AN INTERESTING APPLICATION OF THE BRITISH FLAG THEOREM

NGUYEN MINH HA AND DAO THANH OAI

Abstract. We will use the British flag theorem to prove an elegant theorem for two similarly oriented regular polygons-2n.
MSC 2010: 51M04, 51M25.
Keywords: signed distances, centroid, circumcenter.

1. Introduction

The British flag theorem is one of the simplest theorems in plane geometry.
Theorem 1.1 (British flag). If $A B C D$ be a rectangle and P be any point on the plane, then

$$
\begin{equation*}
P A^{2}+P C^{2}=P B^{2}+P D^{2} \tag{1}
\end{equation*}
$$

Theorem 1.1 could easily be given as an assignment for secondary school students after they have learnt the Pythagoras theorem. Theorem 1.1 can be found in [1,p.87]. It is impossible to list all the applications of theorem 1.1. In this article, by proving a new theorem, an elegant theorem for two similarly oriented regular polygons- 2 n , we will be introducing another interesting application of theorem 1.1.
The new theorem is stated using the concept of signed area of a quadrilateral.
Definition 1.1. The signed area of a quadrangle $X Y Z T$ is a number, denoted as $S[X Y Z T]$, and defined as $S[X Y Z T]=\frac{1}{2} X Z \wedge Y T$, where notation $\boldsymbol{a} \wedge \boldsymbol{b}$ refers to the cross product of two vectors \boldsymbol{a} and \boldsymbol{b}, i.e. $\boldsymbol{a} \wedge \boldsymbol{b}=\frac{1}{2}|\boldsymbol{a}||\boldsymbol{b}| \sin (\boldsymbol{a}, \boldsymbol{b})$, where $(\boldsymbol{a}, \boldsymbol{b})$ is the directional angle between two vectors \boldsymbol{a} and \boldsymbol{b}.
Apparently, $S[X Y Z T]=S[Y Z T X]=S[Z T X Y]=S[T X Y Z]$.
Denote the area of a polygon as $S($.$) .$

- $S[X Y Z T]=S(X Y Z T)$ if quadrangle XYZT is convex and positively orientated (f.1a);
- $S[X Y Z T]=S(X Y Z)-S(X T Z)$ if quadrangle $X Y Z T$ is concave at T and triangle $X Y Z$
is positively orientated (f.1b);
- $S[X Y Z T]=S(X Y O)-S(Z T O)$ if quadrangle $X Y Z T$ cuts itself at $O=X T \cap Y Z$ and triangle XYO is positively orientated (f.1c);
- $S[X Y Z T]=S(Z T O)-S(X Y O)$ if quadrangle XYZT cuts itself at $O=X T \cap Y Z$ and triangle XYO is negatively orientated (f.1.d).
The yellow triangles on figures 1 are positively orientated (1.a, 1.b, 1.c, 1.d) and the green ones are negatively orientated (1.b, 1,c, 1.d). Definition 1.1 can be found in [2, pp. 178184].

(f.1.a)

(f.1.b)

(f.1.c)

(f.1.d)

Theorem 1.2. If $A_{1} A_{2} \ldots A_{2 n}$ and $B_{1} B_{2} \ldots B_{2 n}$ are two similarly oriented regular polygons, then $S\left[A_{i} A_{i+1} B_{i+1} B_{i}\right]+S\left[A_{n+i} A_{n+i+1} B_{n+i+1} B_{n+i}\right]$ is constant for any $i \in\{1 ; 2 ; \ldots ; 2 n\}$, assuming that $A_{2 n+1}=A_{1}$ and $B_{2 n+1}=B_{1}$.

Due to the concept of signed area in theorem 1.2, regular polygon $B_{1} B_{2} \ldots B_{2 n}$ does not have to lie inside regular polygon $A_{1} A_{2} \ldots A_{2 n}$; quadrangles $A_{i} A_{i+1} B_{i+1} B_{i}$ and $A_{n+i} A_{n+i+1} B_{n+i+1} B_{n+i}$ can cut themselves for any $i \in\{1 ; 2 ; \ldots ; 2 n\}$, assuming that $A_{2 n+1}=$ A_{1} and $B_{2 n+1}=B_{1}$.

2. Proof of the theorem 1.2

First, we need one lemma.
Lemma 2.1. If $A B C D$ and $A_{0} B_{0} C_{0} D_{0}$ are two similar and similarly oriented rectangles, then

$$
S\left[A B B_{0} A_{0}\right]+S\left[C D D_{0} C_{0}\right]=\frac{1}{2}\left(A B \wedge A C-A_{0} B_{0} \wedge A_{0} C_{0}\right)
$$

Proof of lemma 2.1. Because $A B C D$ and $A_{0} B_{0} C_{0} D_{0}$ are similar and similarly oriented, there exist a point P, which is the centre of spiral similarity transforming $A B C D$ into $A_{0} B_{0} C_{0} D_{0}$ and real numbers k and α such that (f.2).

$$
\begin{aligned}
& \frac{P A_{0}}{P A}=\frac{P B_{0}}{P B}=\frac{P C_{0}}{P C}=\frac{P D_{0}}{P D}=k ; \\
& \left(\mathbf{P A}, \mathbf{P A} \mathbf{A}_{\mathbf{0}}\right) \equiv(\mathbf{P B}, \mathbf{P B} \mathbf{0}) \equiv\left(\mathbf{P C}, \mathbf{P C}_{\mathbf{0}}\right) \equiv\left(\mathbf{P D}, \mathbf{P D}_{\mathbf{0}}\right) \equiv \alpha(\bmod 2 \pi) .
\end{aligned}
$$

Thus, by theorem 1.1, noting that $\mathbf{C D}=-\mathbf{A B} ; \mathbf{C}_{0} \mathbf{D}_{0}=-\mathbf{A}_{\mathbf{0}} \mathbf{B}_{0}$, we have

(f.2.a)

(f.2.b)

```
\(2\left(S\left[A B B_{0} A_{0}\right]+S\left[C D D_{0} C_{0}\right]\right)\)
\(=\mathbf{A B}_{0} \wedge \mathbf{B A}_{\mathbf{0}}+\mathbf{C D}_{0} \wedge \mathrm{DC}_{\mathbf{0}}\)
\(=\left(\mathbf{P B}_{\mathbf{0}}-\mathbf{P A}\right) \wedge\left(\mathbf{P A}_{\mathbf{0}}-\mathbf{P B}\right)+\left(\mathbf{P D}_{\mathbf{0}}-\mathbf{P C}\right) \wedge\left(\mathbf{P C}_{\mathbf{0}}-\mathbf{P D}\right)\)
\(=-\mathbf{P B}_{\mathbf{0}} \wedge \mathbf{P B}-\mathbf{P A} \wedge \mathbf{P A}_{\mathbf{0}}+\mathbf{P A} \wedge \mathbf{P B}+\mathbf{P B}_{\mathbf{0}} \wedge \mathbf{P A}_{\mathbf{0}}\)
    \(-\mathbf{P D}_{0} \wedge \mathbf{P D}-\mathbf{P C} \wedge \mathbf{P C}_{0}+\mathbf{P C} \wedge \mathbf{P D}+\mathbf{P D}_{0} \wedge \mathbf{P C}_{0}\)
\(=P B_{0} \cdot P B \sin \alpha-P A \cdot P A_{0} \sin \alpha+P D_{0} \cdot P D \sin \alpha-P C \cdot P C_{0} \sin \alpha\)
\(+\mathbf{P A} \wedge(\mathbf{P A}+\mathbf{A B})+\mathbf{P C} \wedge(\mathbf{P C}+\mathbf{C D})+\left(\mathbf{P} \mathbf{A}_{\mathbf{0}}+\mathbf{A}_{\mathbf{0}} \mathbf{B}_{\mathbf{0}}\right) \wedge \mathbf{P} \mathbf{A}_{\mathbf{0}}+\left(\mathbf{P C}_{\mathbf{0}}+\mathbf{C}_{\mathbf{0}} \mathbf{D}_{\mathbf{0}}\right) \wedge \mathbf{P C}_{\mathbf{0}}\)
\(=k \sin \alpha\left(P B^{2}+P D^{2}-P A^{2}-P C^{2}\right)+\mathbf{P A} \wedge \mathbf{A B}+\mathbf{P C} \wedge \mathbf{C D}+\mathbf{A}_{\mathbf{0}} \mathbf{B}_{\mathbf{0}} \wedge \mathbf{P A}_{\mathbf{0}}+\mathbf{C}_{\mathbf{0}} \mathbf{D}_{\mathbf{0}} \wedge \mathbf{P C}_{\mathbf{0}}\)
\(=-\mathbf{A B} \wedge \mathbf{P A}+\mathbf{A B} \wedge \mathbf{P C}+\mathbf{A}_{0} \mathbf{B}_{0} \wedge \mathbf{P} \mathbf{A}_{0}-\mathbf{A}_{\mathbf{0}} \mathbf{B}_{0} \wedge \mathbf{P C}_{0}\)
\(=\mathbf{A B} \wedge(\mathbf{P C}-\mathbf{P A})-\mathbf{A}_{\mathbf{0}} \mathbf{B}_{\mathbf{0}} \wedge\left(\mathbf{P C}_{\mathbf{0}}-\mathbf{P} \mathbf{A}_{\mathbf{0}}\right)\)
\(=\left(\mathbf{A B} \wedge \mathbf{A C}-\mathbf{A}_{0} \mathbf{B}_{0} \wedge \mathrm{~A}_{0} \mathrm{C}_{\mathbf{0}}\right)\).
```

Therefore, $\mathrm{S}\left[A B B_{0} A_{0}\right]+S\left[C D D_{0} C_{0}\right]=\frac{1}{2}\left(\mathbf{A B} \wedge \mathbf{A C}-\mathbf{A}_{\mathbf{0}} \mathbf{B}_{\mathbf{0}} \wedge \mathbf{A}_{\mathbf{0}} \mathbf{C}_{\mathbf{0}}\right)$.
Note. A Spiral similarity with center P , rotation angle α and similarity coefficient k is the sum of a central similarity with center P and similarity coefficient k and a rotation about P through the angle α, taken in either order [3, p.36].
Next, we are going to prove theorem 1.2 (f.3.a, f.3.b).
Without the loss of generality, assume that $A_{1} A_{2} \ldots A_{2 n}$ and $B_{1} B_{2} \ldots B_{2 n}$ are positively oriented.
Let O_{a} and O_{b} are the centres of $A_{1} A_{2} \ldots A_{2 n}$ and $B_{1} B_{2} \ldots B_{2 n}$ respectively.

Because $A_{1} A_{2} \ldots A_{2 n}$ and $B_{1} B_{2} \ldots B_{2 n}$ are regular polygons that share a positive orientation, $A_{i} A_{i+1} A_{i+n} A_{i+1+n}$ and $B_{i} B_{i+1} B_{i+n} B_{i+1+n}$ are similar and positively oriented rectangles for any $i \in\{1 ; 2 ; \ldots ; n\}$, assuming that $A_{2 n+1}=A_{1}$ and $B_{2 n+1}=B_{1}$.
Hence, by the lemma 2.1, we have

$$
\begin{aligned}
& S\left[A_{i} A_{i+1} B_{i+1} B_{i}\right]+S\left[A_{i+n} A_{i+1+n} B_{i+1+n} B_{i+n}\right] \\
= & \frac{1}{2}\left(\mathbf{A}_{\mathbf{i}} \mathbf{A}_{\mathbf{i}+\mathbf{1}} \wedge \mathbf{A}_{\mathbf{i}} \mathbf{A}_{\mathbf{i + n}}-\mathbf{B}_{\mathbf{i}} \mathbf{B}_{\mathbf{i}+\mathbf{+}} \wedge \mathbf{B}_{\mathbf{i}} \mathbf{B}_{\mathbf{i}+\mathbf{n}}\right) \\
= & \frac{1}{2}\left(A_{i} A_{i+1} \cdot A_{i} A_{i+n} \sin \left(\mathbf{A}_{\mathbf{i}} \mathbf{A}_{\mathbf{i}+\mathbf{1}}, \mathbf{A}_{\mathbf{i}} \mathbf{A}_{\mathbf{i}+\mathbf{n}}\right)-B_{i} B_{i+1} \cdot B_{i} B_{i+n} \sin \left(\mathbf{B}_{\mathbf{i}} \mathbf{B}_{\mathbf{i}+\mathbf{+}}, \mathbf{B}_{\mathbf{i}} \mathbf{B}_{\mathbf{i}+\mathbf{n}}\right)\right) \\
= & \frac{1}{2}\left(A_{i} A_{i+1} \cdot A_{i} A_{i+n} \sin A_{i+1} A_{i} A_{i+n}-B_{i} B_{i+1} \cdot B_{i} B_{i+n} \sin B_{i+1} B_{i} B_{i+n}\right) \\
= & \frac{1}{2}\left(2 S\left(A_{i} A_{i+1} A_{i+n}\right)-2 S\left(B_{i} B_{i+1} B_{i+n}\right)\right) \\
= & \frac{1}{2}\left(4 S\left(O_{a} A_{i} A_{i+1}\right)-4 S\left(O_{b} B_{i} B_{i+1}\right)\right) \\
= & 2\left(S\left(O_{a} A_{i} A_{i+1}\right)-S\left(O_{b} B_{i} B_{i+1}\right)\right) \\
= & 2\left(\frac{1}{2 n} S\left(A_{1} A_{2} \ldots A_{2 n}-\frac{1}{2 n} S\left(B_{1} B_{2} \ldots B_{2 n}\right)\right)\right. \\
= & \frac{1}{n}\left(S\left(A_{1} A_{2} \ldots A_{2 n}\right)-S\left(B_{1} B_{2} \ldots B_{2 n}\right)\right) .
\end{aligned}
$$

This means that $S\left[A_{i} A_{i+1} B_{i+1} B_{i}\right]+S\left[A_{n+i} A_{n+i+1} B_{n+i+1} B_{n+i}\right]$ is constant for any $i \in$ $\{1 ; 2 ; \ldots ; 2 n\}$, assuming that $A_{2 n+1}=A_{1}$ and $B_{2 n+1}=B_{1}$.

References

[1] Oliver Byrne, The First Six Books of the Elements of Euclid, London, (1847).
[2] Nguyen Minh Ha and Nguyen Xuan Binh, Bai tap nang cao va mot so chuyen de hinh hoc 10, Ha noi, (2012).
[3] I. M. Yaglom, Transformations II, New York, (1968).
Hanoi University of Education,
Hanoi, Vietnam
E-mail address: minhha27255@yahoo.com
Cao Mai Doai, Quang Trung, Kien Xuong,
Thai Binh, Vietnam
E-mail address: daothanhoai@hotmail.com

