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Genes encoding 45S ribosomal RNA (rDNA) are known for their abundance within 
eukaryotic genomes and for their unstable copy numbers in response to changes in 
various genetic and epigenetic factors. Commonly, we understand as epigenetic factors 
(affecting gene expression without a change in DNA sequence), namely DNA methylation, 
histone posttranslational modifications, histone variants, RNA interference, nucleosome 
remodeling and assembly, and chromosome position effect. All these were actually shown 
to affect activity and stability of rDNA. Here, we focus on another phenomenon – the 
potential of DNA containing shortly spaced oligo-guanine tracts to form quadruplex 
structures (G4). Interestingly, sites with a high propensity to form G4 were described in 
yeast, animal, and plant rDNAs, in addition to G4 at telomeres, some gene promoters, 
and transposons, suggesting the evolutionary ancient origin of G4 as a regulatory module. 
Here, we present examples of rDNA promoter regions with extremely high potential to 
form G4 in two model plants, Arabidopsis thaliana and Physcomitrella patens. The high 
G4 potential is balanced by the activity of G4-resolving enzymes. The ability of rDNA to 
undergo these “structural gymnastics” thus represents another layer of the rich repertoire 
of epigenetic regulations, which is pronounced in rDNA due to its highly repetitive character.
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INTRODUCTION

Among many potential reasons to become interested in genes encoding ribosomal RNA (rRNA) 
is the possibility to study the wide range of regulatory mechanisms used to control their 
expression and genomic stability. When starting from the genomic level, genes for 45S rRNA 
(rDNA) usually form the most abundant gene family in most eukaryotes (e.g., 150 copies per 
haploid genome in Saccharomyces cerevisiae, Kobayashi et  al., 1998; 300  in human, Schmickel, 
1973; Agrawal and Ganley, 2018; and 600  in Arabidopsis thaliana, Pruitt and Meyerowitz, 
1986; Copenhaver et  al., 1995) with a considerable individual variability in a copy number. 
Variability can also be  seen in the lengths and nucleotide sequences of intergenic spacers 
separating individual transcription units of 18S-5.8S-25S transcribed by RNA Polymerase I, 
while the nucleotide sequences of genes coding for 18S, 5.8S and 25S rRNAs are highly 
conserved (reviewed in Dvorackova et  al., 2015). rDNAs form one or more tandemly arranged 
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gene clusters (nucleolus organizing regions, NORs) per haploid 
genome whose sizes are maintained within a standard range 
as a result of dynamic balance between the loss and recovery 
of individual rDNA repeats. rDNA copies are most notably 
lost by intra-chromatid recombination between distant rDNA 
copies, leading to excision of the intervening copies in the 
form of an extrachromosomal rDNA circle. These events can 
be  counteracted by various recombination events, e.g., an 
unequal sister chromatid recombination or an unequal sister 
chromatid exchange, which are induced in a response to DNA 
double strand breaks generated due to arrested replication forks 
(see Nelson et  al., 2019, for recent review).

In some organisms, e.g., S. cerevisiae (Bayev et  al., 1980) 
or the moss Physcomitrella patens (Goffova et  al., 2019), rDNA 
units also comprise 5S rRNA genes inserted in the intergenic 
spacers between individual 18S-5.8S-25S transcription units. 
5S rRNA is not present in the primary RNA Pol I  transcript 
but is transcribed by RNA Pol III. Besides RNA Pol I  and 
– in some cases – RNA Pol III promoters, intergenic spacers 
also show the presence of additional promoters (spacer 
promoters), which may promote transcription by RNA Pol 
I  or II, giving rise to non-coding (nc)RNAs affecting rRNA 
expression (Doelling et  al., 1993; Mayer et  al., 2006; Cesarini 
et  al., 2010; Earley et  al., 2010; Agrawal and Ganley, 2018).

Indeed, rDNA clusters represent a miniature system of their 
own where concurrent functions of different kinds of promoters 
and polymerases can be observed, replication origins are present 
(and obviously closely spaced), replication and transcription 
polymerases can meet and occasionally collide, and DNA repair 
mechanisms must eventually solve problems arising from all 
this apparent turmoil.

On the other hand, this mini-world has also developed 
numerous tools of precise regulation which began to 
be  understood in molecular details recently. These include a 
phenomenon termed nucleolar dominance (see, e.g., Preuss and 
Pikaard, 2007; Chandrasekhara et al., 2016; Mohannath et al., 2016).

Further, the importance of an appropriate higher order 
chromatin arrangement for rDNA stability was highlighted in 
recent studies (Pontvianne et  al., 2013, 2016), as well as was 
the role of histone chaperones in the assembly of the very 
basic units of chromatin – the nucleosomes (Mozgova et  al., 
2010; Muchova et  al., 2015; Pavlistova et  al., 2016). Further, 
the role of DNA methylation and histone acetylation in the 
control of rDNA activity has been elucidated (Probst et  al., 
2004; Grummt, 2007; Mcstay and Grummt, 2008; Pontvianne 
et  al., 2010; Schmitz et  al., 2010), as well as the enigmatic 
importance of keeping a considerable fraction of rDNA units 
inactive (Kobayashi, 2011).

In addition to all the interesting knowledge accumulated 
on rDNA/rRNA topics in the last decades, a specific feature 
of rDNA has been observed – its propensity to form tetraplex 
(quadruplex) structures (G4), which are based on guanine 
tetrads. This feature seems to be  conserved throughout 
eukaryotes (Hanakahi et  al., 1999; Hershman et  al., 2008; 
Capra et  al., 2010; Goffova et  al., 2019; Matyasek et  al., 2019; 
Mestre-Fos et  al., 2019a) and is thought to contribute 
significantly to the inherently low stability of rDNA as an 

obstacle to advancing replication forks. Stalled and collapsed 
replication forks then induce repair events which may result 
in rDNA loss or expansion (see above). Effects of the high 
propensity to form G4 structures become more evident when 
functions of intrinsic factors (e.g., specific helicases) which 
are able to dissolve G4 structures are disrupted or compromised, 
resulting in a hyper-recombinogenic character of rDNA and 
its instability.

Here, we  exemplify the role of G4 structures in rDNA of 
two model plants, P. patens and A. thaliana.

DESTABILIZATION OF RDNA DUE TO 
DYSFUNCTION OF G4-RESOLVING 
HELICASES AND COLOCALIZATION OF 
G4 SITES WITH GENE AND SPACER 
PROMOTERS IN ARABIDOPSIS 
THALIANA RDNA

In Arabidopsis thaliana, it was found recently that RecQ-mediated 
genome instability protein 2 (RMI2) and Regulator of telomere 
elongation helicase 1 (RTEL1) contribute to the stability of the 
45S rDNA copy number (Rohrig et al., 2016). RMI2 in Arabidopsis, 
as well as in yeasts and humans, acts for a proper dissolution 
of recombination intermediates, thereby suppressing a hyper-
recombinogenic phenotype (Wu and Hickson, 2003). Also, RTEL1 
(initially described in Caenorhabditis elegans) functions as a 
Fe-S cluster helicase suppressing inappropriate recombination 
events by promoting disassembly of D-loop recombination. 
Furthermore, RTEL1 can dissolve quadruplex (G4) DNA structures 
that otherwise block the extension of telomeres by telomerase 
(Vannier et  al., 2012), and in humans, its dysfunction causes 
Hoyeraal-Hreidarsson syndrome, a severe form of dyskeratosis 
congenita, which is characterized by short telomeres and genome 
instability (Le Guen et  al., 2013; Vannier et  al., 2013, 2014; 
Faure et al., 2014). RTEL1 also promotes genome-wide replication 
through its interaction with PCNA, increasing replication fork 
stability, extension rates, and origin usage (Vannier et al., 2013).

Both AtRMI2 and AtRTEL1 participate in the maintenance 
of rDNA stability in parallel pathways. In atrmi2 plants, 45S 
rDNA decreased to 80%, in atrtel1 plants to 40%, and in 
double atrmi2 atrtel1 mutants to ca. 30% of their standard 
copy number (Rohrig et  al., 2016). A similar contribution to 
rDNA stability was also observed in another Fe-S cluster helicase 
– FANCJ homolog in Arabidopsis – AtFANCJB (Dorn et al., 2019).

These results are consistent with the fact that A. thaliana 
rDNA repeat units show the presence of a cluster of sites 
with a strong potential to form a G4 structure (Figure  1). 
The highest score obtained using the pqsfinder tool (Hon et al., 
2017; Labudova et  al., 2020) coincides with the gene promoter 
(GP) site, reaching a value (77) higher than the scores of the 
best characterized G4-forming DNAs, plant or human telomeric 
repeats (60 and 64, respectively; Goffova et al., 2019). Presumably, 
formation of G4  in the plus-strand at the promoter sites may 
strongly inhibit 45S rDNA transcription and slow down its 
replication. Two other G4 sites were detected at spacer promoters, 
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SP1 and SP2. Interestingly, the number of spacer promoters 
(and, consequently, a number of G4s) varies among rDNA 
units in A. thaliana (Havlova et al., 2016), which may represent 
a novel layer in regulation of transcription and replication of 
individual rDNA units. Yet, additional G4 sites were found 
inside the coding regions for 18S rRNA and 25S rRNA (Figure 1). 
These results are thus consistent with the view that G4 sites 
play important roles not only in rDNA replication and genome 
stability (supported by the abovementioned observations on 
A. thaliana helicase mutants) but also in control of 
rDNA transcription.

IN ADDITION TO THE FEATURES 
OBSERVED IN ARABIDOPSIS THALIANA, 
A CLUSTER OF G4 SITES SEPARATES 
5S AND 18S RRNA GENES 
TRANSCRIBED WITH POL III AND POL 
I, RESPECTIVELY, IN PHYSCOMITRELLA 
PATENS

The situation in P. patens rDNA is complicated by the linked 
arrangement between 18S-5.8S-25S units and 5S rRNA genes. This 
arrangement has been demonstrated recently (Goffova et al., 2019) 

and is congruent with its earlier description in a liverwort, Marchantia 
polymorpha, and a moss Funaria hygrometrica (Sone et  al., 1999), 
as well as with a later systematic study in land plants (Wicke 
et  al., 2011). P. patens RTEL1 mutants (pprtel1), similar to atrtel1 
mutants, also show a marked decrease of 18S rDNA copies 
(representing 45S rDNA), but, in addition, a comparable decrease 
of 5S rDNA is observed (Goffova et al., 2019). Interestingly, while 
reduced relative transcript levels of 18S rRNA roughly correspond 
to the decrease in their genomic copies in pprtel1 plants, reduction 
in 5S rRNA transcripts is more pronounced, without any obvious 
relation to 5S rDNA copy number. This indicates a relatively 
independent regulation of 5S and 45S rDNA transcription.

In a search of a mechanistic explanation of our results, 
we  found a noticeable clustering of putative G4 sites in the 
spacer region between 5S and 18S rRNA genes (Goffova et  al., 
2019). Prediction of G4 propensity revealed a particularly strong 
site in the plus-strand (thus with a presumable inhibitory role 
in transcription) ca. 500  bp upstream of the 18S rRNA gene 
where the pqsfinder score reached a value of 132, which is 
twice higher than that of telomere DNA. These results were 
confirmed by another prediction tool, G4Hunter (Bedrat et  al., 
2016). An independent indication of the high G4 potential of 
this region was supported by our observation that PCR 
amplification was problematic across the linker between the 
5S and 18S rRNA genes, requiring addition of dimethyl sulfoxide 

A

B

FIGURE 1 | Distribution of potential G4-forming sequences over the 45S ribosomal DNA (rDNA) unit of Arabidopsis thaliana. (A) Map of the rDNA unit using the 
data from Chandrasekhara et al. (2016), and the Geneious software platform (Biomatters, Auckland, New Zealand). Positions of 3' external transcribed Spacer 
(3ETS), spacer promoter 1 and 2 (SP1, SP2, respectively), gene promoter (GP) and 18S, 5.8S, and 25S rRNA genes are indicated. (B) Positions and scores of G4 
structures predicted using pqsfinder (Hon et al., 2017) and plotted with the Bioconductor package Gviz (Hahne and Ivanek, 2016).
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(DMSO) to the reaction mixture. Furthermore, our repeat 
clustering analysis indicated a high potential of this region to 
form non-canonical structures by a dramatically (two orders 
of magnitude) lower number of NGS reads when compared 
with the neighboring regions (Goffova et  al., 2019). Thus, it 
is conceivable that in addition to the G4 roles suggested in 
A. thaliana rDNA based on experiments and predictions, yet 
another putative function is provided by G4 sites in P. patens 
– a protection against collision or interference between advancing 
RNA Polymerases I  and III. This hypothesis is supported by 
the absence of any sites of a comparable G4 potential in A. 
thaliana 5S rDNA unit, which is located separately from the 
45S rDNA locus (Figure  2).

CONCLUSION

G4 formation and resolution can be  regarded as a dynamic 
switch whose identity is defined genetically – through its 
primary DNA sequence – but its “ON” and “OFF” states are 
controlled by the local availability of G4-targeting proteins or 
other ligands that affect the G4 stability positively or negatively. 
As this switch acts in control of transcription and replication 

without a change in the primary DNA sequence, we  suggest 
that the formation of G4 structures (and possibly also the 
other relevant non-canonical DNA secondary structures) be 
included among epigenetic mechanisms.

In rDNA, epigenetic effects of G4 formation can be expected 
preferentially at active copies (where a lesser nucleosome density 
or even nucleosome removal can be expected around transcription 
start sites – thereby facilitating formation of G4) or during 
replication when DNA strands are temporarily separated and 
noncanonical intrastrand structures can be formed. In addition 
to G4s formed by rDNA as discussed above, recent results 
suggest possible roles of G4s formed by rRNAs. Interestingly, 
these potential G4s are located on surfaces of both subunits 
of the human ribosome (Mestre-Fos et  al., 2019b). When 
assuming that rRNA is the most abundant fraction of cellular 
RNA, then these G4-rRNAs clearly dominate the total population 
of RNA quadruplexes, thus indicating another perspective topic 
of future studies.
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