
Texts and Monographs in Computer Science 

Editor 

David Gries 

Advisory Board 

F. L. Bauer 
S. D. Brookes 

C. E. Leiserson 
M. Sipser 



Niklaus Wirth 

Programming in 
Modula-2 

Fourth Edition 

Springer-Verlag 
Berlin Heidelberg New York 

London Paris Tokyo 



Author 

Professor Niklaus Wirth 

Institut fOr Informatik, ETH, CH-8092 Zurich 

Series Editor 

Professor David Gries 

Department of Computer Science, Cornell University 
Ithaca, NY 14853, USA 

The 1st edition was published 1982 as a monograph 

ISBN-13:978-3-642-83567-4 e-ISBN-13:978-3-642-83565-0 
001: 10.1007/978-3-642-83565-0 

This work is subject to copyright. All rights are reserved, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, 
recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data 
banks. Duplication of this publication or parts thereof is only permitted under the provisions 
of the German Copyright Law of September 9,1965, in its version of June 24,1985, and a 
copyright fee must always be paid. Violations fall under the prosecution act of the German 
Copyright Law. 

© Springer-Verlag Berlin Heidelberg 1982, 1983, 1985, 1988 
Soft cover reprint of the hardcover 4th edititon 1988 

The use of registered names, trademarks, etc. in this publication does not imply, even in the 
absence of a specific statement, that such names are exempt from the relevant protective 
laws and regulations and therefore free for general use. 

2145/3140-543210 Printed on acid-free paper 



Preface 

This text is an introduction to programming in general, and a manual for 
programming with the language Modula-2 in particular. It is oriented primarily 
towards people who have already acquired some basic knowledge of programming 
and would like to deepen their understanding in a more structured way. Neveltheless, 
an introductory chapter is included for the benefit of the beginner, displaying in a 
concise form some of the fundamental concepts of computers and their 
programming. The text is therefore also suitable as a self-contained tutorial. The 
notation used is Modula-2, which lends itself well for a structured approach and leads 
the student to a working style that has generally become known under the title of 
structured programming. 

As a manual for programming in Modula-2, the text covers practically all facilities 
of that language. Part 1 covers the basic notions of the variable, expression, 
assignment, conditional and repetitive statement, and array data structure. Together 
with Palt 2 which introduces the important concept of the procedure or subroutine, it 
contains essentially the material commonly discussed in introductory programming 
courses. Part 3 concerns data types and structures and constitutes the essence of an 
advanced course on programming. Palt 4 introduces the notion of the module, a 
concept that is fundamental to the design of larger programmed systems and to 
programming as team work. The most commonly used utility programs for input and 
output are presented as examples of modules. And finally, Part 5 covers facilities for 
system programming, device handling, and multiprogramming. Practical hints on how 
and when to use particular facilities are included and are intended as guidelines for 
acquiring a sound style of programming and system structuring. 

The language Modula-2 is a descendant of its direct ancestors Pascal [1] and 
Modula [2]. Whereas Pascal had been designed as a general purpose language and 
after implementation in 1970 has gained wide usage, Modula had emerged from 
experiments in multiprogramming and therefore concentrated on relevant aspects 
pertinent to that field of application. It had been defined and implemented 
experimentally by 1975. 

In 1977, a research project with the goal to design a computer system (hardware 
and software) in an integrated approach, was launched at the Institut fUr Informatik of 
ETH ZLlrich. This system (later to be called Lilith) was to be programmed in a single 
high-level language, which therefore had to satisfy reqUirements of high-level system 
design as well as those of low-level programming of palts that closely interact with 
the given hardware. Modula-2 emerged from careful design deliberations as a 
language that includes all aspects of Pascal and extends them with the impoltant 
module concept and those of multiprogramming. Since its syntax was more in line 
with that of Modula than with Pascal's, the chosen name was Modula-2. We shall 
subsequently use Nlodula as synonym for Modula-2. 

The language's main additions with regard to Pascal are: 

'I. The module concept, and in palticular the facility to split a module into a definition 
part and an implementation part. 



4 Preface 

2. A more systematic syntax which facilitates the learning process. In particular. every 
structure starting with a keyword also ends with a keyword. i.e. is properly 
bracketed. 

3. The concept of the process as the key to multiprogramming facilities. 
4. So-called low-level facilities which make it possible to breach the rigid type 

consistency rules and allow to map data with Modula-2 structure onto a store 
without inherent structure. 

5. The procedure type which allows procedures to be dynamically assigned to 
variables. 

A first implementation of Modula-2 became operational on the PDP-11 computer 
in 1979, and the language's definition was published as a Technical Report in March 
1980. Since then the language has been in daily use in our institute. After a year's use 
and testing in applications. the compiler was released for outside users in March 1981. 
Interest in this compiler has grown rapidly, because it incorporates a powerful system 
design tool implemented on widely installed minicomputers. This interest had given 
rise to the need for this manual and tutorial. The defining report is included at the end 
of the manual, primarily for reference purposes. It has been left unchanged, with the 
exception that the chapters on standard utility modules and on the use of the 
compiler have been omitted. 

This text has been produced in camera-ready form by a Lilith minicomputer 
connected to a Canon LBP-10 laser printer. Concurrently with the writing of the book, 
the author designed the programs necessary for automatic text formatting (and 
controlling the printer) and designed the interface connecting the printer. Naturally, all 
these programs have been written in Modula (for Lilith). 

It is impossible to properly acknowledge all the influences that contributed to the 
writing of this text or the design of Modula. However, I am particularly grateful for the 
inspiring influence of a sabbatical year (1976) at the research laboratory of Xerox 
Corporation (PARC). and for the ideas concerning modules presented by the language 
Mesa [3]. Perhaps the most important insight gained was the feasibility of 
implementing a high-level language effectively on minicomputers. My thanks are also 
due to the implementors of Modula, notably L. Geissmann, A. Gorrengourt, Ch. Jacobi 
and S.E. Knudsen, who not only have turned Modula into an effective, reliable tool, 
but have often wisely consulted against the inclusion of further fancy facilities. 

ZOrich, February 1982 -N.W. 

Preface to the 3rd Edition 

This 3rd Edition has been adapted to the few amendments and revIsions of 
Modula-2 introduced in late 1983. The one essential change concerns definition 
modules, which no longer contain an export list, but are rather regarded as 
constituting an export list themselves (s. Chapter 24). A few standard modules which 
have proven to be widely useful are included in an additional appendix. They mainly 
concern the subject of input and output, i.e. the use of a keyboard, the display, and a 
file system. 

ZOrich, September 1984 N.W. 



Preface 5 

Preface to the 4th Edition 

The principal improvement in this 4th Edition lies in the layout and the printing 
font. I am most grateful to H. E. Meier, who designed the Syntax font and transformed 
it into electronic form using our Lilith workstation and its font design system. 

The main change in the contents is the use of the data type INTEGER instead of 
CARDINAL in most program examples. It reflects the fact that many new 
implementations of Modula treat CARDINAL as a subrange of INTEGER, thereby 
avoiding nasty type incompatibilities between INTEGER and CARDINAL operands in 
expressions. Accordingly, the definition of the language has also undergone a few 
minor adaptations in the area of Standard Functions: 

FLOAT(i) and CHR(i) accept an argument of type INTEGER 
TRUNC(x), HIGH (a), ORD(ch), and SIZE(T) are of type INTEGER 

And finally, the language rule about assigning a string s to an array a of characters 
is made more restrictive. The assignment a := S is acceptable, if the length of s is 
strictly less (rather than less or equal) to the number of elements of a. This ensures 
that a string is always terminated by a OC character, simplifying tests for the end of a 
string. 

Zurich, July 1988 N.W. 

References 

1. N.Wirth: The programming language PASCAL. Acta Informatica 1,35-63 (1971). 

2. N.Wirth: Modula: A language for modular multiprogramming. Software - Practice 
and Experience 7, 3-35 (1977). 

3.J.G.Mitchell, W. Maybury, R.Sweet: Mesa Language Manual. Xerox PARC, CSL-78-1 
(1978). 



Contents 

Preface 

1 I ntrod uction 9 
2 A First Example 11 
3 A Notation to Describe the Syntax of Modula 14 
4 Representation of Modula Programs 16 
5 Statements and Expressions 19 
6 Control Structures 22 
7 Elementary Data Types 28 
8 Constant and Variable Declarations 36 
9 The Data Structure Array 37 

10 Procedures 47 
11 The Concept of Locality 49 
12 Parameters 51 
13 Function Procedures 54 
14 Recursion 56 

15 Type Declarations 62 
16 Enumeration Types 64 
17 Subrange Types 65 
18 Set Types 66 
19 Record Types 68 
20 Records with Variant Parts 71 
21 Dynamic Structures and Pointers 74 
22 Procedure Types 79 

23 Modules 81 
24 Definition and Implementation Parts 83 
25 Program Decomposition into Modules 87 
26 Local Modules 94 
27 Sequential Input and Output 101 
28 Screen-Oriented Input and Output 109 

29 Low-Level Facilities 119 
30 Concurrent Processes and Coroutines 122 
3'1 Device Handling, Concurrency, and Interrupts 129 

Report on the Programming Language Modula-2 133 

Appendix 1: The Syntax of Modula-2 157 
Appendix 2: Standard Utility Modules 161 
Appendix 3: The ASCII Character Set 170 
Appendix 4: Syntax Diagrams 171 
Index 181 


