree of the a vertex vg in the lift Γα is equal to the degree of v in
Γ, where the degree of a loop is two and the degree of a semi-edge is one.

2. The group of automorphism of the lift act transitively on the fibre {v}×G
of G for each v ∈ V .

3. The edges of the lift are simple (not multi-edges) if and only if given two
different parallel edges e and f , then α(e) 6∈ {α(f), α(f)−1}.

4. If |V | = 1 and S = α(E) is the set of assigned voltages, then the lift Γα is
the Cayley graph over G generated by S ∪ S−1.

As in [9], we use semidirect products of cyclic groups. These products have
the form Zm of Zn, where fr : Zm → Aut(Zn) must have the form (f(x))(y) =
xry for certain natural r such that rn ≡ 1 mod m. Specifically, the product of
two elements (a, b) and (c, d) is given by

(a, b)(c, d) = (a+ rbc, b+ d).

This family of groups was successfully applied, before the introduction of the
voltage graphs technique, to generate entries in the Table; see Dineen-Hafner
[6], Comellas-Mitjana and Sampels [13].

Following [9], we use quotients graphs with |V | between one and four.

2 Algorithm and Results

Instead of maximize the order of a graph with maximum degree ∆ and diam-
eter k, our algorithm minimizes the diameter of a ∆-regular graph with given
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order N . In fact, since we know that the minimum possible diameter is k, the
algorithm simply searches for a ∆-regular graph with N vertices and diameter
k.

The implementation of the search, which is available online [2], can be split
into two stages. In the first stage, given a ∆-regular quotient Γ, the target
diameter k and a range of possible values for the group parameters (m,n), the
algorithm performs a preliminary analysis, shown in pseudocode in Figure 1.
This analysis determines the best candidates for r, which are those r such that
〈r〉 = {ri mod m : 1 ≤ i ≤ n} has a maximum cardinality for that m and n.
Next, the tuples (m,n, r) are evaluated as shown in pseudocode in Figure 2. In
order to increase the probability of success, we assess the tuple by computing
the proportion of graphs with diameter equal to k+1, as it serves as an indicator
of the quality the tuple is. Finally the preliminary search sorts the list of tuples
by their evaluation value. Of course, if a graph with diameter k is found, the
search exits there.

The second stage corresponds to the pseudocode in Figure 3, which is a
sequential search on tuples resulting from the previous stage. Notice that the
maximum degree ∆ is implicitly determined by the quotient graph Γ.

Most of the time spent for this search is consumed by the evaluation of
the lift diameter. This operation has order O(∆|Γ|2|mn|). Also search for
values of r that maximizes |〈r〉|, is an expensive operation. In this case, the
evaluation of each value has order O(n) whenever the operation consists of
evaluating ri mod m; since it is made with integer arithmetics, it is not as
heavy as evaluating the lift diameter.

Notice that since rn ≡ 1 mod m, i.e. r is a n-th root of unity in Zm, then
r is coprime with m. Besides, n divides the Carmicheal function λ(m) of m.
Thus, the greatest possible | < r > | is gcd(n, λ(m)). We can find r either by
checking those numbers coprime with m that have order equal to gcd(n, λ(m)) or
by means of the decomposition of (Z×m, ∗) as a direct product of cyclic groups.
Indeed, given the prime factorization

∏
pkii of m, we known that there is an

isomorphism f from (Z×m, ∗) to
⊗

(Z×
p
ki
i

, ∗). Since the group Gi = (Z×
p
ki
i

, ∗) is

cyclic of order |Gi| = ϕ(pkii ), where ϕ is the Euler’s totient function, we can
take a generator gi of Gi, i.e. an element gi such that < gi > = Gi. Then it is
enough to take r =

∏
grii with gcd(n, λ(m)) =

∏
|Gi|ri .

The implementation of the introduced algorithm allowed us to reproduce
some results from [9] as well as to obtain new ones. In particular, for maximum
degree 9 and diameter 5, we found a graph with order 8 268 where the maximum
known graph had 8 200 vertices. The quotient used was a node with four loops
and one semi-edge. The parameters of the group were m = 159, n = 52 and
r = 2, the voltages were (41, 14), (112, 47), (82, 37), (113, 10) for the loops and
(147, 26) for the semi-edge. We also found a graph with maximum degree 6, di-
ameter 9 and order 331 387, for the groupm = 6 763, n = 49, r = 41. In that case
we used the same quotient used in [9], consisting of a vertex with three loops.
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Input: (ma,mb), (na, nb), k target diameter, Γ quotient graph, imax
evaluations count

Output: L group parameter list (m,n, r)
E ← ∅;
for m = ma to mb do

for n = na to nb do
RList← {r : 〈r〉 is maximal};
foreach r ∈ RList do

E ← E ∪ evaluate tuple((m,n, r),Γ, imax, k);
end

end

end
return sort(E)

Figure 1: Pseudocode of the preliminary search.

Input: G = (m,n, r) group parameters, Γ quotient graph, imax
evaluations count, k expected diameter

Output: dga amount of graphs with diameter = k + 1
I ← involutory elements(G);
for i = 1 to imax do

α← random voltage(Γ, G, I);
Γα ← compute lift(Γ, α);
k′ ← diameter(Γα);
if k′ = k + 1 then

dga← dga+ 1;
end

end

Figure 2: Pseudocode of the evaluate tuple routine.

The voltage values in this case were: (1 254, 25), (541, 18) and (4 642, 47). Fi-
nally, we found a graph with diameter 9, order 1 697 688 and diameter 8 using the
group m = 23 579, n = 72, r = 1 413. The quotient was a node with four loops
and one semi-edge, the voltages were: (5 958, 8), (6 086, 27), (22 093, 37), (22 621, 33)
and (2 717, 36) as involutive value for the semi-edge.

All graphs presented are lifts on a quotient graph with a single node, so they
are Cayley graphs as well. Thus, all graphs improve the largest known lower
bound for the degree/diameter problem in the Cayley context, as well as in the
vertex-transitive context.

3 Remarks

At the beginning of our search for graphs that meet the criteria of the problem,
several experiments with identical quotient graph were performed, changing only
the value of r in the group Zm or Zn. Those experiments showed a particular
effect. For certain r, a relatively large set of samples have the same proportion of
graphs which satisfy the constraints of the problem. This leads to the following
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Input: L tuple list (m,n, r), group parameters, Γ quotient graph, imax
evaluations count, k expected diameter

Output: A generated tuples set lifts graphs with expected diameter
A← ∅;
foreach G = (m,n, r) ∈ L do

I ← involutory elements(G);
for i = 1 to imax do

α← random voltage(Γ, G, I);
Γα ← compute lift(Γ, α);
k′ ← diameter(Γα);
if k′ = k then

A← A ∪ (m,n, r);
end

end

end

Figure 3: Sequential search pseudocode.

conjecture: the search space generated by each r hosts different probabilities
of finding viable graphs. Moreover, some of these search spaces seemed to be
equivalent. We next attempt to explain part of the observations by proving a
proposition. First, let us fix some notation.

• Define G(m,n,r)(Γ) as the set of lifts generated by Zm or Zn with quotient
graph Γ.

• Let the set 〈r〉 be the subgroup of (Z∗m, ∗) generated by r, i.e. 〈r〉 =
{ri mod m : 1 ≤ i ≤ n}.

• If 〈s〉 ⊆ 〈r〉, then there exists i to complete s ≡ ri mod m. In that case,
we define the function ψ(a) = ia, which satisfies sa ≡ rψ(a) mod m. We
also define the function φ : Zm os Zn → Zm or Zn, given by φ(a, b) =
(a, ψ(b)) = (a, ib).

Proposition 1. Let m,n, s, r be such that r and s check xn ≡ 1 mod m. If
〈s〉 = 〈r〉, then each graph in G(m,n,s)(Γ) is isomorphic to a graph in G(m,n,r)(Γ).

Proof. Let Γα ∈ G(m,n,s)(Γ); we will find Γβ ∈ G(m,n,r)(Γ) isomorphic to Γα, i.e.

we will find β : EΓ → Zm or Zn and Ψ : V Γα → V Γβ such that Ψ is a graph
isomorphism from Γα to Γβ .

First, we set β and Ψ and then, then we show that Ψ is actually an isomor-
phism. Define β as β(e) = φ(α(e)), where φ(x, y) = (x, iy) and i a natural such
that s ≡ ri mod m. The existence of i is ensured by hypotesis 〈s〉 = 〈r〉. Finally,
let us define Ψ as Ψ(ue) = uβ(e). In order to prove that Ψ is an isomorphism,
we only need to see that Ψ is a bijective homomorphism of graphs.

Ψ is graph homomorphism: suppose that u(a,b) ∼ v(c,d) in Γα, α({u, v}) =

(e, f) and (c, d) = (a, b)(e, f) = (a+ sbe, b+ f), then

c = a+ sb,

d = b+ f.
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We must check that Ψ(u(a,b)) = u(a,ib) and Ψ(v(c,d)) = v(c,id) are adjacent

in Γβ . This is subject to two conditions. First u ∼ v in Γ, which we know
to be true. The second condition to be met is (a, ib)β((u, v)) = (c, id), i.e.
(a, ib)(e, if) = (c, id). Indeed,

(a, ib)(e, if) = (a+ ribe, ib+ if)

= (a+ (ri)be, i(b+ f))

= (a+ sbe, i(b+ f))

= (c, id)

Bijectivity of Ψ: just see that x 7→ ix as function of Zn → Zn is bijective.
This happens if and only if i is invertible as an element of Z∗n. Indeed, as
〈s〉 = 〈r〉, there exists a j such that r ≡ sj mod m, then r ≡ rij mod m, so
1 ≡ ij mod n.

In a series of experiments, we also found that, if 〈s〉 ⊆ 〈r〉 by using the same
voltage assignment α, the diameter of Γαr was less or equal to the diameter of
Γαs in most cases. Hence we consider r such that |〈r〉| were maximum. But this
choice of r does not guarantee a successful search.
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