
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3027839, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2020.Doi Number

Contaminated facade identification using
convolutional neural network and image
processing

Jiseok Lee1, Jooyoung Hong2, Garam Park1, Hwa Soo Kim3, (Member IEEE), Sungon Lee4, #,
(Member IEEE), TaeWon Seo1, #, (Senior Member, IEEE)

1School of Mechanical Engineering, Hanyang University, Seoul 04763, Korea
2School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, Korea
3School of Mechanical System Engineering, Kyounggi University, Suwon 16227, Korea
4School of Electrical Engineering, Hanyang University, ERICA 15588, Korea

Corresponding authors: TaeWon Seo (e-mail: taewonseo@hanyang.ac.kr), Sungon Lee (e-mail: sungon@hanyang.ac.kr)

This research was supported by a National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT for the First-Mover Program

for Accelerating Disruptive Technology Development [(NRF-2018M3C1B9088328 (2018M3C1B9088331, 2018M3C1B9088332)] and partly supported by
Hanyang University (HY-2019).

ABSTRACT In recent years, as number of new building getting larger, there has been an increased interest

in the cleaning of exterior walls. Accordingly, there is a growing interest in automatic cleaning robots that

move around the outer building façade. These robots are also required to apply different cleaning methods to

remove various contaminants on the outer wall of the building. However, current surface contaminant

detection systems can either detect only a single type of contaminant, or are not compact enough for

installation on mobile platforms that move around the outer façade. As cleaning workers are able to

distinguish various contaminants with the naked eye, we aim to solve this problem by developing a machine-

vision system using convolutional neural networks (CNNs) and image processing methods. As it is a compact

system that uses only a camera to take pictures and a processor to process the images, it is suitable for

applications involving mobile platforms. Object-type contaminants such as avian feces are handled by the

YOLOv3 module using the object-detection algorithm. Area-type contaminants such as rusty stains are

processed using the color-detection module using the HSV color space, median filter, and flood fill algorithm.

Particle-type contaminants such as dust are handled by the grayscale module, converting images to grayscale

images and then comparing the average brightness with a reference that is provided in advance. This proposed

machine vision system will detect objects, areas, and particle-type contaminants with a single image and

some reference images provided in advance.

INDEX TERMS Contaminant detection, Convolutional neural network, Façade cleaning, Image processing

I. INTRODUCTION

In recent years, with the increase in the number of cases

involving environmental pollutants such as sand dust or fine

dust, the outer walls of buildings have tended to accumulate

more dirt. [1] Accordingly, the market demand for solutions to

clean these outer walls has increased. However, the work

environment of the workers contracted to clean exterior walls

of buildings is extremely dangerous, and requires them to be

suspended on a rope during cleaning.

Therefore, many researchers have developed outer wall

cleaning robots that replace the humans who perform this task

manually [2,3,4,5,6,7]. Equipping these cleaning robots with

systems that detect contaminants on outer walls will enable

them to perform a greater variety of tasks. If the number and

type of various contaminants in the cleaning area are detected

in real time, it is possible to automatically spray the cleaning

liquid that corresponds to the pollutant, and more efficient

cleaning can be performed by varying the force of the brush

depending on the kind of contamination. It can also be used

to keep the exterior wall clean by transmitting the current

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3027839, IEEE Access

VOLUME XX, 2017 9

contamination status information of the building exterior to the

building's management system.

In order to make such a contaminant detection system, we

have looked for surface contamination detection methods. The

contamination detector should be compact enough to fit on the

robot, and be able to detect all types of contaminants (dust, dirt,

birds, etc.) on the outside wall at the same time. A method of

detecting liquid contaminant by irradiating an IR ray onto a

surface and analyzing the reflected light can [8] get high

accuracy in liquid detection. However, the contaminants on

the outer wall of the building are not only liquid. It is difficult

to use because the measurement results may various. There is

also a surface contamination detection method using Mini

Raman Lidar. [9] However, there is a problem that the system

is too large to be applied to a mobile platform moving on the

building façade

The purpose of this study is detecting the various types of

contaminants in building façade such as avian feces, rusty

stains, and dusts in a straight process in framework. Inspiring

from that workers cleaning the outer walls of buildings detect

these contaminants only by 'naked eye', we used machine

vision to solve the problem.

We propose simple framework using various modules of

common conventional image processing methods, setting a

straight processing framework to detect various contaminants

at once, modifying each method as little as possible. This

method allows the framework to use the various basic image

processing & some NN based methods easily, in a practical

way.

In this study, the contamination factors of outer wall are

largely divided into three types: Object-type, Area-type and

Particle-type. We selected each type’s detection method and

merged into single sequential process to detect all types of

contaminant at single image. An object-type contaminant is a

contaminant whose size and shape are so irregular that it is

difficult to cope with the image processing algorithm. Area-

type contaminants are contaminants separated by areas of

similar color, such as rust stain. Finally, Particle-type

contaminants are the remaining contaminants except for the

two contaminant types, usually dust and thin oil.

First, the YOLOv3 module detects the object-type

contaminant using CNN. The color detection module detects

Area-type using the HSV color space for the remaining part

except for the detected area. Finally, except for all the detected

areas, the grayscale module detects the amount of

contaminants accumulated by using the difference in average

brightness between the wall surface and the wall surface. Then,

the system parameters of the system were robustly optimized

according to user conditions through the Taguchi method. [23,

24, 25]

The paper is composed as follows. Section 2 introduces the

overall algorithm. The overall system structure, the order of

operations of each module, and the brief roles are described.

Section 3 describes the role and details of the YOLOv3

module for detecting object-type contaminants. The use of the

YOLO v3 algorithm, and the organization and validation of

training data sets, will be discussed. Section 4 describes the

role and details of the color detection module for detecting

area-type contaminants. A detection method using HSV color

space, color detecting, median filter, and flood fill is described.

Section 5 describes a grayscale module that detects particle-

type contaminants. This section explains how to convert

images to grayscale used in this module, and indirect particle

detection. Section 6 describes the system variable robust

optimal design using the Taguchi method for the detection

system. Section 7 describes the results of the overall

performance test of the detection system. We discuss the result

of experiment and framework itself in Section 8.

II. DETECTION METHOD OVERVIEW

Three modules inside the system process the images

sequentially, and the results of each module can be seen in

Figure 1. The YOLOv3 module detects the object-type

contaminant and calculates the object type, quantity, and

detection box. The type and quantity of the object are

FIGURE 1. Contamination detection system overview diagram. Solid line is output, and dotted line is images provided in advance. (a) is the
original image, (b) is result after pass through the YOLOv3 module, (c) is result after pass through the color detection module, (d) is converted
image inside the grayscale module. (e) is predefined area and background sample images, (f) is redefined clean background sample image.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3027839, IEEE Access

VOLUME XX, 2017 9

transmitted to the outside as the contamination info of the

corresponding type, and the detection box information is

transmitted to the next module so that the calculation is not

performed on the already detected area of the contaminant.

Next, color detection module detects the area-type

contaminant and calculates the type, width and detection box.

At this time, the inside of the detection box transmitted from

the previous module is not examined. The type and section of

the detected contaminant are transmitted to the outside as the

contamination info of the corresponding type, and the

detection box is sent to the next module for not to calculate

again. Finally, the Grayscale transforms the image to

grayscale for the remaining area. After calculating the average

brightness of the transformed region, calculate the difference

from the average brightness of the reference image without

contaminant, and then transmit it to the outside as particle-type

contamination info.

III. OBJECT-TYPE CONTAMINANT DETECTION

The YOLOv3 module is a module that has YOLOv3 [20]

object detection algorithm inside. When the photographed

image arrives, it passes through the internal DNN to extract

the type, number, and detection box information of the

previously learned object. In this case, information on the type

and number is transmitted to the outside as Object-type

contamination info, and the information of Object-type

detection boxes is transmitted to the next module to prevent

another module from calculating same contaminant again.

In recent years, Artificial Neural Network and CNN

(Convolutional Neural Network) have developed rapidly, and

now have the better ability to classify objects than human. [10]

There are also many applications like detect rail defects [11],

detect cracks in asphalt roads [12], cracks in concrete [13] and

tile degradation [14]. There are two major methods that can be

used: object detection and semantic segmentation. Both

methods are powerful enough to get various information in

façade. For application in object detection, it can detect cracks

by YOLOv2 which is object detection network structure [15].

For application in semantic segmentation, it can segment

many façade objects efficiently [16, 17]. Hyperspectral image

classification also can be used [37, 38]

In this study, we used object detection method to detect

object-type contaminants. As this system will be installed in

façade cleaning robot, the robot cannot pick and clean only the

local parts like humans. Instead, it cleans the whole surface at

once. Cleaning robots can only use the information that how

many object-type contaminations in the region of interest. As

segmenting the detected object by pixels is not required, we

select the object detection algorithms.

Among the object detection algorithms using CNN such as

Faster R-CNN [18], SSD [19], YOLO [20], in this paper, we

choose YOLOv3 [21], which has a relatively low accuracy but

a relatively fast processing speed. Because we thought that

there would be heat and power problems to install a high-

power, high-performance processor such as a GPU under the

FIGURE 3. Used avian feces data set for training YOLOv3 module. (a) is
original artificial avian feces image, (b) is a random background image

to be composited, (c) is composited training set image.

FIGURE 4. YOLOv3 module training results. Iteration 1000 selected.

37.0

65.8

46.6

81.3

86.8

96.5

62.2

88.4

51.0

2.5

40.2

24.8 27.8

10.7
2.9

54.0

18.9

0.1

40.2

26.2
35.9

36.5

59.9

47.0

75.2

93.4 93.1

78.5

93.8
93.0

82.6
94.3 92.3 96.2

77.2 78.6

97.1 95.0 95.0
89.2

94.0 92.5

0

20

40

60

80

100

120

500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

m
A
P

training iteration

mAP plot with IoU thresh 0.5 specimens

training set

FIGURE 2. Each step image of YOLOv3 module process. (a) is original
image. (b) is raw object detection boxes after pass through CNN. (c) is
merged boxes through NMS algorithm, yellow number above is
confidence level. (d) is final detection box after filtering the box with
confidence threshold.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3027839, IEEE Access

VOLUME XX, 2017 9

condition of an outer wall cleaning robot. If GPU is installed

though, get faster processing speed is more important issue.

A. YOLOv3 ALGORITHM

As you can see in Figure 2, there are two parameters inside

the module: NMS Threshold and Confidence Threshold. The

NMS threshold is used in the Non Maximum Suppression

Algorithm (NMS) [26], which makes several detection boxes

in a single object after passing through a Neural Network.

During the NMS process, we remove other boxes with IoU [27]

values below this threshold. Confidence Threshold removes

detection boxes whose Confidence level is below a certain

value determined in YOLOv3, and filters out object boxes that

are detected incorrectly.

B. TRAINING

In this study, avian feces was selected as object-type

contaminant, and both learning and verification were

performed using artificial avian feces. We used clay soil,

white paint mixed with water to make artificial avian feces.

As a background, acryl covered with concrete-patterned

interior film was used. We trained Neural network inside

YOLOv3 with 1306 training sets, 100 test sets, and 200

validation sets. 250 artificial avian feces made of white paint

and clay were made on concrete patterned interior film, and

2000 photographs were taken from 8 directions. For data

augmentation, After removing the background of 1606

photographs except for 396 defective photographs, the

images were resized with arbitrary positions and sizes. Then

composited with random wallpaper photos. Images used in

training process can be seen in Figure 3, The network

structure adopted from the basic structure of YOLOv3, and

the transfer learning [25] method is used in the training

process, using pre-trained model (darknet53.conv.74). As

shown in Figure 4, we selected the 1000th iteration weights

with the highest mAP(mean Average Precision) to

specimens used in parameter optimization at Section 7. [35]

Result of 1000th iteration weights on 200 test sets can be seen

in Table 1

IV. AREA-TYPE CONTAMINANT DETECTION

The color detection module extracts a region of a specific

color in the image. we select HSV as the color space to be used

in this paper [28]. At this time, the color information and the

area of the extracted region are primarily transmitted to the

area-type contaminant info on the outside, and the detection

box is created secondarily to the next module so that the

contaminated area is not processed again.

Inside the color detection module, a background area and a

color area sample are used as an input, and a hue range and a

saturation threshold are calculated. A hue range and a

saturation threshold is used to extract a color area using HSV

color space. Figure 5 shows the process of detecting colors.

First, an image with RGB color space is converted to HSV

color space. In this case, H (0-255 Hue) represents the

direction in the color circle, S (0-255 Saturation) represents the

saturation of the corresponding color, and V (0-255 Value)

represents the brightness. Then, a Hue depth map is created by

mapping the H value using a predefined hue range for a pixel

having an S value equal to or greater than the predefined

saturation threshold. In this case, the saturation threshold and

hue range information are automatically determined by using

the histogram by receiving the sample image of the

background and color area. Since the median filter is used

during the process, the system parameter: median filter size is

used, and the parameter hue margin gives a margin to both

FIGURE 5. Each step image of Color detection module process. (a) is image with object detection box from module before. (b) is split hue channel
from original image. (c) is hue depth map. (d) is median blurred hue depth map. (e) is flag map made by subsampling and median filtering the hue
depth map. (f) is final detection boxes.

TABLE I

RESULT OF TRAINING IMPLEMENTATION

Class number 1 Avian Feces

CPU used Intel i5-9400F

GPU used RTX 2080

precision 0.92 IoU thresh=0.25

recall 0.94 IoU thresh=0.25

F1-score 0.93 IoU thresh=0.25

AP 0.95
IoU thresh=0.5

Area-Under-Curve for

unique Recall

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3027839, IEEE Access

VOLUME XX, 2017 9

sides of the defined hue range since it may look slightly

different from the hue range sampled by the camera noise.

Next, we perform median blur and down sampling to

remove the noise of the hue depth map and reduce the size of

the photograph to speed up the flood fill process. The size of

the median filter used during this process is the same as the

size of the median filter used in the previous sample images,

and the sampling interval of down sampling is the parameter-

down sampling size. First, the area having depth values greater

than 0 in the flag map is transmitted as Area-type contaminant

info. Secondly, we wrap the area in the form of a detection box

using the flood fill algorithm on the flag map and send it to the

next module so that the contaminant is not processed again for

the area already detected. During this process, the inside of the

object-type detection box from the previous YOLOv3 module

is not detected.

A. MAPPING HUE VALUE

First, the Color detection module converts the image into

HSV color space and separate the Hue channel and Saturation

channel. As Figure 5-(a) ~ (d) shows, the saturation values

above the saturation threshold are mapped into the value

between 0-127 integer, saved as Hue depth map. the maximum

value is 127 because the depth is stored in the second to eighth

bits as the first bit is used as the flag bit during the flood fill

process for an unsigned 8-bit storage per pixel. As shown in

Figure 6, Hue range consists of upper limit value, center value,

and lower limit value. Since hue value is expressed as an

integer between 0 and 255, it is a cyclic value. So, the center

value or lower limit can be higher than the upper limit value.

In this case, we calculated where the value ‘0’. when the value

less than 0 is changed to 255, we add -255 and compare the

result. After mapping, if the value is negative, add 255 to get

original value. After mapping the Hue value through the hue

range, map the value to range of 0-127 and uses it as the hue

depth in the Hue depth map. The larger the Hue depth, the

closer the color we want to extract.

B. DOWN SAMPLING WITH MEDIAN FILTER

After get Hue depth map, we use the Median filter to

smooth out the area and reduce the camera noise. The median

filter is a nonlinear filter that replaces the value of the pixel to

median of the values of surrounding pixels. And it is effective

for reducing salt-pepper noise. [29] However, there is a

disadvantage that the processing time is longer among the

image noise canceling filters such as Gaussian filter [30] and

Bilateral filter [31]. Bigger the Median filter size, more the

image noise reduced, but processing time increases. The

length of one side of the median filter was selected as a system

parameter: Median filter size. In the process of creating a

detection box through the flood fill, larger the number of

pixels in the image, longer the time takes. In this paper, we

tried to increase the processing speed by reducing the

resolution of images through sub sampling. A noise filter and

a sub sampling were performed at the same time by applying

the Median Filter to the center of the square of a certain size.

If the sampling interval is too narrow, the number of total

pixels does not reducing well. If the interval is too wide, the

number of pixels will be reduced but the accuracy of the

detection box will be reduced also. Though the length of one

side of the sub sampling square was selected as a system

parameter: Sub sampling size. Through the above sub-

sampling process, we remove the noise of the Hue depth map

and reduce the resolution of the image to generate the flag map

that can calculate the extracted area-type contaminant section.

This process can be seen in Figure 5, (d) ~ (e).

C. DETECTION BOX BY FLOOD-FILL ALGORITHM

The Flag map generated in the previous step shows the area

of the specific color we were looking for in this module. The

ratio of the detected color-area to the entire screen can be

calculated by the ratio of the total number of pixels in the flag

map and the number of pixels whose hue depth value is not 0.

Also, in this study, the Flood fill algorithm using Queue was

used to wrap the non-zero pixel set in the flag map with the

detection box. The larger the size of the flag map, the better

the resolution, but the slower the process.

Figure 7 shows the process of creating a detection box

with the Flood fill algorithm. The depth value of one pixel of

the flag map is consists of 8 bits: 1 bit used as flag

information and the remaining 7 bits representing the hue

depth of the pixel. If the flag value is 0, the pixel is not

wrapped in the detection box. If the flag value is 1, the pixel

is processed. In addition, the remaining 7-bit unsigned

integer value represents hue depth in the range of 0 to 127.

The detailed operation of the flood fill algorithm is as

follows. It starts at the beginning of the flag map and

proceeds until it comes to pixels with depth values between

0 and 127. When it finds that pixel, it stops and starts flood

filling. It checks the depth value of neighboring pixels, and

if the depth is between 0 and 127, it keeps checking the

neighboring pixels of neighboring pixels. When checking for

new neighboring pixels, it increases the size of the detection

box according to the direction. if all neighboring pixels of

FIGURE 6. Each step image of Color detection module process. (a) is
image with object detection box from module before. (b) is split hue
channel from original image. (c) is hue depth map. (d) is median blurred
hue depth map. (e) is flag map made by subsampling and median
filtering the hue depth map. (f) is final detection boxes.

Lower limitUpper limit Center

Depth

Hue Value

127

0

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3027839, IEEE Access

VOLUME XX, 2017 9

certain pixel in the four directions is inspected, changed the

flag value to 1 so that the inspected pixel is not checked again.

When all neighboring pixels have been inspected, the

detection box is saved and then moved forward. If another

detection box is encountered before encountering a pixel

with the appropriate depth again, it will cross over without

inspecting inside that box. This process is repeated until the

end of the flag map is reached to obtain detection boxes. Also,

in Figure 5, the actual results can be confirmed by the

pictures (e) to (f). Also, sudo code of the algorithm used in

this paper is shown in appendix.

D. HUE RANGE & SATURATION THERSHOLD
DETERMINATION

Before creating the hue depth map by converting the image

input to the color detection module into the HSV color space,

we will determine hue range having the color we are looking

for with an S value above the saturation threshold. A standard

for this is needed. Since the hue value depends on the color

you are looking for, you need to redefine the hue range if you

want to extract a new color as you set a hue range that selects

only one specific color. Therefore, before starting to detect the

exterior wall, the module provides a background and color

area sample that are prepared in advance so that the optimum

hue range and saturation threshold can be found automatically.

This makes it possible to automatically determine parameters

even if the background changes or the color to be extracted is

changing.

The process of automatically determining the hue range

and saturation threshold using the background and color area

samples is as follows. First, convert each sample image to

HSV color space, and then remove the camera noise by using

Median filter on Hue and Saturation channels. After that, the

values of the Hue channel of the color area sample picture

are sorted in ascending order, and then the lower 5% and the

upper 5% are become both end values, and the average

become center value. Create a hue range based on these three

values, but when shooting different images on a real camera,

colors may appear slightly different, so expand the range of

hue ranges by the certain value to create a new hue range and

set that value as a system parameter: hue margin. Next,

calculate histograms for the saturation values of the

background and colored area samples to calculate the

saturation threshold. Then find the saturation threshold

values that cover all possible saturation distributions on the

colored area but not the background saturation distributions.

First, get the highest saturation value of the background and

the top 5% saturation value. Then, get the lowest saturation

value and the lowest 5% saturation value from color area.

Then set the saturation threshold in the middle of the other

nearest saturation value without exceeding the lower 5%

saturation value in the color area. If the saturation value of

the lower 5% of the color area is lower than the saturation

value of the upper 5% of the background, the latter value is

set as the threshold. Even if both the background and the

colored area are passed at the saturation threshold, pixels that

do not have an H value in the hue range will eventually

change to zero during the process of creating the hue depth

map. Therefore, the goal is to create a threshold that can be

distinguished as much as possible. Figure 8 shows the

FIGURE 7. Procedure of make detection boxes with flood fill. The original depth map is shown in left image. First, Searching pixel that has proper
depth. Set flag to 1 and searching other neighbor pixels until all connected pixels get into the detection box. Searching proper pixel again, make

another detection box , doing the same procedure. End the procedure when reached end of the Flag map.

FIGURE 8. Automatically determine saturation threshold and hue range. Each right images are sample images. (a) is histogram of saturation in
colored area samples, (b) is histogram of saturation in background samples, (c) is histogram of hue value in colored area samples.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3027839, IEEE Access

VOLUME XX, 2017 9

histogram and sample image used in this process.

V. PARTICLE-TYPE CONTAMINATION DETECTION

The grayscale module converts the photo to a grayscale

image using a specific color space and then calculates how

dark the image is using the overall difference in average

brightness value from the reference. Assuming that the degree

of darkening of the image is proportional to the degree of

particle-type contaminant accumulation. The calculated

difference is transmitted externally as Particle-type

contaminant info. As shown in Figure 9, the calculations are

performed for the remaining areas except for the detection box

sent in the previous module, to prevent contamination of the

average brightness value by other types of contaminant.

A. COLOR-TO-GRAYSCALE CONVERSION METHOD

There are many ways to convert an image to grayscale, but

in this paper, the most representative grayscale conversion

methods, V (Value) of HSV color space, Y (Luminance) of

YUV color space, and L (Lightness) of CIE L * a * b, are

considered. The HSV color space is very intuitive for humans,

and the V value represents the brightness of the color. The

YUV color space was developed in the black-and-white

television era. the Y(luma) value represents the luminance.

YUV is divided into YCrCb and YPrPb according to the

transmission method, In this study, we used ITU-R BT.601

standard. Finally, the CIE L * a * b color space has a

perceptually uniform color distance, and L represents lightness.

Each value of RGB used in this paper is expressed as an

integer between 0 and 255. The method of converting the RGB

color space to the V value of the HSV color space is as follows:

[32]

𝑉 = 𝑀𝑎𝑥(𝑅, 𝐺, 𝐵) (1)

The RGB to YUV(YCbCr) color space conversion method

used in this paper is as follows. [33]

𝑌 = 0.257𝑅 + 0.504𝐺 + 0.098𝐵 (2)

The conversion method of RGB to L value in CIE L * a * b

color space is as follows. [34] First convert the RGB color

space to the CIE XYZ color space.

𝑋 = 0.4303𝑅 + 0.3416𝐺 + 0.1784𝐵 (3)

𝑌 = 0.2219𝑅 + 0.7068𝐺 + 0.0713𝐵 (4)

𝑋 = 0.0202𝑅 + 0.1296𝐺 + 0.9393𝐵 (5)

Next, convert LAB XYZ to LAB L * a * b color space.

 𝐿 = 116𝑓 (
𝑌

𝑌𝑛
) (6)

𝑓(𝑞) = √𝑞3 𝑓𝑜𝑟 𝑞 > 0.008856 (7)

𝑓(𝑞) = √𝑞3 𝑓𝑜𝑟 𝑞 ≤ 0.008856 (8)

In this case 𝑌𝑛 is derived from CIE XYZ, and the values of

𝑌𝑛 under illuminant U65 with normalization Y=100.

B. BACKGROUND REFERENCE IMAGE

For the grayscale module to work, you need a clean sample

of the outer wall with no contaminants in the same

illumination conditions same as during operation. Details can

be found in Figure 9 (c). We need to convert this sample to

grayscale, calculate the average brightness of the photo, and

make it a brightness reference. This reference needs to be

calculated and stored only once when the system starts. During

operation, the fixed brightness reference value is compared

with the average brightness of the current image and the

outputs the difference as particle-type contaminant info.

Measure how dark the image is by accumulating particle-type

contaminants on the façade. You can see the actual figure in

Figure 9, (c).

VI. PARAMETER DESIGN

The system created in this paper consists of three sequential

modules. The system parameters from each module are shown

in Table 2. We optimized the value of the system parameter

using the Taguchi method like optimize other problems. [22,

23, 24] But in this paper, each module sequentially affects the

next module, but the results of subsequent modules do not

affect the previous module. Therefore, the system parameters

of the YOLOv3 module are optimized first to fix the values.

Next, based on the fixed value, we proceed to optimize the

next module, the color detection module. Finally, fix the

system parameters of the color detection module and optimize

the system parameters of the grayscale module. YOLOv3 and

color detection module were processed by Taguchi method,

and grayscale module was optimized by simple comparison

experiment.

In the Taguchi method, we selected height and brightness

as user conditions and separated them into 2 and 3 levels,

respectively. All specimens used were manufactured by hand.

Specimens should include the 3 contaminant type: avian feces

representing object-type contaminants, rusty stains

FIGURE 9. Each step image of Grayscale module process. (a) is input
image from front module (color detection module). (b) is the reference
image to calculate average brightness in advance. (c) is the selected
section that outside of the detection boxes.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3027839, IEEE Access

VOLUME XX, 2017 9

representing area-type contaminants, and dust representing

particle-type contaminants, and also the background should be

concrete walls. First, the background pasted by interior film

printed with various concrete patterns and textures on a

300mm x 300mm, 2T formax board. Avian feces were made

with white paint and brown clay, and rusty stains were painted

with orange oil spray on the specimen to draw a color area.

Finally, we evenly spread the coffee dust on the board to draw

dust on the specimen surface. Section 2-D, Test bench and

specimen, of this paper[35] shows the test bench used in this

experiment and result section.

The YOLOv3 module used 𝐿9(34) orthogonal arrays in

consideration of two variables and two correlations, and the

color detection module considers 𝐿27(313) orthogonal arrays

in consideration of three variables and three correlations. After

optimization of the previous two modules, the grayscale

module experimented with dividing a system variable into 3

levels with the fixed values, comparing each 3 results to find

best parameter value.

VII. RESULT

A. EVALUATION INDEX

To test the overall detection performance of the system, we

used 144 specimen images used in the optimizing process, and

the results are shown in Table 3. The performance indicators

of each module are as follows: 𝑒𝑟𝑟𝐼𝑜𝑈𝑐 (error of IoU with

Count) for the YOLOv3 module, 𝑒𝑟𝑟𝐼𝑜𝑈𝑎 (error of IoU with

Area) for the color detection module, 𝐵𝑇𝐷𝑆𝐶𝑆 (Brightness-

To-Dust Correlation in current Color Space) for the grayscale

module. A paper conducted optimization on this system, [35]

shows more detailed calculation method of each performance

evaluation indexes.

First, we defined the 𝑒𝑟𝑟𝐼𝑜𝑈𝑐 as the evaluation index of the

YOLOv3 module. Based on the mAP calculation method

introduced in PASCAL VOC [36], we added the relation with

count of detected objects. 𝑒𝑟𝑟𝐼𝑜𝑈𝑐 is a real number from 0-1.

Better the performance, closer the value to 0. We defined the

function measures accuracy of count in object detection,

CAR(Count Accuracy Detection) is as follows:

Only if (𝛼 ≥ 𝛽),

𝐶𝐴𝑅(𝛼 ≥ 𝛽) = (
𝛽

𝛼+𝜀
)

(𝛼−𝛽)/𝛼

, 𝜀 = 2 (9)

CAR value is always between 0 to 1. 𝑇𝐵𝑐 is number of true

bounding boxes. 𝐷𝐵𝑐 is number of the detected bounding

boxes. 𝐶𝐵𝑐 is number of the correct bounding boxes, which is

most accurate bounding box to each of the true bounding box.

Correct bounding box must have at least 0.5 IoU(Intersection

over Union) value with true bounding box. The calculation

method of 𝑒𝑟𝑟𝐼𝑜𝑈𝑐 is as follows :

If (𝐷𝐵𝑐 ≠ 0 and 𝑇𝐵𝑐 ≠ 0)

𝑒𝑟𝑟𝐼𝑜𝑈𝑐 = 1 − IoU × 𝐶𝐴𝑅(𝑇𝐵𝑐 , 𝐶𝐵𝑐) × 𝐶𝐴𝑅(𝐷𝐵𝑐 , 𝐶𝐵𝑐)

Else if(𝐷𝐵𝑐 = 𝑇𝐵𝑐 = 0)

𝑒𝑟𝑟𝐼𝑜𝑈𝑐 = 0

Else if(𝐷𝐵𝑐 = 0 and 𝑇𝐵𝑐 ≥ 1)

𝑒𝑟𝑟𝐼𝑜𝑈𝑐 = 1

Else if(𝐷𝐵𝑐 ≥ 1 and 𝑇𝐵𝑐 = 0)

𝑒𝑟𝑟𝐼𝑜𝑈𝑐 = 1 (10)

Second, we defined the 𝑒𝑟𝑟𝐼𝑜𝑈𝑎 as the evaluation index of

the color detection module. Because the information included

in the area-type contaminant information is the ratio between

the area of the image to the area-type contaminant. 𝑒𝑟𝑟𝐼𝑜𝑈𝑎

is a real number from 0-1. Better the performance, closer the

value to 0. Calculation method is as follows:

𝑇𝐴𝑟(True Area Ratio) =
𝐷𝑝

𝑇𝑝
 (9)

where 𝐷𝑝 is the detected pixel count, and 𝑇𝑝is the total pixel

count of image.

𝐷𝐴𝑟(Detected Area Ratio) =
𝐷𝑓𝑝×𝑀2

𝑇𝐴𝑟
 (10)

where 𝐷𝑓𝑝 is the detected flag map pixel count, and 𝑀 is the

median filter size. We defined function that measures accuracy

of area, AAR(Area Accuracy Ratio). The calculation method

of AAR is as follows:

If (0 < 𝛽 ≤ 2𝛼)

𝐴𝐴𝑅(𝛼, 𝛽) = 1 − |
𝛼−𝛽

𝛼
| (11)

Else

𝐴𝐴𝑅(𝛼, 𝛽) = 0 (12)

AAR value is always between 0 to 1. When α = 𝛽, AAR value

become maximum value 1. As 𝑃𝑡 is processing time of the

color detection module, the calculation method of the

 𝑒𝑟𝑟𝐼𝑜𝑈𝑎 is as follows :

If (𝑃𝑡 < 34𝑚𝑠)

𝑒𝑟𝑟𝐼𝑜𝑈𝑎 = 1 − 𝐼𝑜𝑈 × 𝐴𝐴𝑅(𝑇𝐴𝑟 , 𝐷𝐴𝑟) (12)

Else

𝑒𝑟𝑟𝐼𝑜𝑈𝑎 = 1 (13)

TABLE II
SELECTED SYSTEM VARIABLES

System Parameter YOLOv3 Module Color detection Module Grayscale Module

Parameter NMS Threshold Confidence Threshold Hue margin Median filter size Sub sampling size Color space

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3027839, IEEE Access

VOLUME XX, 2017 9

 Third, we defined the 𝐵𝑇𝐷𝑆𝐶𝑆 as the evaluation index of

the grayscale module. To ensure reliability in the value of the

grayscale module, the results of the grayscale module should

show similar trends depending on the number of particle-type

contaminants. Therefore, when the number of particle-type

contaminants increases constantly, we evaluate whether the

result of the grayscale module also increases constantly.

Therefore, by performing linear regression analysis using the

least-square method for the result, we calculated the 𝐵𝑇𝐷𝑆𝐶𝑆.

𝐵𝑇𝐷𝑆𝐶𝑆 is a real number from 0-1. Better the performance,

closer the value to 1. In the LSM(Least Square Method), the

R-value(coefficient of determination) is calculated as follows:

�̅� =
𝑥1+𝑥2+𝑥3

3
, �̅� =

𝑦1+𝑦3+𝑦3

3
 (14)

 a =
∑ (𝑦𝑖−�̅�)(𝑥𝑖−�̅�)3

𝑖=1

∑(𝑥𝑖−�̅�)2 , 𝑏 = �̅� − 𝑎�̅� (15)

where 𝑥𝑖 = 𝑖 as the specimens dust amount have ratio of 1:2:3,

𝑦𝑖 is the result of grayscale module. Linear regression and R-

value formula is:

 𝑓𝑖 = 𝑎𝑥𝑖 + 𝑏 (16)

𝑅2 = 1 −
∑ (𝑦𝑖−𝑓𝑖)2

𝑖

∑ (𝑦𝑖−�̅�)2
𝑖

 (17)

the 𝐵𝑇𝐷𝐶𝐶𝑆 (Brightness-to-Dust Correlation with specific

Color Space) is as follows:

𝐵𝑇𝐷𝐶𝐶𝑆 =
∑ 𝑅𝑗

2𝑁
𝑗=1

𝑁
 (18)

Where the 𝑅𝑗 is R-value of j-th specimen from dust ratio

1:2:3, CS is the current Color Space used in grayscale

calculation method. N is the total number of specimens

B. SYSTEM PERFORMANCE

The contaminant detection of specimens was performed

using optimized system parameters. Figure 10 and Table 2

shows each modules performance index values. From the final

SNR(Signal to Noise Ratio) in section 7 in paper [35], we can

reverse calculate the root mean square of 𝑒𝑟𝑟𝐼𝑜𝑈𝑐 and

𝑒𝑟𝑟𝐼𝑜𝑈𝑎by formula: √10−𝑆𝑁𝑅/10

Object-type detection shows rms 𝑒𝑟𝑟𝐼𝑜𝑈𝑐 of 0.3133.

𝑒𝑟𝑟𝐼𝑜𝑈𝑐 is calculated with IoU and CAR function, as in

formula (10). we can approximate minimum value of IoU:

As IoU ≥ IoU × 𝐶𝐴𝑅(𝑇𝐵𝑐 , 𝐶𝐵𝑐) × 𝐶𝐴𝑅(𝐷𝐵𝑐 , 𝐶𝐵𝑐)

,(0 ≤ 𝐶𝐴𝑅 ≤ 1)

IoU ≥ 1 − 𝑒𝑟𝑟𝐼𝑜𝑈𝑐 = 1-0.3133 = 0.6867 (19)

area-type detection shows rms 𝑒𝑟𝑟𝐼𝑜𝑈𝑎 of 0.2474.

𝑒𝑟𝑟𝐼𝑜𝑈𝑐 is calculated with IoU and CAR function, as in

formula (12). we can approximate minimum value of IoU:

As IoU ≥ IoU × 𝐴𝐴𝑅(𝑇𝐴𝑟 , 𝐷𝐴𝑟)

,(0 ≤ 𝐶𝐴𝑅 ≤ 1)

IoU ≥ 1 − 𝑒𝑟𝑟𝐼𝑜𝑈𝑐 = 1-0.2474 = 0.7526 (19)

 and finally, particle-type detection shows mean 𝐵𝑇𝐷𝑆𝐶𝑆 of

0.967.

TABLE III
SYSTEM DETECTION ACCURACY RESULT

Object-type (rms) Area-type (rms) Particle-type (mean)

𝑒𝑟𝑟𝐼𝑜𝑈𝑐 𝑒𝑟𝑟𝐼𝑜𝑈𝑎 𝐵𝑇𝐷𝐶𝐶𝑆

0.3133 0.2474 0.967

Minimum IoU Minimum IoU

0.6867 0.7526

FIGURE 10. Detection results. Each of (a), (b), and (c) is a different specimens. In the box, the left image is the original image from the camera, the
right upper image is the color area, and the & background sample for color detection. The right lower image is the brightness reference image for the
grayscale module.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3027839, IEEE Access

VOLUME XX, 2017 9

VIII. DISCUSSION

In this study, we propose the framework that detects the

various contaminant in building façades by using the existing

image processing methods of each type. Framework can

detect each type of contaminants by processing sequentially

with modules of each contaminant types. Existing various

image processing methods were easily used, and each result

can be checked within this framework. When the object

detection module with the existing YOLOv3 algorithm was

properly trained, the following Area-type contaminant

detection module also showed a minimum IoU of 0.75.

Particle-type detection module also showed good prediction

rates for images that passed both modules.

But there’s some limitations for this framework. First, the

form of detection output of previous detection module is

‘box’. In the experiment result, when using the specimen that

object-type contaminant is above the area-type contaminant,

the precision value of area-type detection module dropped

below mean of experiment. This seems to because the current

module processes for the rest of the previous module’s

output section. This is a problem that part to be detected in

the current module are cut, in the process of excluding the

output section of the previous modules. Second, the data set

was not used the real objects. It will be difficult to YOLOv3

network trained using artificial avian feces to respond to real

avian feces. Also rusty stains and dusts are not real. Third,

the effectiveness of the grayscale module. This module is

greatly influenced oy external lighting conditions. It can be

applied in a laboratory environment, where is easy to control

lightings, but hard to outdoor environment, where lighting

conditions cannot be controlled due to sun.

There's some more points need to be improved. There are

limitations that come from machine vision itself in the simple

visible region. For example, if the color of the exterior wall

and the color of the avian feces are similar, or the color of

the rusty stain is similar, the camera has no way of

distinguishing the two. In this case, in addition to object

detection and methods using HSV color space, other

methods are needed. Therefore, by measuring the curvature

of the outer wall in real-time using a point cloud or depth

camera, you can think of sensor fusion with the existing

machine vision [39]. Also, in the case of a particle-type

detector, it must be robust against changes in brightness as it

is a device used outdoors. However, if a mechanical device

for controlling the lighting condition is not accompanied,

severe noise will occur in the measurement result.

We propose the following future work as this: first,

converting the output form of every module from ‘box’ to

‘pixel’. This is expected to increase the probability that the

output section of the current module does not contain the

section to be processed by the next module. To do this, it will

be need to use image segmentation methods as well as object

detection methods. Second, improving the quality and

quantity of data set used for verification. The current data set

is not made by real objects. When applying the results

verified using a dataset drawn with art tools to a real

environment, it will be difficult to expect precise result. The

problem is, it is hard to find exact spot that every avian feces,

rusty stains, dust are arranged on concrete wall. Using each

real image, it is considered to recombine and create a data set

as if were in the desired shape and location. Third is to study

sensor fusion like a vision camera for the results of using

areas other than visible light such as point cloud or depth

camera. Since there is a limit to just looking at the camera,

we expect to be able to supplement a lot using information

about depth.

In summary, using each image processing method, it

showed good detection result. However, there remains a

need to improve the output form of the modules inside the

framework and the quality of the data set.

REFERENCES
[1] Skyscraper, http://www.skyscrapercenter.com/countries,

(retrieved at Jul. 4, 2018)
[2] T. Seo, Y. Jeon, C. Park and J. Kim, “ Survey on Glass And

Façade-Cleaning Robots: Climbing Mechanisms, Cleaning

Methods, and Applications,” International Journal of
Precision Engineering and Manufacturing-Green Technology,

367-376, 2019.
[3] N. Elkmann, M. Lucke, T. Krüger, D. Kunst, and T. Stürze,

“Kinematics, sensors and control of the fully automated facade-

cleaning robot SIRIUSc for the Fraunhofer headquarters
building, Munich.” In Advances In Climbing And Walking

Robots, 169-176, 2007.
[4] E. Gambao and M. Hernando, "Control system for a semi-

automatic facade cleaning robot." Proceedings of the 2006

Inernational Symposium of Automation and Robotics in
Construction, 2006.

[5] W. Wang, B. Tang, H. Zhang, and G. Zong, “Robotic cleaning
system for glass facade of high-rise airport control tower.”

Industrial Robot: An International Journal, 37(5), pp. 469-478,

2010.
[6] O. Tokhi, H. Zhang, J. Zhang, W. Wang, R. Liu, and G. Zong,

“A series of pneumatic glass‐wall cleaning robots for high‐rise
buildings.” Industrial Robot: An International Journal, 2007.

[7] S. H. Moon, D. Hong, S. W. Kim and S. Park, “Building wall

maintenance robot based on built-in guide rail.” In: 2012 IEEE

International Conference on Industrial Technology. IEEE, pp.

498-503, 2012.
[8] R. Harig, R. Braun, C. Dyer, C. Howle and B. Truscott, “Short-

range remote detection of liquid surface contamination by

active imaging fourier transform spectrometry,” Opt. Express,
16 (8), pp. 5708 –5714, 2008.

[9] A. J. Sedlacek III, M. D. Ray, N. S. Higdon and D. A. Richter,
“Short range, non-contact detection of surface contamination

using Raman lidar” Proc. SIPE, 4577, pp. 95-104, 2002.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into
rectifiers: Surpassing human-level performance on imagenet

classification.” arXiv preprint arXiv:1502.01852, 2015.
[11] S. Faghih-Roohi, S. Hajizadeh, A. Núñez, R. Babuska and B.

De Schutter, “Deep convolutional neural networks for detection

of rail surface defects,” 2016 International joint conference on
neural networks (IJCNN), pp. 2584-2589, 2016.

[12] L. Zhang, F. Yang, Y. D. Zhang and Y. J. Zhu, “Road crack
detection using deep convolutional neural network,” 2016

IEEE international conference on image processing (ICIP), pp.

3708-3712, 2016.
[13] Y. J. Cha, W. Choi and O. Buyukozturk “Deep learning‐based

crack damage detection using convolutional neural networks”,
Computer‐Aided Civil and Infrastructure Engineering, 32(5),

pp. 361– 78, 2017.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3027839, IEEE Access

VOLUME XX, 2017 9

[14] P. H., Shih, & K. H. Chi, “A Deep Learning Application for
Detecting Facade Tile Degradation.” In International

Conference on Human Systems Engineering and Design:
Future Trends and Applications, pp. 26-32, 2019

[15] Mandal, Vishal, L. Uong, and Y. Adu-Gyamfi. "Automated

road crack detection using deep convolutional neural networks.”
2018 IEEE International Conference on Big Data (Big Data),

pp. 5212-5215. IEEE, 2018.
[16] LIU, Hantang, et al. “DeepFacade: A Deep Learning Approach

to Facade Parsing with Symmetric Loss”. IEEE Transactions

on Multimedia, 2020.
[17] R. Baumann, J. F. Evers-Senne & M. Strand “ Classification of

3D structures based on an object detection for facade elements
in multiple views during the reconstruction process.” In 2019

IEEE International Conference on Industrial Cyber Physical

Systems (ICPS), pp. 230-235, 2019.

[18] S. Ren, k. He, R. Girshick and J. Sun, "Faster r-cnn: Towards

real-time object detection with region proposal networks,"
Advances in neural information processing systems, pp. 91-99,

2015.

[19] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu
and A. C. Berg, "SSD: Single shot multibox detector,"

European Conference on Computer Vision, pp. 21-37, 2016.
[20] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You only

look once: Unified real-time object detection," Proceedings of

the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 779-788, 2016.

[21] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi,
I. Fischer, Z. Wojna, Y. Song, S. Guadarrama and K. Murphy,

“Speed/accuracy trade-offs for modern convolutional object

detectors,” Proceedings of the IEEE conference on computer
vision and pattern recognition, pp.7310-7311, 2017.

[22] G. S. Peace, Taguchi methods: a hands-on approach. Addison

Wesley Publishing Company, 1993.
[23] J. T. Krishakant, B. Mohit, R. Kumar, “Application of Taguchi

Method for Optimizing Turning Process by the effects of
Machining Parameters.” International Journal of En-gineering

and Advanced Technology (IJEAT), vol. 2, Issue: 1, October,

pp. 263-274, 2012.
[24] J.A. Ghani, I.A. Choudhury, H.H. Hassan, Application of

Taguchi methodin the optimization of end milling, J. Mater.
Process. Tech. 145 (1) 84–92, 2004

[25] S. Pan and Q. Yang, “A survey on transfer learning.”

Knowledge and Data Engineering, IEEE Transactions on
knowledge and data engineering, pp. 1345-1359, 2009.

[26] A. Neubeck and L. Van Gool, “Efficient non-maximum
suppression.” In 18th International Conference on Pattern

Recognition (ICPR'06), vol. 3, pp. 850-855, 2006.

[27] J. Long, E. Shelhamer and T. Darrell, “Fully convolutional
networks for semantic segmentation.," Proceedings of the IEEE

conference on computer vision and pattern recognition, 2015,
pp. 3431-3440.

[28] D. J. Bora, A. K. Gupta, F. A. Khan, “Comparing the

Performance of L*A*B* and HSV Color Spaces with Respect
to Color Image Segmentation.” Int. J. Emerg. Technol. Adv.

Eng. ,5, pp. 192-203, 2015.
[29] R. Srinivas, S. Panda, “Performance analysis of various Filters

for image noise removal in different noise Environment.” Int J

Adv Comput Res ,3, pp. 47-52, 2013.
[30] J. Weickert, Anisotropic diffusion in image processing, vol. 1,

pp. 59-60, Stuttgart: Teubner, 1998.
[31] C. Tomasi and R. Manduchi. “Bilateral filtering for gray and

color images” In Proceedings of the Sixth Internatmal

Conference on Computer Vision, pp. 839-846, 1998.

[32] V. Chernov, J. Alander, and V. Bochko, "Integer-based

accurate conversion between RGB and HSV color spaces."
Computers & Electrical Engineering 46 , pp. 328-337, 2015.

[33] M. Podpora, G. P. Korbas, A. Kawala-Janik, ” YUV vs RGB

– choosing a colourspace for Human-Machine interaction.”
Federated Conf. Comput. Sci. Inform.Syst. 3,pp. 29–34, 2014.

[34] C. Connolly and T. Fleiss, “A study of efficiency and accuracy
in the transformation from RGB to CIELAB color spaces,”

IEEE Trans. Image Process., vol. 6, no. 7, pp. 1046–1048, Jul.
1997.

[35] J. Lee, G. Park, Y. Moon, S. Lee, T. Seo., “Robust design of
detecting contaminants in façade cleaning applications,” IEEE

Access, vol. 8, no. 1, pp. 2869-2884, 2020.

[36] M. Everingham, L. Van Gool, C. K. Williams, J. Winn and A.
Zisserman, “The pascal visual object classes (voc)

challenge.“ International journal of computer vision, 88(2),
303-338, 2010.

[37] F. Luo, L. Zhang, B. Du, & L. Zhang, “Dimensionality

reduction with enhanced hybrid-graph discriminant learning
for hyperspectral image classification.” IEEE Transactions on

Geoscience and Remote Sensing, 2020.

[38] F. Luo, H. Huang, Y. Duan,, J. Liu, & Y. Liao, “ Local
geometric structure feature for dimensionality reduction of

hyperspectral imagery” Remote Sensing, 9(8), 790, 2017.

[39] Y. Tang, L. Li, C. Wang, M. Chen, W. Feng, X. Zou, & K.
Huang. “Real-time detection of surface deformation and strain

in recycled aggregate concrete-filled steel tubular columns via

four-ocular vision.”, Robotics and Computer-Integrated
Manufacturing, 59, pp. 36-46, 2019.

APPENDIX

[1] Color area detection box with flood-fill algorithm.

Detection Box by Flood-fill algorithm

import flag map as FM

import detection boxes array as DB_arr

Point Queue as PQ

FOR (x,y) = (1,1) -> (rows,cols)

 IF (x,y) is already in the detection boxes at DB_arr

 Jump (x,y) to right end of that box

 ENDIF

 IF FM(x,y) > 0

 Put (x,y) to PQ

 prepare a new detection box

 WHILE PQ is not empty

 dequeue fill_point at PQ

 check FM(east,west,north,south of fill_point) > 0

 IF FM(certain direction) > 0

 Put that point to PQ

 Change ‘detected pixel’ flag of that point to ‘true’

 Expand new detection box in that direction

 ENDIF

 ENDWHILE

 Add new detection box to DB_arr

 ENDIF

ENDFOR

