The Boubaker polynomials expansion scheme BPES
for solving a standard boundary value problem
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Abstract. In this note, we propose an analytical solution to a nonlinear
second-order boundary value problem using the 4g-Boubaker Polynomials
Expansion Scheme (BPES). The results are plotted, and compared with
exact solutions proposed elsewhere, in order to evaluate accuracy.
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1 Introduction

Nonlinear second-order boundary value equation systems are present in different ap-
plied physics domains like non-linear mechanics [21], fluid dynamics [13], heat diffu-
sion/transfer [10, 16] and applied mathematics analyses [7, 12, 15, 20].

Among the different formulations, the well-known standard second-order boundary
value problem (BVP) is given by F. Geng et al. [9] by the system:

(1.1)
o) f" + a1(§) f + a2() f + as(§)g” + aa(§)g' + as(§)g + Fi (&, [, 9) = u(§)

bo (&) f" + b1 (&) f + b2(§) f + b3(§)g” + ba(§)g" + b5(§)g + F2(&, f, 9) = v(§)
f(f)|§ o= f(¢ )|§ 1 =0
9(§)|§ 0~ 9(& )|§ 1 =0,

IS

where ¢ € [0,1], f and f are {-dependent unknown functions, axl,_; 5, bk|p_y 5
u(§) and v(§) are given absolutely continuous real-valued functions, Fy and F» are
two given nonlinear functions.

In this study, an attempt to give analytical solution to a nonlinear second-order
boundary value equation systems is performed. The used protocol involves, as a main
step, an original polynomial scheme.
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2 Proposed and exact solutions derivation

The resolution protocol is based on the Boubaker polynomials expansion scheme
(BPES) [3, 19, 11, 5, 6, 1, 14, 18, 2, 4, 8]. The first step of this scheme consists
of application of the expressions:

No
(21) FO) = g 30 M X Ban(€ x 1),
k=1
and
1 &
(2.2) 9(§) = N, D X X Bug(& x ).
k=1

where By, are the 4k-order Boubaker polynomials, r; are By, minimal positive roots,
Ny is a prefixed integer, A\ and A} are unknown pondering real coefficients.

The main advantage of these formulations is the fact of verifying the four boundary
conditions, in advance to problem resolution. Due to the properties of the Boubaker
polynomials [19, 1, 2], and since 7 are By, the following conditions stand, for i.e.

Aet1 = _>‘k|k:1..No—1

Flemo = 75 X0 Mo F(©)lemy = 57 by Ak X Bag(re) =0
g(§)|5:0 No ENO Ale> 9(5)|§:1 2N0 ENO A X Bag(rg) =0

The studied example [9] is:

F7(€) +Ef(€) +269(€) + £F2(8) = G(€)

G(&) = 2¢sin(E x ) — 26° — 264 + €2 -2

(2.4) 9'(6) +9(&) +E2f(&) + sin(€)g?(€) = (1 — &) + sin(€ x m)H(€)
H(&) =1+ sin(§)sin(€ x m) + weos(€ x m))

F©)leo = FEler =0, 9Oy = 9(E)ley =0

By introducing the first expressions in the main system, and by majoring and inte-
grating along the interval [0,1], f and ¢g and are confined, through the coefficients
Aklpe1. n, and Ap|._; n , to be weak solutions of the system:

=1..Np =1..No

(2.3)

2&1 Al X My + Zf:’il N, X Py = fol G(€)de = 20-19m

2 T
My = [} (%@Xk) + EBak(§ x Tk)) 3

(2.5)
Pi. = [y (2€Bu( x ri))dé, M =[5 (€2Bun(€ x r1))dé
Py = fo (dB4k S 4 By (€ x Tk)) dg.
The set of solutions Xk‘ and ch is the one which minimizes the global
k=1..No k=1..No
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minimum square function Gjy;g:

The correspondent
solution given by F.

R R 2
Gus = (Zliv:% Ak X My, +ZII€V:01 Ap X P — 201_0%)

+ (00 R M+ e, X x P -

solutions are represented in the Fig.
Geng et al. [9] and A. Saadatmandi et al. [17]:

2
4047
20m :
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1, along with the exact

(2.6) ) =¢-€% g(&) =sin(¢ x )

—— Exact

f{ —— Study

Figure 1: Exact and proposed solutions f and g.

Table 1.
¢ 9(E)resjo] | F(E)Rer. 21 | 9(§)BPES | f(§)BPES | Err. (8) | Err.(f)
0.00 0.00 0.00 0.00 0.00589 — —

0.05556 0.17365 0.00868 0.05247 0.17169 0.05343 | 1.12531
0.11111 0.34202 0.0171 0.09877 0.33502 0.09877 | 2.04668
0.17778 0.52992 0.0265 0.14617 0.52319 0.1459 | 1.26982
0.24444 0.69466 0.03473 0.18469 0.68874 0.18416 | 0.85249
0.31111 0.82904 0.04145 0.21432 0.82439 0.21357 | 0.56005
0.37778 0.92718 0.04636 0.23506 0.92418 0.23416 | 0.32368
0.44444 0.98481 0.04924 0.24691 0.9837 0.24593 | 0.11252
0.51111 0.99939 0.04997 0.24988 1.00026 0.24888 | 0.08647
0.57778 0.9703 0.04851 0.24395 0.97307 0.24303 | 0.28607
0.64444 0.89879 0.04494 0.22914 0.90325 0.22836 | 0.49545
0.71111 0.78801 0.0394 0.20543 0.7938 0.20487 | 0.73438
0.77778 0.64279 0.03214 0.17284 0.64945 0.17253 | 1.03607
0.84444 0.46947 0.02347 0.13136 0.47647 0.13133 | 1.48998
0.91111 0.27564 0.01378 0.08099 0.28242 0.08124 | 2.46017
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3 Results and discussions

The results show a good agreement between the exact and the proposed solutions
(Fig. 1) since the mean absolute error is less than 2.5 perc. (see Table 1). On the
other hand, the absolute errors values are not far from those recently published for
similar equations, by A. Saadatmandi et al. [17]. This means that it is possible to
obtain analytical solutions even when an exact one seems not to be obtainable.

4 Conclusion

This work proposes an analytical solution to well known applied-physics-related
Klein-Gordon equation. A given example gives good fundaments to the performed
Boubaker Polynomials Expansion Scheme (BPES), particularly when exact solutions
expressions are difficult to establish.
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