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Abstract

The concept of ‘deformable arm scale’ (completely different from a traditional rigid
arm balance) is theoretically introduced and experimentally validated. The idea is
not intuitive, but is the result of nonlinear equilibrium kinematics of rods inducing
configurational forces, so that deflection of the arms becomes necessary for the equi-
librium, which would be impossible for a rigid system. In particular, the rigid arms of
usual scales are replaced by a flexible elastic lamina, free of sliding in a frictionless and
inclined sliding sleeve, which can reach a unique equilibrium configuration when two
vertical dead loads are applied. Prototypes realized to demonstrate the feasibility of
the system show a high accuracy in the measure of load within a certain range of use.
It is finally shown that the presented results are strongly related to snaking of confined
beams, with implications on locomotion of serpents, plumbing, and smart oil drilling.
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1 Introduction

For millennia the (equal and unequal) arm balance scales have been used, and still are
used (see the overview [1]), to measure weight by exploiting equilibrium of a rigid lever,
so that a deformation of the arms would merely represent an undesired effect. On the
other hand, equilibrium is always satisfied for a spring balance, where the weight measure is
directly linked to deformation and a counterweight is not needed. A new paradigm, based
on exploitation of nonlinear kinematics and configurational mechanics of elastic rods, is
proposed here for a scale with deformable arms, where an inflected equilibrium configuration
can be exploited to measure weight. In a sense, the proposed balance is a sort of combination
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between a rigid arm and a spring balance, because equilibrium and deformation are both
simultaneously exploited. Therefore, the concept introduced here differs completely from
that underlying traditional scale design, so that the proposed device can work with or without
a counterweight.

The ‘elastically deformable arm scale’ is shown on the left of Fig. 1 (photo of prototype 1)
as a realization of the scheme reported on the right of Fig. 1, where an elastic rod (inclined at
an angle α ∈ [0, π/2] with respect to the two vertical dead loads applied at its edges) is free
of sliding in a frictionless sleeve of length l∗. For given loads (P1 and P2), the scale admits an
equilibrium configuration, possible by virtue of the flexural deformation of the arms (would
these be rigid, the equilibrium would be trivially violated). This equilibrium configuration
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Figure 1: (Left) Prototype 1 and (right) scheme of the deformable arm scale. The rod used
in the prototype is made up of a solid polycarbonate elastic lamina of bending stiffness
B=0.20 Nm2 and total length l̄+ l∗=0.98 m with ends subject to dead loads P1=2.03 N and
P2=2.52 N. The lamina can slide into a frictionless sliding sleeve (realized with 8 roller pairs)
of length l∗=0.148 m, inclined at an angle α=60◦ with respect to the vertical direction. The
theoretical value of the length defining the equilibrium configuration is aeq=0.35 m, while
the value measured on the prototype is equal to 0.34 m.

is inherently nonlinear, as it necessarily involves the presence of configurational or ‘Eshelby-
like’ forces [7], but can be derived from stationarity of the total potential energy in a form
suitable for direct calculations. Therefore, the nonlinear equilibrium equations (section 2)
can be exploited to determine a load from the measure of a configurational parameter (the
length aeq). Considerations on the second variation of the total potential energy (section 3),
show that the equilibrium configurations of the scale are unstable, a feature that may enhance
the precision of the load measure and that does not prevent the feasibility of the scale, as
shown through realization of two ‘proof-of-concept prototypes’ (section 4). Furthermore,
a sensitivity analysis and the experiments performed on the prototypes indicate that the
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deformable arm balance works correctly and that can be more performing than traditional
balances in certain load ranges.

It can be finally mentioned that the elastic lamina in the sliding sleeve (realizing the
deformable arm scale) can be viewed as a ‘snake in a frictionless and tight channel’, so that
our results demonstrate that Eshelby-like forces play a fundamental role in the problem of
snaking of a confined elastic rod, with implications on smart oil drilling [2], plumbing, and
reptiles and fish locomotion [3, 4, 5].

2 Flexural equilibrium through Eshelby-like forces

The system shown in Fig. 1 (right) attains equilibrium because two forces exist, tangential
to the sliding sleeve, which can be interpreted as ‘configurational’ (or ‘Eshelby-like’ [7]),
in the sense that they depend on the configuration assumed by the system at equilibrium.
These forces and the equilibrium conditions of the system can be obtained for an inextensible
elastic lamina of bending stiffness B and total length l̄ + l∗ from the first variation of the
total potential energy of the system [6]

V(θ(s), a) =

a∫

0

B

[
θ
′

(s)
]2

2
ds+

l̄+l∗∫

a+l∗

B

[
θ
′

(s)
]2

2
ds− P1



cosα

a∫

0

cos θ(s)ds− sinα

a∫

0

sin θ(s)ds





− P2



− cosα

l̄+l∗∫

a+l∗

cos θ(s)ds+ sinα

l̄+l∗∫

a+l∗

sin θ(s)ds



 ,

(1)

where s ∈
[
0; l̄ + l∗

]
is a curvilinear coordinate, θ(s) is the rotation of the rod’s axis, a and

a+ l∗, are the curvilinear coordinates at which, respectively, the left arm terminates and the
right one initiates, so that θ(s) = 0 for s ∈ [a; a+ l∗]. The parameter a, defining the position
of the rod with respect to the sliding sleeve, is variable, to be adjusted until the equilibrium
configuration is reached.

Considering a small parameter ǫ and taking variations (subscript ‘var ’) of an equilibrium
configuration (subscript ‘eq ’) in the form θ = θeq(s) + ǫθvar(s) and a = aeq + ǫavar, four
compatibility equations are obtained from a Taylor series expansion of the rotation field θ(ŝ)
for ŝ = a and ŝ = a+ l∗, namely (see [8] for details),

θvar(aeq) = −avarθ
′

eq(aeq), θvar(aeq + l∗) = −avarθ
′

eq(aeq + l∗),

θ′var(aeq) = −
1

2
avarθ

′′

eq(aeq), θ′var(aeq + l∗) = −
1

2
avarθ

′′

eq(aeq + l∗).
(2)

Through integration by parts and consideration of the first two compatibility conditions (2)
and the static conditions at the free edges, θ

′

eq(0) = θ
′

eq(l̄ + l∗) = 0, the first variation of the
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total potential energy (1) can be obtained as

δǫV = −

aeq∫

0

[

Bθ
′′

eq − P1

(
cosα sin θeq(s) + sinα cos θeq(s)

)]

θvar(s)ds

−

l̄+l∗∫

aeq+l∗

[

Bθ
′′

eq + P2

(
cosα sin θeq(s) + sinα cos θeq(s)

)]

θvar(s)ds

+

{
B

2

[

θ
′

eq(aeq + l∗)2 − θ
′

eq(aeq)
2

]

− (P1 + P2) cosα

}

avar,

(3)

and imposed to vanish (for every variation in the rotation field θvar(s) and in the length avar)
to obtain the equilibrium configuration. This is governed by:

(i.) the elastica [9] for the two arms of the lamina

Bθ
′′

eq(s)− Pj sin
[
θeq(s)− (−1)jα

]
= 0, (4)

where j = 1 for the left arm (s ∈ [0, aeq]) and j = 2 for the right one (s ∈
[
aeq + l∗, l̄ + l∗

]
),

and
(ii.) the rigid-body equilibrium condition along the sliding direction of the sleeve

(P1 + P2) cosα +
M2

1 −M2
2

2B
︸ ︷︷ ︸

Eshelby-like Forces

= 0, (5)

where M1 = Bθ
′

eq(aeq) and M2 = Bθ
′

eq(aeq + l∗).
Condition (5) reveals the presence of two so-called ‘Eshelby-like forces’ [7], provided by

the sliding sleeve at its left and right ends and generated by the flexural deformation of the
left and right arms, respectively, which define the equilibrium condition of the system and
are the key concept of the deformable arm scale.

The rotations at the free ends at equilibrium, θ0 = θeq(0) and θl̄+l∗ = θeq(l̄ + l∗), can be
obtained by double integration of the elastica (4), leading to the following conditions

aeq

√

P1

B
= K (κ1)−K (m1, κ1) ,

(
l̄ − aeq

)
√

P2

B
= K (κ2)−K (m2, κ2) , (6)

where K (κj) and K (mj, κj) are respectively the complete and incomplete elliptic integral of
the first kind

K(κj) =

π
2∫

0

dφj
√

1− κ2
j sin

2 φj

, K(mj, κj) =

mj∫

0

dφj
√

1− κ2
j sin

2 φj

, j = 1, 2. (7)
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and

κ1 = sin
θ0 + α + π

2
, m1 = arcsin

[
sin α+π

2

κ1

]

, κ1 sinφ1(s) = sin
θeq(s) + α + π

2
,

κ2 = sin
θl̄+l∗ + α

2
, m2 = arcsin

[
sin α

2

κ2

]

, κ2 sinφ2(s) = sin
θeq(s) + α

2
.

(8)

Further integration of the elastica (4) leads to the solution for the rotation field at equilibrium

θeq(s) =







π − 2 arcsin

[

κ1sn

(

K(κ1)−

√

P1

B
s, κ1

)]

− α, s ∈ [0, aeq] ,

2 arcsin

[

κ2sn

(√

P2

B
(s− aeq − l∗) +K(m2, κ2), κ2

)]

− α, s ∈
[
aeq + l∗, l̄ + l∗

]

(9)
where sn is the Jacobi sine amplitude function. Since the solution (9) implies

Bθ
′

eq(aeq)
2 = 2P1 [cos(θ0 + α)− cosα] , Bθ

′

eq(aeq + l∗)2 = 2P2 [cosα− cos(θl̄+l∗ + α)] ,
(10)

the equilibrium along the sliding direction of the sleeve (5) can be expressed as a ‘geometrical
condition’ of equilibrium, which relates the angles at the free edges to the two applied vertical
dead loads as

P1 cos(α + θ0) + P2 cos(α + θl̄+l∗) = 0, (11)

and represents the balance of axial thrust of the deformable scale (0 ≤ α + θ0 ≤ α and
π/2 ≤ α + θl̄+l∗ ≤ π).

When α + θl̄+l∗ = π/2 the equilibrium eq. (11) implies P1 = 0, so that a counterweight

is not needed, Fig. 2.
As a conclusion, the following modes of use of the elastic scale can be envisaged.

• The easiest way to use the elastic scale is referring to eq. (11) and measuring the two
angles θ0 and θl̄+l∗ . Assuming that P1 and α are known, P2 can be evaluated. Note
that B is not needed in this mode of use.

• Another mode of use of the elastic scale is through the measure of the length aeq.
Knowing P1, B, and α, P2 can be determined in the following steps: (i.) eq. (6)1 gives
θ0; (ii.) eq. (11) gives θl̄+l∗ as a function of the unknown P2; (iii.) eq. (6)2 provides an
equation for the unknown P2, to be numerically solved.

Note that eqs. (6) define aeq as a one-to-one function respectively of θ0, eq. (6)1, and
θl̄+l∗ , eq. (6)2, while eq. (11) defines a unique relation between θ0 and θl̄+l∗ (within the limits
of variability of these two angles). Therefore, if all the possible deformations of the elastica
which are unstable even for clamped end are not considered, the equilibrium solution of eqs.
(6) and (11), when it exists is unique.
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Figure 2: The Prototype 1 loaded in a configuration which does not need any counterweight.
The rod used in the prototype is made up of a solid polycarbonate elastic lamina (inclined at
an angle α=30◦ with respect to the vertical direction) of bending stiffness B=0.03 Nm2 and
total length l̄+ l∗=0.487 m with one end subject to a dead load P2=1.53 N. The theoretical
value of the length defining the equilibrium configuration is aeq=0.128 m, while the value
measured on the prototype is equal to 0.126 m.

3 Stability

Equilibrium configurations of the proposed mechanical system are expected to be unstable by
observing that a perturbation of the system at an equilibrium position, a = aeq, through an
increase (or decrease) of a, yields a leftward (or rightward) unbalanced Eshelby-force, which
tends to increase the perturbation itself. However, instability of the equilibrium configuration
exploited in the deformable arm scale does not necessarily represent a drawback, as it could
increase precision in the measure.

In a rigorous way, the instability of a deformed configuration can be detected by inves-
tigating the sign of the second variation of the total potential energy, which can be written
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as

δ2ǫV =
1

2

{

B

aeq∫

0

[

θ
′

var(s)
]2

ds+ B

l̄+l∗∫

aeq+l∗

[

θ
′

var(s)
]2

ds− sinα
[

P1θ
′

eq(aeq) + P2θ
′

eq(aeq + l∗)
]

a2var

+ P1

aeq∫

0

(
cosα cos θeq(s)− sinα sin θeq(s)

)
θ2var(s)ds

+ P2

l̄+l∗∫

aeq+l∗

(
sinα sin θeq(s)− cosα cos θeq(s)

)
θ2var(s)ds

}

.

(12)

The second variation, eqn (12), becomes

δ2ǫV =
1

2

{

B

aeq∫

0

[

θ
′

var(s) +
Γ1(s)

B
θvar(s)

]2

ds+ B

l̄+l∗∫

aeq+l∗

[

θ
′

var(s) +
Γ2(s)

B
θvar(s)

]2

ds

+

[

Γ2(aeq + l∗)
[

θ
′

eq(aeq + l∗)
]2

− Γ1(aeq)
[

θ
′

eq(aeq)
]2

− sinα
(

P1θ
′

eq(aeq) + P2θ
′

eq(aeq + l∗)
)]

a2var

}

,

(13)

when the two auxiliary functions Γ1(s) and Γ2(s) are introduced as the solutions of the
following boundary value problems







∂Γ1(s)

∂s
+ P1 cosα cos θeq(s)− P1 sinα sin θeq(s)−

Γ1(s)
2

B
= 0, s ∈ [0, aeq],

Γ1(0) = 0






∂Γ2(s)

∂s
− P2 cosα cos θeq(s) + P2 sinα sin θeq(s)−

Γ2(s)
2

B
= 0, s ∈ [aeq + l∗, l̄ + l∗],

Γ2(l̄ + l∗) = 0.
(14)

Considering the necessary condition of stability [10], an equilibrium configuration can be
stable if

∆ = Γ2(aeq + l∗)
[

θ
′

eq(aeq + l∗)
]2

− Γ1(aeq)
[

θ
′

eq(aeq)
]2

− sinα
(

P1θ
′

eq(aeq) + P2θ
′

eq(aeq + l∗)
)

≥ 0.

(15)
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Introducing the Jacobi transformation

Γj(s) = −B
Λ

′

j(s)

Λj(s)
, j = 1, 2, (16)

which leads to the following Jacobi boundary value problems






Λ
′′

1(s) +
P1

B

(
sinα sin θeq(s)− cosα cos θeq(s)

)
Λ1(s) = 0, s ∈ [0, aeq],

Λ1(0) = 1,

Λ
′

1(0) = 0,







Λ
′′

2(s) +
P2

B

(
cosα cos θeq(s)− sinα sin θeq(s)

)
Λ2(s) = 0, s ∈ [aeq + l∗, l̄ + l∗],

Λ2(l̄ + l∗) = 1,

Λ
′

2(l̄ + l∗) = 0,
(17)

the auxiliary functions Γj(s) with j = 1, 2 have been numerically evaluated for all configu-
rations considered in the experiments and, although conjugate points are not present, the
unstable character of the configurations follows from ∆ < 0.

Instability of the solution at small rotations. A general proof that all equilibrium
configurations are unstable can be easily derived under the assumption of small rotations.
In this case, the equilibrium configuration can be explicitly obtained as a function of the
length a as

θeq(s, a) =







P1 sinα

2B
(s2 − a2), s ∈ [0, a]

P2 sinα

2B

[
(a+ l∗)(a− l∗ − 2l̄ ) + 2(l̄ + l∗)s− s2

]
, s ∈ [a+ l∗, l̄ + l∗],

(18)
so that the total potential energy (1) is evaluated as

V(a) = −
sin2 α

6B

[
P 2

1 a
3 + P 2

2 (l̄ − a)3
]
− a cosα(P1 + P2). (19)

The length a at equilibrium aeq can be obtained by imposing the vanishing of the first
derivative of the total potential energy (19), while evaluation of its second derivative at
equilibrium results in the following expression

∂2V(a)

∂a2

∣
∣
∣
∣
aeq

= − sin2 α
[
aeqP

2

1 + (l̄ − aeq)P
2

2

]
< 0, ∀ aeq ∈ [0; l̄], (20)

demonstrating the instability of all the equilibrium configurations for small rotations.
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Stable systems. Finally, it is worth noting that a deformable scale where the equilibrium
configuration is stable can be easily obtained by adding to the proposed system a linear
elastic spring of stiffness k, located inside the sliding sleeve (thus restraining the sliding
of the elastic rod, see [8]). In this case, the stabilizing term k(a − a0)

2/2 (in which a0 is
the length a in the unloaded configuration) is added to the elastic potential energy (1).
Therefore, findings reported in this article pave the way to the realization of stable systems,
would instability prevent the practical realization of an equilibrium configuration, which is
not the case of the scales shown in the Fig. 1 (left) and Fig. 2, as shown below.

4 Prototypes of deformable scale and experiments

To test the possibility of realizing a deformable scale, two prototypes (called ‘prototype 0’
and ‘prototype 1’) have been designed, produced and tested (at the Instabilities Lab of the
University of Trento).

In prototype 0 (shown in Fig. 3, left, and in the movie available as supplementary
electronic material) the sliding sleeve is 296 mm in length and is made up of 27 roller pairs
(each roller is a teflon cylinder 10 mm in diameter and 15 mm in length, containing two
roller bearings). In prototype 1 (shown in Fig. 1, left, in Fig. 2 and in Fig. 3, right) the
sliding sleeve, 148 mm in length, is realized with 8 roller (Press-Fit Straight Type, 20 mm
in diameter and 25 mm in length) pairs from Misumi Europe. The tolerance between the

0.1m

Figure 3: Two prototypes of the deformable arm scale: prototype 0 (left) and prototype 1
(right).

elastic strip and the rollers inside the sliding sleeve can be calibrated with four micrometrical
screws. Two elastic laminas have been realized in solid polycarbonate (white 2099 Makrolon
UV from Bayer, elastic modulus 2250 MPa), one with dimensions 980 mm × 40.0 mm × 3.0
mm and the other 487 mm × 24.5 mm × 1.9 mm; the latter has been used for the experiments
reported in Fig. 2, 4, and 5, while the former is shown in Fig. 1 (left). The sliding sleeve
is mounted on a system (realized in PMMA) that may be inclined at different angles α.
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Figure 4: Equilibrium length aeq measured on prototype 1 shown in Fig. 1 (left, at two
inclinations α) for different loads P2 versus theoretical predictions.

The two vertical dead loads applied at the edges of the elastic lamina have been imposed
manually. The tests have been performed on an optical table (1HT-NM from Standa) in a
controlled temperature 20± 0.2◦ and humidity 48± 0.5% room.

Experimental results (presented in Fig. 4 in terms of measured values of the length aeq,
for different weights P2) find an excellent agreement with the theory.

The sensitivity of the scale S = ∂aeq/∂P2 has been reported in Fig. 5, together with the
maximum absolute error ‘err’ found in the experimental determination of the load P2. The
figure correctly shows that errors decrease at high sensitivity. Moreover, the sensitivity is so
high for small P2 that the scale could in a certain range of use become more accurate than
a traditional balance.

The prototypes represent proof-of-concept devices, demonstrating the feasibility of the
elastic scale, with an accuracy which can be highly improved in a more sophisticated design.
A movie with experiments on the prototypes is available in the electronic supporting material
(and at http://ssmg.unitn.it).
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Figure 5: Sensitivity (denoted by S) of the deformable arm scale (at two inclinations α) as
a function of the load P2, reported together with the maximum absolute error (denoted by
err) on the loads measured on the prototype shown in Fig. 1 (left).

5 A link to snaking and locomotion

The sliding sleeve employed in the realization of the elastic arm scale and considered also in
[7] and [8] can be viewed as a perfectly frictionless and tight channel in which an elastic rod
can move.1 Our results show that a motion along the channel can be induced even when
the applied forces are orthogonal to it. Moreover, it has been shown that the Eshelby-like
forces can have a magnitude comparable with the applied loads. These forces are the essence
of snake and fish locomotion [3, 4, 5] and must play an important role in the problem of
beam snaking occurring during smart drilling of oil wells and in plumbing [2]. Investigation
of these and related problems is deferred to another study.

1The connection with the problem of snake locomotion has been suggested independently by Prof. N.
Pugno (University of Trento) and by an anonymous reviewer, who has correctly pointed out that ‘anyone
who’s ever tried to use a hand-held snake to unclog a toilet knows very well about this axial reaction force
[i.e. the Eshelby-like force]’.
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6 Conclusions

A new concept for a deformable scale has been introduced in which equilibrium is reached
through nonlinear flexural deformation of the arms and generation of configurational forces.
This equilibrium configuration is unstable, a feature which can increase the precision of
the measure and which does not prevent the practical realization of prototypes, showing
that real balances can be designed and can be effectively used to measure weights. The
reported findings represent a first step towards applications to deformable systems, in which
nontrivial equilibrium configurations at high flexure can be exploited for actuators or to
realize locomotion.
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