Stewart's Theorem and Apollonius' Theorem

Lukas Bulwahn

April 20, 2020

Abstract

This entry formalizes the two geometric theorems, Stewart's and Apollonius' theorem. Stewart's Theorem [3] relates the length of a triangle's cevian to the lengths of the triangle's two sides. Apollonius' Theorem [2] is a specialisation of Stewart's theorem, restricting the cevian to be the median. The proof applies the law of cosines, some basic geometric facts about triangles and then simply transforms the terms algebraically to yield the conjectured relation. The formalization in Isabelle can closely follow the informal proofs described in the Wikipedia articles of those two theorems.

Contents

1 Stewart's Theorem and Apollonius' Theorem 1
1.1 Stewart's Theorem 1
1.2 Apollonius' Theorem 2
1 Stewart's Theorem and Apollonius' Theorem

```
theory Stewart-Apollonius
imports
    Triangle.Triangle
begin
```


1.1 Stewart's Theorem

theorem Stewart:
fixes $A B C D$:: ' $a::$ euclidean-space
assumes between $(B, C) D$
assumes $a=\operatorname{dist} B C$
assumes $b=\operatorname{dist} A C$
assumes $c=\operatorname{dist} B A$
assumes $d=\operatorname{dist} A D$
assumes $m=\operatorname{dist} B D$
assumes $n=\operatorname{dist} C D$
shows $b^{2} * m+c^{2} * n=a *\left(d^{2}+m * n\right)$

```
proof (cases)
    assume \(B \neq D \wedge C \neq D\)
    let \(? \vartheta=\) angle \(B D A\)
    let ? \(\vartheta^{\prime}=\) angle \(A D C\)
    from \(\langle B \neq D \wedge C \neq D\rangle\left\langle\right.\) between - -> have \(\cos : \cos ? \vartheta^{\prime}=-\cos ? \vartheta\)
        by (auto simp add: angle-inverse[of \(B C D]\) angle-commute \([o f ~ A ~ D ~ C]) ~\)
    from 〈between - -〉 have \(m+n=a\)
        unfolding \(\langle a=-\rangle\langle m=-\rangle\langle n=-\rangle\)
        by (metis (no-types) between dist-commute)
    have \(c^{2}=m^{2}+d^{2}-2 * d * m * \cos\) ? \(\vartheta\)
        unfolding \(\langle c=-\rangle\langle m=-\rangle\langle d=-\rangle\)
    by (simp add: cosine-law-triangle \([\) of \(B A D]\) dist-commute \([\) of \(D A]\) dist-commute \([\) of
\(D B]\) )
    moreover have \(b^{2}=n^{2}+d^{2}+2 * d * n * \cos ? \vartheta\)
        unfolding \(\langle b=-\rangle\langle n=-\rangle\langle d=-\rangle\)
        by (simp add: cosine-law-triangle[of A C D] cos dist-commute [of D A] dist-commute[of
\(D C]\) )
    ultimately have \(b^{2} * m+c^{2} * n=n * m^{2}+n^{2} * m+(m+n) * d^{2}\) by
algebra
    also have \(\ldots=(m+n) *\left(m * n+d^{2}\right)\) by algebra
    also from \(\langle m+n=a\rangle\) have \(\ldots=a *\left(d^{2}+m * n\right)\) by simp
    finally show ?thesis .
next
    assume \(\neg(B \neq D \wedge C \neq D)\)
    from this assms show ?thesis by (auto simp add: dist-commute)
qed
```

Here is an equivalent formulation that is probably more suitable for further use in other geometry theories in Isabelle.
theorem Stewart':
fixes $A B C D$:: ' $a::$ euclidean-space
assumes between $(B, C) D$
shows $(\text { dist } A C)^{2} * \operatorname{dist} B D+(\operatorname{dist} B A)^{2} * \operatorname{dist} C D=\operatorname{dist} B C *(($ dist A $\left.D)^{2}+\operatorname{dist} B D * \operatorname{dist} C D\right)$
using assms by (auto intro: Stewart)

1.2 Apollonius' Theorem

Apollonius' theorem is a simple specialisation of Stewart's theorem, but historically predated Stewart's theorem by many centuries.

```
lemma Apollonius:
    fixes A B C :: 'a::euclidean-space
    assumes }B\not=
    assumes b = dist A C
    assumes c = dist B A
    assumes d = dist A (midpoint B C)
    assumes m}=\mathrm{ dist B (midpoint B C)
    shows b}\mp@subsup{b}{}{2}+\mp@subsup{c}{}{2}=2*(\mp@subsup{m}{}{2}+\mp@subsup{d}{}{2}
```

```
proof -
    from \(\langle B \neq C\rangle\) have \(m \neq 0\)
        unfolding \(\langle m=-\rangle\) using midpoint-eq-endpoint(1) by fastforce
    have between \((B, C)\) (midpoint \(B C)\)
        by (simp add: between-midpoint)
    moreover have dist \(C(\) midpoint \(B C)=\operatorname{dist} B(\) midpoint \(B C)\)
        by (simp add: dist-midpoint)
    moreover have dist \(B C=2 *\) dist \(B\) (midpoint \(B C\) )
        by (simp add: dist-midpoint)
    moreover note assms(2-5)
    ultimately have \(b^{2} * m+c^{2} * m=(2 * m) *\left(m^{2}+d^{2}\right)\)
        by (auto dest!: Stewart \([\) where \(a=2 * m]\) simp add: power2-eq-square)
    from this have \(m *\left(b^{2}+c^{2}\right)=m *\left(2 *\left(m^{2}+d^{2}\right)\right)\)
        by (simp add: distrib-left semiring-normalization-rules(7))
    from this \(\langle m \neq 0\rangle\) show ?thesis by auto
qed
```

Here is the equivalent formulation that is probably more suitable for further use in other geometry theories in Isabelle.

```
lemma Apollonius':
    fixes A B C :: 'a::euclidean-space
    assumes B}\not=
    shows (dist A C) 2}+(\mathrm{ dist BA)}\mp@subsup{)}{}{2}=2*((\mathrm{ dist B (midpoint B C) )}\mp@subsup{)}{}{2}+(\mathrm{ dist A
(midpoint B C))}\mp@subsup{)}{}{2
using assms by (rule Apollonius) auto
end
```


References

[1] D. B. Surowski. Advanced high-school mathematics, 2011. https: //www.math.ksu.edu/~dbski/writings/further.pdf [Online; accessed 30-July-2017].
[2] Wikipedia. Apollonius' theorem - wikipedia, the free encyclopedia, 2017. https://en.wikipedia.org/w/index.php?title=Apollonius\'_ theorem\&oldid $=790659235$ [Online; accessed 30-July-2017].
[3] Wikipedia. Stewart's theorem - wikipedia, the free encyclopedia, 2017. https://en.wikipedia.org/w/index.php?title=Stewart\'s_ theorem\&oldid $=790777285$ [Online; accessed 30-July-2017].

