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Abstract: Let G = (V, E) be an undirected graph with vertex set V and edge set E. A clique C of G is a
subset of the vertices of V with every pair of vertices of C adjacent. A maximum clique is a clique with
the maximum number of vertices. A tabu search algorithm for the maximum clique problem that uses
an exact algorithm on subproblems is presented. The exact algorithm uses a graph coloring upper
bound for pruning, and the best such algorithm to use in this context is considered. The final tabu
search algorithm successfully finds the optimal or best known solution for all standard benchmarks
considered. It is compared with a state-of-the-art algorithm that does not use exact search. It is slower
to find the known optimal solution for most instances but is faster for five instances and finds a larger
clique for two instances.

Keywords: combinatorial optimization; maximum clique; hybrid algorithm; tabu search; benchmarks

1. Introduction

Exact algorithms for the maximum clique problem are now remarkably efficient, but, for larger
problems, heuristic algorithms are necessary. Tabu search is an effective metaheuristic for the maximum
clique problem. This paper evaluates the option of including an exact algorithm within the tabu search,
and considers the best exact algorithm to use. The candidate exact algorithms all use a graph coloring
upper bound. This approach was used in the specific context of permutation code constructions in [1].
The final tabu search algorithm described, modified from a published algorithm [2], finds best known
solutions to standard instances but is normally slower than a state-of-the-art tabu search algorithm
[3] to find these solutions. However, it is more competitive for harder instances and actually finds
significantly larger cliques for two open instances derived from the construction of permutation codes.

Let G = (V, E) be an undirected graph with vertex set V and edge set E. A clique C of G is a
subset of the vertices of V with every pair of vertices of C adjacent (a complete subgraph). A maximum
clique is a clique with the maximum number of vertices. Problems involving cliques arise in many
applications surveyed in [4], including bioinformatics, examination planning, location problems, signal
transmission analysis, and social network analysis. Applications of the maximum clique problem in
radio frequency assignment are described in [5]. The problem also arises in the construction of various
types of error-correcting code with the maximum number of codewords [6,7]. Note that the problem
of finding a maximum clique in the graph G is equivalent to the problem of finding a maximum
independent set in the complement graph G.

The decision form of the clique problem (does there exist a clique of size k) was proved to be one
of the original 21 NP-complete problems in a classic paper [8]. It follows that the maximum clique
problem is NP-hard. When exact methods are impractical, heuristic methods are used.
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Algorithms for the maximum clique problem, both exact and heuristic, are surveyed in [4].
The algorithm Swap-Based Tabu Search (SBTS) presented in [3] is the only heuristic algorithm
compared in [4] that is able to find the optimal or best known solution over a wide range of instances.
A more recent algorithm HTS (Hybrid Tabu Search) [2] also finds the optimal or best known solution
over these instances and adds some further instances based on the construction of permutation
codes [7]. HTS makes use of both an exact and a pseudoexact inner solver. In the tabu search in
HTS, a number of carefully selected vertices are removed from the current clique before an exact or
pseudoexact algorithm is applied to the subgraph induced by the set of vertices of G adjacent to all
vertices in the reduced clique.

As well as tabu search and other local search methods, there are also mathematical programming
approaches, together with other methods, such as genetic algorithms, ant colony optimization,
chemical reaction optimization, and particle swarm optimization. Hybrid and parallel versions
of these algorithms also exist. The reader is referred to the survey [4] for an extensive list of
references. Some later references to the maximum clique and related problems can be found in
[9–13]. When comparable, these later approaches do not always match SBTS or HTS. For this reason,
the current paper concentrates on tabu search. Although there are many effective algorithms, there is
always scope for improvement on large and hard instances beyond the standard benchmarks.

There are four objectives of this paper. The first is to determine the best exact algorithm to replace
the exact and pseudoexact algorithms used in HTS. This allows a comparison of the resulting tabu
search algorithm, incorporating the best exact algorithm found, with a more standard tabu search
approach. Initially, a comparison of various exact algorithms applied to benchmarks used in the
comparison in [4] is carried out. The best candidates are then incorporated into the HTS algorithm and
further compared, leading to a somewhat different rank ordering of methods. The second objective is
to consider and implement a small number of other improvements to HTS. The third is to dramatically
simplify the number of parameters in HTS by finding methods to determine most automatically.
Finally, the resulting new algorithm HTS2 (Code for HTS2 is available in the Supplementary Material)
can be compared with the original HTS and SBTS on the same machine. The overall aim of the work
is to determine whether a tabu search algorithm including exact search can match SBTS on standard
instances and find larger cliques than SBTS for some hard instances. This requires consideration of
some new hard instances beyond those used in [3]. The new instances here are motivated by the
authors’ interest in the construction of permution codes.

2. Exact Algorithms with a Coloring Bound

Exact algorithms for the maximum clique problem are surveyed in [4]. The basis for many
improved algorithms is the algorithm of Carraghan and Pardalos [14], and this is also the basis for the
exact and pseudoexact algorithms used in HTS [2]. Within HTS,this algorithm works with a current
clique F and a potential expansion set S = N(F) of vertices adjacent to all vertices of F. Vertices of S are
selected in turn and removed from S. The new potential expansion set S′ is computed and the selected
vertex is added to F to create a set F′. If the potential expansion set is empty, and a new best clique is
obtained, the clique is assigned to a global variable Best. Otherwise, subject to a pruning condition,
the algorithm is applied recursively to the new potential expansion set S′. The usual condition is that
pruning of the search tree takes place unless |F′|+ |S′| is greater than the size of the best clique found
so far in the exact algorithm. Within HTS, extra pruning is used involving an external lower bound
arising from the best clique found so far in the metaheuristic. Pseudoexact search uses a probable
upper bound for pruning derived from an evaluation of typical subproblems solved for the instance
within HTS.

A major improvement arises from the use of a vertex coloring bound.

Definition 1. A vertex coloring of a graph G is an assignment of colors to the vertices of G such that adjacent
vertices are assigned different colors.
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Definition 2. The chromatic number of a graph G is the minimum number of colors in a vertex coloring.

The following proposition is well known:

Proposition 1. The chromatic number of a graph G is an upper bound for the number of vertices in a
maximum clique.

Proof. Every vertex of the clique must be assigned a different color.

The colors can be represented as positive integers 1, 2, . . .. Thus, any upper bound k for the
chromatic number of the subgraph induced by S′ (obtained from a coloring of S′ with k colors) can
replace |S′| in the pruning to reduce the size of the search, sometimes dramatically. Then, options
to be considered here are i) the best coloring algorithm to use, which must be very fast as the exact
algorithm is used many times in hybrid tabu search, ii) whether to locally color each subgraph induced
by S′, which may be expensive, or to color the initial subproblem and use the colors inherited by the
subgraph induced by S′, or a combination of the two, iii) whether to re-order the vertices of S′ in
non-increasing order of color within the exact solver.

2.1. Initial Evaluation of Exact Algorithms with a Coloring Bound

Improvements to the Carraghan and Pardalos algorithm (denoted as “C&P”) using a coloring
bound are of three basic types. The first, denoted as “local coloring”, applies a coloring algorithm to the
original subproblem and to each new set S′ created as the depth of the search tree is increased. Clearly
the coloring algorithm has to be very fast. The second, denoted as “start coloring”, applies the coloring
algorithm to the original subproblem, and the color assigned to each vertex is inherited by that vertex
in the set S′. The number of colors actually used in S′ can then be computed to give a (usually weaker)
upper bound. The third, denoted as “start and local coloring”, is a hybrid. Start coloring and inheriting
takes place as in “start coloring”, but, if the upper bound obtained does not lead to pruning, then local
coloring also takes place. This may give a smaller lower bound that does lead to pruning.

The coloring algorithm used is a simple greedy algorithm. The vertices of the set are colored in
turn, and each vertex is colored with the smallest available color. Two variations of this are applied
to start coloring only. The saturation degree of a vertex is obtained as follows. Once a new vertex has
been colored, the saturation degree of an uncolored vertex is the number of colors in its neighborhood.
Vertices are then colored in non-increasing order of saturation degree. This is denoted as “saturation
start”. The second very similar variation applied to start vertices uses Degree of Saturation (DSatur)
coloring [15], itself based on saturation degree, but using a degree ordering to select the first vertex
and to break ties. This is denoted as “DSatur start”.

Another option that can be used is to order the vertices of each new set S′ (created as the depth is
increased) in non-increasing order of color. This means that, as subsequent vertices of S′ are considered,
the coloring upper bound tends to decrease quickly and proves particularly effective. This option is
denoted by “ordered” in the following tables.

There is an important difference between the evaluation here and the general evaluation in [4].
Within HTS,many of the calls to the exact or pseudoexact algorithm supply a good lower bound. Thus,
the evaluation here is carried out with the best available lower bound supplied. The time in seconds to
complete the algorithms for a number of DIMACS instances [16] used in [4] are shown in Tables 1 and
2. No single algorithm is the best for all instances, but clearly vertex ordering is particularly helpful.
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Table 1. Comparison of run times (in seconds) for four exact algorithms for the maximum
clique problem.

Instance C&P
C&P C&P C&P
Local Start Start and

Coloring Coloring Local Coloring

brock400_2 30,904 6407 30,538 5842
brock400_4 15,260 1420 11,216 1332
brock800_2 191,613 74,696 183,831 73,537
brock800_4 127,564 37,835 113,604 37,599
keller5 unterminated unterminated unterminated unterminated
p_hat300-3 25,312 1110 11,884 960
p_hat700-2 unterminated 22,099 unterminated 20,523
p_hat1500-1 12 17 15 17

Table 2. Comparison of run times (in seconds) for four improved exact algorithms for the maximum
clique problem using ordering. The algorithms in the second and third columns are variations of those
in columns 3 and 5 of Table 1 using ordering. The fourth and fifth columns are variations of the third
column using saturation or DSatur (Degree of Saturation) start, respectively.

Instance

C&P C&P C&P with C&P with
with Ordered Ordered Start Ordered Saturation Ordered DSatur

Local and Ordered Start & Ordered Start & Ordered
Coloring Local Coloring Local Coloring Local Coloring

brock400_2 1246 1134 1044 1092
brock400_4 1467 282 287 252
brock800_2 22,121 24,626 24,466 26,148
brock800_4 10,938 15,228 13,038 12,761
keller5 270,687 278,555 144,558 159,936
p_hat300-3 151 188 132 66
p_hat700-2 1721 1979 659 355
p_hat1500-1 11 11 12 12

2.2. Evaluation of Exact Algorithms with a Coloring Bound for Use in HS2

Although the results in Tables 1 and 2 give a useful comparison, it should be noticed that the
subproblems to which exact and pseudoexact search is typically applied in HTS may be much smaller
than the instances used in those tables. Thus, four of the algorithms were evaluated further by using
them in place of the exact and pseudoexact search in HTS. The critical improvement in performance
arises from maximizing the mean number of tabu search iterations per second, and this was calculated
for an extended run on each of seven instances. These were DIMACS, BHOSLIB, and permutation code
instances used in [2], and, in general, the same parameters were used for HTS as in the experiments
in [2]. The results are shown in Table 3.

It appears that there is much less difference in the results than in the previous tables, in part
because if the time for exact search is small the time to calculate neighborhoods becomes more
significant. However, it appears from further experiments that the third and fourth algorithms (using
ordering) allow the parameter Tssetmin in HTS (determining the smallest current clique from which
vertices may be removed) to be smaller. These smaller values allow exact search to be applied to
larger subproblems without excessively slowing tabu search and can improve performance as a result.
From inspection of Table 3, the third algorithm “C&P with ordered local coloring” was selected for use
in an improved version HTS2 of HTS. This algorithm also had the merit that it was simpler than the
fourth algorithm. Pseudocode for “C&P with ordered local coloring” is shown in Algorithm 1.
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Table 3. Evaluation of the mean number of tabu search iterations per second for four of the algorithms
appearing in Tables 1 and 2. These replace exact search and pseudoexact search in Hybrid Tabu Search
(HTS). The best exact algorithm should maximize the number of tabu search iterations per second
during an extended run.

Instance C&P

C&P C&P with C&P with Ordered
Start & Local Ordered Local DSatur Start

Coloring Coloring and Ordered Local
Coloring

C4000_5 1659 1725 1795 1389
C2000_9 23 252 236 215
keller6 260 225 285 329
frb35-17-4 833 2359 2827 1660
frb50-23-3 765 825 996 784
frb50-23-2 763 796 948 731
7_5 79 98 96 94

Algorithm 1: The exact algorithm “C&P with ordered local coloring” applied to a graph or
subgraph with vertex set V and edge set E.

Require A set of selected vertices F ⊆ V and a set of potential expansion vertices S ⊆ V.
The best clique retrieved so far is contained in Best and External_lower_bound is a supplied
external value. The recursive algorithm is invoked with F := ∅, S := V and the global
variable Best := ∅.

Exact(F, S)
1: while S 6= ∅ do
2: if |F|+ |S| > max{|Best|, External_lower_bound− 1} then
3: color S greedily, using smallest available color;
4: sort S in non-increasing order of color;
5: select s ∈ S in above order;
6: S := S\{s};
7: S′ := S;
8: for z ∈ S′ do
9: if (z, s) /∈ E then { if (z, s) is not an edge }

10: S′ := S′\{z};
11: end if
12: end for
13: F′ := F ∪ {s};
14: if S′ = ∅ and |F′| > |Best| then
15: Best := F′;
16: else
17: determine number of colors numcolors(S′) used in S′;
18: if |F′|+ numcolors(S′) > max{|Best|, External_lower_bound− 1} then
19: Exact(F′, S′, Best);
20: end if
21: end if
22: end if
23: end while
24: return(Best)

3. Minor Improvements in HTS2

Apart from the change from the exact and pseudoexact search in HTS to the exact “ordered
local coloring” algorithm detailed in Algorithm 1, there are some other relatively minor changes
from HTS in HTS2. As well as the tabu search algorithm, HTS has a main heuristic that generates
good starting solutions (sometimes finds the best solution itself) and i-optimizations for i = 1, 2, 3.
These i-optimizations remove i vertices from the current clique in all possible ways and apply the
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exact algorithm to the neighbor set of vertices adjacent to all remaining vertices in an attempt to find
a new larger clique. This continues until there is no improvement. In HTS, there are thresholds θ1,
θ2, θ3, θts for the four optimizations. In HTS, these thresholds are allowed to be different and are
selected so that each optimization is only applied to very promising cases, and 3-optimization never
makes HTS unacceptably slow. In HTS2, these four thresholds are replaced by a single threshold
θ. The justification for this is that the improved performance of the tabu search makes a different
threshold for tabu search unnecessary, and the relative slowness of 3-optimization in some instances
can be dealt with by considering the size of the current clique. Thus, the overall structure of HTS2 is as
shown in Algorithm 2.

Algorithm 2: Outline of the overall structure of the algorithm HTS2.
1: BestC := ∅;
2: k := 0;
3: while runtime ≤ max_runtime do
4: k := k + 1;
5: C := Main_heuristic(k);
6: if |C| ≥ θ then
7: 1_optimize(C);
8: C := ts_optimize(C);
9: if |C| ≤ 200 then

10: C := 3_optimize(C);
11: else
12: C := 2_optimize(C);
13: end if
14: end if
15: if |C| > |BestC| then
16: BestC := C;
17: end if
18: end while

For any current clique C, N(C) denotes the set of vertices of V adjacent to all vertices in C. In the
main heuristic of the original HTS algorithm, a sequence S is selected. A variable adjchoices cycles
through the values in S and controls the choice of the next vertex in N(C) to add to the clique C. A set U
consists of all vertices of N(C) if |N(C)| ≤ adjchoices, or adjchoices randomly selected vertices of N(C)
otherwise. A vertex u of U is chosen to add to C which gives the largest value of N(C ∪ {u}). The most
common S in the experiments in [2] is S = [1, 50, 80, 100, 120, 160, 200, 300, 600, 800], and S is fixed to
this choice in HTS2 unless the graph has < 1000 vertices when S = [1, 50, 80, 100, 120, 160, 200, 300].
Thus, no decision on an appropriate S is necessary in HTS2. Pseudocode for the main heuristic is
presented in Algorithm 3, and pseudocode for the i-optimizations is presented in Algorithm 4.

In the original HTS algorithm a parameter, Nontabu max is used in tabu search. If the neighborhood
to which exact search is applied has at least Nontabu max vertices, a protection mechanism is invoked
(selecting a random vertex in the neighborhood) to avoid application of the exact search to an
excessively large neighborhood. Typical values of 30 or 60 were used. In HTS2, a parameter λ2

from the main heuristic, to be outlined in the next section, is used instead of Nontabu max.
A final change is to replace the condition that the tabu search optimization runs for Tstime seconds

unless the size of the clique increases, by the requirement that it runs for 10,000 iterations, unless the
size of the clique increases. This avoids the need for the parameter Tstime and proved satisfactory for
all instances. Pseudocode for the revised tabu search algorithm is presented in Algorithm 5.
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Algorithm 3: Main heuristic at iteration k.
The algorithm is invoked for a graph G = (V, E) with C :={random vertex in V}.
Parameters supplied are the threshold θ from Algorithm 2, and two further thresholds
λ1, λ2 for exact search. The sequence of values S = [si] is also supplied. Following the call to
the main heuristic, C contains the best clique found by the main heuristic at iteration k.

Main_heuristic(k)

1: C :={random vertex in V};
2: Exactstored := False; adjchoices := s1+k mod |S|;
3: while |N(C)| > 0 and |N(C)| ≥ θ − |C| do

4: if |N(C)| < λ2 then

5: Best := ∅; External_lower_bound := θ − |C|;
6: Exact(∅, N(C));
7: C := C ∪ Best;
8: else

9: if |N(C)| < λ1 and Exactstored = False then

10: Cstored := C; N(C)stored := N(C);
11: Exactstored := True;
12: end if
13: if |N(C)| ≤ adjchoices then

14: U := N(C);
15: else

16: U := {vj1 , vj2 , . . . , vjadjchoices |vji ∈ N(C) selected randomly};
17: end if
18: Choose u ∈ U such that |N(C ∪ {u})| is maximal;
19: C := C ∪ {u};
20: end if
21: end while
22: if Exactstored = True and |C| ≥ θ then

23: Best := ∅; External_lower_bound := θ − |Cstored|;
24: Exact(∅, N(C)stored);
25: Ctemp := Cstored ∪ Best;
26: if |Ctemp| > |C| then

27: C := Ctemp;
28: end if
29: end if
30: return(C);

Algorithm 4: i_Optimize..
i_Optimize(C)

1: Current_best := C;
2: Recursive_i_opt(C)
3: for all S ⊂ C with |S| = i do
4: if |N(C \ S)| > i then
5: Best := ∅; External_lower_bound := i + 1;
6: Exact(∅, N(C \ S));
7: if |Best| > i then
8: Current_opt := Best ∪ (C \ S)
9: if |Current_opt| > |Current_best| then

10: Current_best := Current_opt;
11: Recursive_i_opt(Current_opt);
12: end if
13: end if
14: end if
15: end for
16: return(Current_best);
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Algorithm 5: Tabu search.
1: ts_Optimize(C);
2: Ts_count := 0;
3: Tabulist := ∅; Tscurrent := C; Tsbest := C;
4: while (Ts_count < 10000) do
5: Ts_count := Ts_count + 1; Aspiration := False;
6: for all v ∈ Tscurrent do
7: Best := ∅; External_lower_bound := |Tsbest| − |Tscurrent|+ 1;
8: Exact(∅, N(Tscurrent \ {v}));
9: Tstemp1 := Best ∪ (Tscurrent \ {v});

10: Update a list L1 of all v ∈ Tscurrent with |Tstemp1|maximal (and for this value of
|Tstemp1| the value |N(Tscurrent \ {v})| is maximal);

11: if |Tstemp1| > |Tsbest| then
12: Aspiration := True;
13: else
14: Nontabu := {w ∈ N(Tscurrent \ {v})|w /∈ Tabulist};
15: Best := ∅;External_lower_bound := 0;
16: Exact(∅, Nontabu);
17: Tstemp2 := Best ∪ (Tscurrent \ {v});
18: Update a list L2 of all v ∈ Tscurrent with |Tstemp2|maximal (and for this value of

|Tstemp2| the value |Nontabu| is maximal);
19: end if
20: end for
21: if Aspiration = true then
22: select v′ ∈ L1 randomly;
23: Best := ∅; External_lower_bound := |Tsbest| − |Tscurrent|+ 1;
24: Exact(∅, N(Tscurrent \ {v′}));
25: Tscurrent := Best ∪ (Tscurrent \ {v′}); Tsbest := Tscurrent;
26: Ts_count := 0;
27: else
28: Select v′′ ∈ L2 randomly;
29: Tscurrent := Tscurrent \ {v′′};
30: Add v′′ to Tabulist (removing oldest entry if list length exceeds Tstenure);
31: if |Tscurrent| ≤ Tssetmin + 1 then
32: Nontabu := {w ∈ N(Tscurrent)|w /∈ Tabulist};
33: if |Nontabu| < λ2 then
34: Best := ∅; External_lower_bound := 0;
35: Exact(∅, Nontabu);
36: Tscurrent := Best ∪ Tscurrent;
37: else
38: Select v′′′ ∈ Nontabu randomly;
39: Tscurrent := {v′′′} ∪ Tscurrent;
40: end if
41: end if
42: end if
43: end while
44: if |Tsbest| > |C| then
45: C := Tsbest;
46: end if
47: return(C);

4. Simplification of Parameters

There are several parameters used in HTS. These are not difficult to determine by a short
exploratory run, but it is more convenient if most of them are determined by the algorithm itself.
The parameters in question are θ1, θ2, θ3, θts, λ1, λ2, Tstime, Tstenure, and Tssetmin. Pseudoexact search
in HTS also has a number of coefficients, but these are no longer relevant as pseudoexact search is not
used in HTS2. The use of Tstime was replaced by a condition “10,000 iterations without improvement”
in the previous section.
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The four θ parameters in HTS are replaced in HTS2 by a single parameter θ (see Algorithm 2)
determined as follows. The main heuristic is run 100 times. If the largest clique Cmax found is not
unique, then θ = |Cmax|. If this value is unique, then θ is the number of vertices in the second largest
clique. This ensures that the other optimizations are only applied to the most promising cliques
generated, but avoids single outliers that might only be generated very rarely in later iterations.

The two parameters λ1 and λ2 are used in the main heuristic (see Algorithm 3). If the size of
the neighborhood N(C) of the current clique satisfies |N(C)| < λ2, then the generation of the clique
by the main heuristic is completed by applying the exact algorithm to N(C). If the clique generated
has at least θ vertices, the algorithm reverts to a somewhat larger stored neighborhood with less than
λ1 vertices and applies the exact algorithm. In HTS2, the two λ parameters are determined by the
edge density 2|E|/(|V|(|V| − 1)), as shown in Table 4. The parameter λ2 is also used in the protection
mechanism within tabu search to avoid applying the exact algorithm to excessively large subproblems.

Table 4. Choices of parameters λ1 and λ2.

1 ≥ edge density ≥ 0.95 λ1 = 80 λ2 = 60
0.95 > edge density ≥ 0.9 λ1 = 100 λ2 = 80
0.9 > edge density ≥ 0.84 λ1 = 140 λ2 = 120
0.84 > edge density ≥ 0.74 λ1 = 160 λ2 = 140
0.74 > edge density λ1 = 180 λ2 = 160

The value of the tabu tenure Tstenure is not at all critical for HTS2. Values of 6, 12, and 20 were
used, and all proved successful.

The tabu search parameter Tssetmin is the critical parameter to be set by the user. It must be less
than θ, but, if it is too small, attempts may be made to solve exactly subproblems that are too large,
requiring the protection mechanism. Otherwise, larger values make tabu search faster, but smaller
values may make tabu search more powerful. A balance should be achieved.

It should be noted that the current implementation allows the original θ and λ parameters from
HTS to override these choices if the user requires it. Otherwise, Tstenure and Tssetmin are the only
relevant parameters in HTS2.

5. Comparison of HTS, HTS2, and SBTS

This section presents a comparison of the original HTS algorithm, the new HTS2 algorithm,
and SBTS. The software for the SBTS algorithm is available online as [17]. The benchmarks selected
are BHOSLIB instances [18], some of the harder DIMACS instances [16], Sloane code construction
instances [6], and permutation code construction instances from [7]. A few instances shown in [2] to be
most easily solved using a pre-processing method are excluded, so the description of pre-processing
need not be repeated here. These benchmarks are not ideal in the sense that the optimal solution
is known for many of them, but they are at least easily available to allow comparison by others.
Using an exact algorithm cannot be expected to be the fastest algorithm, but the more thorough
local search might lead to improved solutions if improved solutions are possible. Of particular
interest, then, is the permutation code instance 7_5. The vertices correspond to the permutations
on 7 symbols, excluding those permutations at Hamming distance 1, 2, 3, or 4 from the identity
permutation. Two vertices are adjacent if they are at Hamming distance ≥ 5. A theoretical construction
using group theory shows that there exists a clique with 78 vertices [19], but the largest clique found
with a maximum clique algorithm previously has 72 vertices (or 73 using the pre-processing method
in [2]). For permutation code instances other than 7_4 and 7_5, the vertices of the graph correspond to
orbits of permutations under a group, as explained in [7].

The processor used for the experiments was an Intel(R) Core(TM) i3-9100 3.60GHz processor with
4 GB of RAM. In most cases, the parameters used for HTS were the same as given in [2], the parameters
for Tstenure and Tssetmin in HTS2 were the same as used for these parameters in HTS in [2], and the
default setting for tabu tenure was used in SBTS. Results for BHOSLIB instances are given in Table 5,
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and results for all other instances are given in Table 6. In these two tables, the first column gives the
instance, and the second column gives the number of vertices in the largest known clique (marked
with an asterisk if the clique is known to be optimal). The third, fourth, and fifth columns give the
time in seconds to find the solution in column 2, with a note of the number of vertices found if the
result in column 2 is not achieved.

Table 5. Comparison of run times to find optimal solution of BHOSLIB instances for HTS, HTS2, and SBTS
(Swap-Based Tabu Search). * denotes that the best known result is optimal

Instance Optimal or Best Known HTS (secs) HTS2 (secs) SBTS (secs)Number of Vertices

frb30-15-1 30 * 20 13 < 1
frb30-15-2 30 ∗ 3 < 1 < 1
frb30-15-3 30 ∗ 16 38 < 1
frb30-15-4 30 ∗ 14 1 < 1
frb30-15-5 30 ∗ 38 24 < 1
frb35-17-1 35 ∗ 175 53 < 1
frb35-17-2 35 ∗ 7 11 < 1
frb35-17-3 35 ∗ 29 2 < 1
frb35-17-4 35 ∗ 807 129 2.7
frb35-17-5 35 ∗ 138 9 1.2
frb40-19-1 40 ∗ 20 1 < 1
frb40-19-2 40 ∗ 555 123 25.7
frb40-19-3 40 ∗ 77 1 7.2
frb40-19-4 40 ∗ 1394 32 1.1
frb40-19-5 40 ∗ 6804 2000 28.1
frb45-21-1 45 ∗ 9692 5778 16.0
frb45-21-2 45 ∗ 57,227 379 5.5
frb45-21-3 45 ∗ 93,925 2568 16.7
frb45-21-4 45 ∗ 12,123 1690 31.6
frb45-21-5 45 ∗ 111,435 2173 18.0
frb50-23-1 50 ∗ 22,883 10,649 67.0
frb50-23-2 50 ∗ 90,753 1219 571.4
frb50-23-3 50 ∗ 196,389 17,472 2098.4
frb50-23-4 50 ∗ 119 295 54.4
frb50-23-5 50 ∗ 563 350 80.8

Table 6. Comparison of run times to find optimal or best known solution of Sloane, DIMACS, and
permutation code instances for HTS, HTS2, and SBTS. If the solution in the second column is not
achieved, the best solution found is indicated in brackets. * denotes that the best known result is
optimal

Instance Optimal or Best Known HTS (secs) HTS2 (secs) SBTS (secs)Number of Vertices

1dc.1024 94 ∗ 11,899 8 < 1
1dc.2048 172 20,561 324 < 1
1et.1024 171 ∗ 25,988 1485 < 1
1et.2048 316 ∗ 1366 5219 119.5
1tc.1024 196 ∗ 1309 69 < 1
1tc.2048 352 ∗ 797 19,786 773.5
1zc.1024 112 8880 445 2.7
1zc.2048 198 15,477 2366 23.6
2dc.1024 16 ∗ 51 < 1 < 1
2dc.2048 24 ∗ 131 34 < 1
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Table 6. Cont.

Instance Optimal or Best Known HTS (secs) HTS2 (secs) SBTS (secs)Number of Vertices

keller6 59 1057 1259 158.4
C4000_5 18 * 390 312 < 1
C2000_9 80 658 (78 �) 140,054 334,910 [
7_4 349 1,353,356 258,579 21,336
7_5 78 102,394 (73 †) 364,585 (75 ]) 215,270 (72 ‡)
8_5 cyclic 49 5163 6799 24,326.0 (46 \)
8_5 ext. cyclic 88 182 1 25.6
10_4 209 1257 3228 59.0
10_5 26 4 13 189.9
11_4 220 737 46 4.4
11_5 26 3 7 < 1
12_4 220 430 2 112.0
12_5 25 1 < 1 2
� A clique with 80 vertices was found by HTS in [2] using a pre-processing method. [ Jin and Hao
[3] report a much smaller time for successful runs, but only 2% of 100 runs were successful. † 73 was
found in 59,788 s but not improved in 906,471 s. ] In addition, smaller cliques with 74 vertices were
found 4 times in 364,585 s. ‡ 72 was found in 215,270 s but not improved in 1,399,916.1 s. \ 46 was
found in 24,326.0 s but not improved in 61,097.2 s.

For most instances, HTS2 is faster than HTS and finds a larger clique for C2000_9 than HTS
without pre-processing, and also a larger clique for 7_5 than HTS with or without pre-processing.
For BHOSLIB, most DIMACS and Sloane code construction instances, SBTS is much faster than HTS2,
as might be expected. However, HTS2 is more competitive on harder DIMACS instances, such as
C2000_9, and performs much better than SBTS on 7_5 and 8_5 cyclic. For 7_5, HTS2 found a clique
with 75 vertices once and cliques with 74 vertices four times in 364,585 s, whereas SBTS found cliques
with 72 vertices twice but could not improve this in 1,399,916.1 s. Similarly, for 8_5 cyclic, HTS2 found
a clique with 49 vertices in 6799 s, whereas SBTS found cliques with 46 vertices four times but could
not improve this in 61,097.2 s.

6. Conclusions

The replacement of the pseudoexact algorithm in HTS with an improved exact algorithm in HTS2
has allowed a pure comparison of tabu search using exact search with a more standard type of tabu
search. The interest of the authors is in code construction problems, where certain instances only
have to be solved once. The critical issue is that the largest clique possible is found, and run time is
relatively unimportant. It is clear that SBTS is much faster than HTS2 for most instances and should
be used in applications where clique problems have to be solved quickly. HTS2 has found the same
size clique in all instances except 7_5 and 8_5 cyclic, where it has found larger cliques with three more
vertices. The instance 7_5 is an important addition to the set of standard benchmarks for maximum
clique problems, as it is of a similar size to the largest benchmarks, but no algorithm has been able to
find a clique with 78 vertices that is known to exist. In summary, HTS2 finds the same size clique as
SBTS for 46 instances, more slowly for 40 instances but faster for 4 instances. It finds a larger clique
than SBTS for two instances, while SBTS never finds a larger clique than HTS2.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Code for HTS2 is
available in the Supplementary Material.
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