Global Journal of Advanced Research on Classical and Modern Geometries ISSN: 2284-5569, Vol.4, (2015), Issue 1, pp.31-34

AN INTERESTING APPLICATION OF THE BRITISH FLAG THEOREM

NGUYEN MINH HA AND DAO THANH OAI

ABSTRACT. We will use the British flag theorem to prove an elegant theorem for two similarly oriented regular polygons-2n.

MSC 2010: 51M04, 51M25.

Keywords: signed distances, centroid, circumcenter.

1. INTRODUCTION

The British flag theorem is one of the simplest theorems in plane geometry.

Theorem 1.1 (British flag). If ABCD be a rectangle and P be any point on the plane, then

$$PA^2 + PC^2 = PB^2 + PD^2 \tag{1}$$

Theorem 1.1 could easily be given as an assignment for secondary school students after they have learnt the Pythagoras theorem. Theorem 1.1 can be found in [1,p.87]. It is impossible to list all the applications of theorem 1.1. In this article, by proving a new theorem, an elegant theorem for two similarly oriented regular polygons-2n, we will be introducing another interesting application of theorem 1.1.

The new theorem is stated using the concept of signed area of a quadrilateral.

Definition 1.1. The signed area of a quadrangle XYZT is a number, denoted as S[XYZT], and defined as $S[XYZT] = \frac{1}{2}XZ \wedge YT$, where notation $a \wedge b$ refers to the cross product of two vectors a and b, i.e. $a \wedge b = \frac{1}{2} |a| |b| \sin(a, b)$, where (a, b) is the directional angle between two vectors a and b.

Apparently, S[XYZT] = S[YZTX] = S[ZTXY] = S[TXYZ]. Denote the area of a polygon as S(.).

• S[XYZT] = S(XYZT) if quadrangle XYZT is convex and positively orientated (f.1a);

• S[XYZT] = S(XYZ) - S(XTZ) if quadrangle XYZT is concave at T and triangle XYZ is positively orientated (f.1b);

• S[XYZT] = S(XYO) - S(ZTO) if quadrangle XYZT cuts itself at $O = XT \cap YZ$ and triangle XYO is positively orientated (f.1c);

• S[XYZT] = S(ZTO) - S(XYO) if quadrangle XYZT cuts itself at $O = XT \cap YZ$ and triangle XYO is negatively orientated (f.1.d).

The yellow triangles on figures 1 are positively orientated (1.a, 1.b, 1.c, 1.d) and the green ones are negatively orientated (1.b, 1,c, 1.d). Definition 1.1 can be found in [2, pp. 178-184].

Theorem 1.2. If $A_1A_2...A_{2n}$ and $B_1B_2...B_{2n}$ are two similarly oriented regular polygons, then $S[A_iA_{i+1}B_{i+1}B_i] + S[A_{n+i}A_{n+i+1}B_{n+i+1}B_{n+i}]$ is constant for any $i \in \{1; 2; ...; 2n\}$, assuming that $A_{2n+1} = A_1$ and $B_{2n+1} = B_1$.

Due to the concept of signed area in theorem 1.2, regular polygon $B_1B_2...B_{2n}$ does not have to lie inside regular polygon $A_1A_2...A_{2n}$; quadrangles $A_iA_{i+1}B_{i+1}B_i$ and $A_{n+i}A_{n+i+1}B_{n+i+1}B_{n+i}$ can cut themselves for any $i \in \{1; 2; ...; 2n\}$, assuming that $A_{2n+1} = A_1$ and $B_{2n+1} = B_1$.

2. Proof of the theorem 1.2

First, we need one lemma.

Lemma 2.1. If ABCD and $A_0B_0C_0D_0$ are two similar and similarly oriented rectangles, then

$$S[ABB_0A_0] + S[CDD_0C_0] = \frac{1}{2} (AB \wedge AC - A_{\theta}B_{\theta} \wedge A_{\theta}C_{\theta}).$$

Proof of lemma 2.1. Because *ABCD* and $A_0B_0C_0D_0$ are similar and similarly oriented, there exist a point *P*, which is the centre of spiral similarity transforming *ABCD* into $A_0B_0C_0D_0$ and real numbers *k* and α such that (f.2).

$$\frac{\frac{PA_0}{PA}}{PA} = \frac{\frac{PB_0}{PB}}{\frac{PB}{PC}} = \frac{\frac{PC_0}{PD}}{\frac{PD}{PD}} = k;$$

(PA, PA₀) \equiv (PB, PB₀) \equiv (PC, PC₀) \equiv (PD, PD₀) $\equiv \alpha \pmod{2\pi}$.

Thus, by theorem 1.1, noting that CD = -AB; $C_0D_0 = -A_0B_0$, we have

 $\begin{aligned} &2\left(S\left[ABB_{0}A_{0}\right]+S\left[CDD_{0}C_{0}\right]\right)\\ &=\mathbf{AB_{0}}\wedge\mathbf{BA_{0}}+\mathbf{CD_{0}}\wedge\mathbf{DC_{0}}\\ &=\left(\mathbf{PB_{0}}-\mathbf{PA}\right)\wedge\left(\mathbf{PA_{0}}-\mathbf{PB}\right)+\left(\mathbf{PD_{0}}-\mathbf{PC}\right)\wedge\left(\mathbf{PC_{0}}-\mathbf{PD}\right)\\ &=-\mathbf{PB_{0}}\wedge\mathbf{PB}-\mathbf{PA}\wedge\mathbf{PA_{0}}+\mathbf{PA}\wedge\mathbf{PB}+\mathbf{PB_{0}}\wedge\mathbf{PA_{0}}\\ &-\mathbf{PD_{0}}\wedge\mathbf{PD}-\mathbf{PC}\wedge\mathbf{PC_{0}}+\mathbf{PC}\wedge\mathbf{PD}+\mathbf{PD_{0}}\wedge\mathbf{PC_{0}}\\ &=PB_{0}\cdot PB\sin\alpha-PA\cdot PA_{0}\sin\alpha+PD_{0}\cdot PD\sin\alpha-PC\cdot PC_{0}\sin\alpha\\ &+\mathbf{PA}\wedge\left(\mathbf{PA}+\mathbf{AB}\right)+\mathbf{PC}\wedge\left(\mathbf{PC}+\mathbf{CD}\right)+\left(\mathbf{PA_{0}}+\mathbf{A_{0}B_{0}}\right)\wedge\mathbf{PA_{0}}+\left(\mathbf{PC_{0}}+\mathbf{C_{0}D_{0}}\right)\wedge\mathbf{PC_{0}}\\ &=k\sin\alpha\left(PB^{2}+PD^{2}-PA^{2}-PC^{2}\right)+\mathbf{PA}\wedge\mathbf{AB}+\mathbf{PC}\wedge\mathbf{CD}+\mathbf{A_{0}B_{0}}\wedge\mathbf{PA_{0}}+\mathbf{C_{0}D_{0}}\wedge\mathbf{PC_{0}}\\ &=-\mathbf{AB}\wedge\mathbf{PA}+\mathbf{AB}\wedge\mathbf{PC}+\mathbf{A_{0}B_{0}}\wedge\mathbf{PA_{0}}-\mathbf{A_{0}B_{0}}\wedge\mathbf{PC_{0}}\\ &=\mathbf{AB}\wedge\left(\mathbf{PC}-\mathbf{PA}\right)-\mathbf{A_{0}B_{0}}\wedge\left(\mathbf{PC_{0}}-\mathbf{PA_{0}}\right)\\ &=\left(\mathbf{AB}\wedge\mathbf{AC}-\mathbf{A_{0}B_{0}}\wedge\mathbf{A_{0}C_{0}}\right).\end{aligned}$

Therefore, $S[ABB_0A_0] + S[CDD_0C_0] = \frac{1}{2} (AB \land AC - A_0B_0 \land A_0C_0)$. **Note.** A Spiral similarity with center P, rotation angle α and similarity coefficient k is the sum of a central similarity with center P and similarity coefficient k and a rotation about P through the angle α , taken in either order [3, p.36].

Next, we are going to prove theorem 1.2 (f.3.a, f.3.b).

Without the loss of generality, assume that $A_1A_2...A_{2n}$ and $B_1B_2...B_{2n}$ are positively oriented.

Let O_a and O_b are the centres of $A_1A_2...A_{2n}$ and $B_1B_2...B_{2n}$ respectively.

Because $A_1A_2...A_{2n}$ and $B_1B_2...B_{2n}$ are regular polygons that share a positive orientation, $A_iA_{i+1}A_{i+n}A_{i+1+n}$ and $B_iB_{i+1}B_{i+n}B_{i+1+n}$ are similar and positively oriented rectangles for any $i \in \{1; 2; ...; n\}$, assuming that $A_{2n+1} = A_1$ and $B_{2n+1} = B_1$. Hence, by the lemma 2.1, we have

$$\begin{split} & S \left[A_i A_{i+1} B_{i+1} B_i \right] + S \left[A_{i+n} A_{i+1+n} B_{i+1+n} B_{i+n} \right] \\ &= \frac{1}{2} \left(A_i A_{i+1} \wedge A_i A_{i+n} - B_i B_{i+1} \wedge B_i B_{i+n} \right) \\ &= \frac{1}{2} \left(A_i A_{i+1} A_i A_{i+n} \sin \left(A_i A_{i+1} A_i A_{i+n} \right) - B_i B_{i+1} B_i B_{i+n} \sin \left(B_i B_{i+1} , B_i B_{i+n} \right) \right) \\ &= \frac{1}{2} \left(A_i A_{i+1} A_i A_{i+n} \sin A_{i+1} A_i A_{i+n} - B_i B_{i+1} B_i B_{i+n} \sin B_{i+1} B_i B_{i+n} \right) \\ &= \frac{1}{2} \left(2S(A_i A_{i+1} A_{i+n}) - 2S(B_i B_{i+1} B_{i+n}) \right) \\ &= \frac{1}{2} \left(4S(O_a A_i A_{i+1}) - 4S(O_b B_i B_{i+1}) \right) \\ &= 2 \left(S(O_a A_i A_{i+1}) - S(O_b B_i B_{i+1}) \right) \\ &= 2 \left(S(O_a A_i A_{i+1}) - S(O_b B_i B_{i+1}) \right) \\ &= \frac{1}{n} \left(S(A_1 A_2 ... A_{2n}) - \frac{1}{2n} S(B_1 B_2 ... B_{2n}) \right) . \end{split}$$

This means that $S[A_iA_{i+1}B_{i+1}B_i] + S[A_{n+i}A_{n+i+1}B_{n+i+1}B_{n+i}]$ is constant for any $i \in \{1; 2; ...; 2n\}$, assuming that $A_{2n+1} = A_1$ and $B_{2n+1} = B_1$.

References

[1] Oliver Byrne, *The First Six Books of the Elements of Euclid*, London, (1847).

[2] Nguyen Minh Ha and Nguyen Xuan Binh, Bai tap nang cao va mot so chuyen de hinh hoc 10, Ha noi, (2012).

[3] I. M. Yaglom, Transformations II, New York, (1968).

HANOI UNIVERSITY OF EDUCATION, HANOI, VIETNAM *E-mail address*: minhha27255@yahoo.com

CAO MAI DOAI, QUANG TRUNG, KIEN XUONG, THAI BINH, VIETNAM *E-mail address*: daothanhoai@hotmail.com