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Abstract

We review and pay tribute to a result on convergent systems by the Russian mathematician Boris Pavlovich Demidovich.
In a sense, Demidovich’s approach forms a prelude to a 7eld which is now called incremental stability of dynamical systems.
Developments on incremental stability are reviewed from a historical perspective.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Stability analysis is one of the main issues in the re-
search on dynamical systems. In most of the results in
this area, stability is considered either with respect to
a particular solution or with respect to some invariant
set. At the same time, in some cases it can be more im-
portant to focus on stability properties of all solutions
rather than of one particular a priori known solution
or set. Especially, it is of interest under what condi-
tions all solutions of a system are (globally) asymp-
totically stable? Using asymptotic stability of all
solutions instead of the conventional asymptotic
stability of one particular solution, can have some

� This work is supported by the Netherlands Organization for
Scienti7c Research (NWO).

∗ Corresponding author. Tel.: +31-40-247-4092;
fax: +31-40-246-1418.

E-mail addresses: a.pavlov@tue.nl (A. Pavlov),
a.pogromsky@tue.nl (A. Pogromsky), n.v.d.wouw@tue.nl
(N. van de Wouw), h.nijmeijer@tue.nl (H. Nijmeijer).

bene7ts. For example, when solving a tracking prob-
lem, one needs to ensure, by applying some feedback
law, the existence and global asymptotic stability of a
solution along which the output equals the reference
signal. In order to do this within the conventional ap-
proach, one needs, 7rst, to )nd such solution and, sec-
ond, to prove its global asymptotic stability. In some
cases, )nding such solution can be a diGcult task. A
diHerent approach that avoids this problem would be
to ensure global asymptotic stability of every solution
and then to show the existence of a solution for which
the output equals the reference signal.
The interest in stability of solutions with respect

to each other increased recently, in particular, in the
context of synchronization problems. Several papers
studying such stability properties in their own re-
spect appeared [6,11,1,8]. In this paper, we would
like to look at such properties from a historical per-
spective and to pay tribute to B.P. Demidovich—
a Russian mathematician, who was one of the pi-
oneers in this area (see the end of the paper for
a short biography). Although in Russia his results
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were included in one of the classical textbooks on
stability theory [4], they were not translated into
English and are not widely known outside Russia.
For the sake of readability, we intentionally pay
more attention to ideas than to technical details.
An interested reader can 7nd all proofs and technical
details in the references.

2. Convergent dynamics

Probably one of the 7rst results on asymptotic sta-
bility of all solutions of a nonlinear system is due to
Demidovich. In his paper published in 1961 [3], he
studied nonlinear systems of the form

ẋ = f(x; t); x∈Rn; t ∈R; (1)

with f(x; t) being continuous in t and continuously
diHerentiable in x. He showed that if, for some positive
de7nite matrix P = PT¿ 0, the matrix

J (x; t) :=
1
2

[
P
9f
9x (x; t) +

(
9f
9x (x; t)

)T

P

]
(2)

is negative de7nite uniformly in (x; t)∈Rn × R, then
the diHerence between any two solutions of system
(1) decreases exponentially:

|x1(t)− x2(t)|6Ce−
(t−t0)|x1(t0)− x2(t0)|; (3)

where C¿ 0 and 
¿ 0 are the same for all so-
lutions x1(t) and x2(t). An additional condition
|f(0; t)|6 c¡+∞, for all t, prevents a 7nite escape
time, and thus makes all solutions globally uniformly
exponentially stable. As a particular case of this re-
sult, for f(0; t) ≡ 0 one obtains the well-known
Krasovskii stability theorem [10].
The proof of the Demidovich result is based on

the analysis of the quadratic Lyapunov-type function
V (x1; x2) := 1

2 (x1 − x2)TP(x1 − x2). After computing
the derivative of V (x1(t); x2(t)) along any two solu-
tions x1(t) and x2(t) of system (1) and applying the
mean value theorem, one can easily see, that uniform
negative de7niteness of the matrix J (x; t) guarantees
d=dt[V (x1(t); x2(t))]6 − 2
V (x1(t); x2(t)) for some
positive 
. This, in turn, implies (3).
Given the relatively recent developments of diHer-

ent LMI methods [2], the result of Demidovich is pow-
erful. For example, if the Jacobian of f(x; t) belongs
to a convex hull of some matrices A1; : : : ; Ak and there
exists a common positive de7nite solution P to the set

of LMIs PAi + ATi P¡ 0, i=1; : : : ; k, then, for this P,
the matrix J (x; t) is uniformly negative de7nite and
thus the result of Demidovich applies. Nowadays, the
above mentioned LMIs can be easily solved numeri-
cally.
Back in the 1960s, the development of absolute sta-

bility methods (which started the systematic use of
LMIs in nonlinear control) allowed Yakubovich [15]
to establish suGcient conditions for global asymptotic
stability of all solutions for systems of the form

ẋ = Ax + B�(y) + F(t);

y = Cx; (4)

where �(y) is a (possibly discontinuous) scalar non-
linearity satisfying for some �1¡�2 the incremental
sector condition

�16
�(y1)− �(y2)
y1 − y2 6 �2: (5)

These suGcient conditions, which are related to the
matrices A, B and C and stated in the form of the
Circle criterion, guarantee global uniform exponen-
tial stability of all solutions for any nonlinearity
�(y) satisfying (5) and any bounded F(t). Actually,
these conditions guarantee the existence of a positive
de7nite matrix P such that the quadratic Lyapunov
function V (x1; x2) := 1

2 (x1 − x2)TP(x1 − x2) satis7es
d=dtV (x1(t); x2(t))6 − 2
V (x1(t); x2(t)). In fact, if
�(y) is continuously diHerentiable, then the matrix
J (x; t) de7ned for system (4) with such P is uni-
formly negative de7nite. Hence, one can also apply
the result of Demidovich.
Several decades after these publications, the interest

in stability properties of solutions with respect to each
other revived. Incremental stability, contraction anal-
ysis are some of the terms related to stability proper-
ties of solutions with respect to each other. In the mid
1990s, Lohmiller and Slotine (see [11] and references
therein) independently obtained and extended the re-
sult of Demidovich. In particular, they pointed out that
systems satisfying the (extended) Demidovich condi-
tion, enjoy certain properties of asymptotically stable
linear systems that are not encountered in general
asymptotically stable nonlinear systems. If a system is
given in the form of an operator mapping some func-
tional space of inputs to a functional space of outputs,
it is said to be incrementally stable if this operator
is well-de7ned and Lipschitz continuous (has a 7nite
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incremental gain) [14,5]. Fromion et al. established
certain links between such incremental stability and
Lyapunov stability of solutions [6]. They also in-
troduced suGcient conditions to check the Lipschitz
continuity condition (the so-called quadratic incre-
mental stability) [7], which are very close to the
Demidovich conditions mentioned above. A Lya-
punov approach unifying both state-space and
input-to-output approaches to studying stability of
solutions with respect to each other was developed
by Angeli [1]. This approach is compatible with the
input-to-state stability framework (see for example
[13]). As it was pointed out in these papers, observer
design and (controlled) synchronization problems are
examples of possible applications of such stability
properties.

3. Convergent systems

If all solutions of system (1) tend one to another,
we can say that they “forget” the initial conditions and
converge to some nominal motion. From a theoretical
point of view, it is interesting to de7ne this nominal
motion in a unique way. For example, if the right-hand
side of system (1) is !-periodic in t, then the nominal
solution could be de7ned as a unique !-periodic solu-
tion. This leads to the notion of convergent systems.

De�nition 1 (Demidovich [4]): System (1) is said to
be convergent if

(i) all solutions x(t) are well-de7ned for all
t ∈ [t0;+∞) and all initial conditions t0 ∈R,
x(t0)∈Rn;

(ii) there exists a unique solution Ux(t) de7ned and
bounded for all t ∈ (−∞;+∞);

(iii) the solution Ux(t) is globally asymptotically sta-
ble.

Notice that the limit solution Ux(t) is de7ned as a so-
lution that is bounded on the whole time scale, i.e. for
t ∈ (−∞;+∞). Such de7nition is a natural extension
of a limit solution for a linear asymptotically stable
system to the nonlinear case. It is well-known that a
linear system ẋ = Ax + F(t) with a Hurwitz matrix
A and F(t) being bounded on R, has a unique limit
solution that is bounded on R.

For the case of f(x; t) being periodic with respect to
t, convergent systems were 7rst de7ned and studied by
Pliss [12]. Demidovich extended the de7nition given
by Pliss to the case of general f(x; t) [4]. One can
easily check that for convergent systems with periodic
f(x; t) the limit solution Ux(t) is also periodic with the
same period. Demidovich gave the following suGcient
conditions for the convergence property.

Theorem 1 (Demidovich [3,4]). Consider system
(1). Suppose, for some positive de)nite matrix P
the matrix J (x; t) de)ned in (2) is negative de)nite
uniformly in (x; t)∈Rn×R and |f(0; t)|6 c¡+∞
for all t ∈R. Then, system (1) is convergent.

As we have already pointed out, the conditions of
this theorem guarantee global uniform exponential sta-
bility of all solutions. To prove convergence, one only
needs to check the existence and uniqueness of a solu-
tion Ux(t) bounded on the whole time axis (−∞;+∞).
In order to demonstrate the techniques of the Demi-
dovich approach, we provide a complete proof of this
theorem in the Appendix.
Although the problem of existence and uniqueness

of a limit solution can be interesting in its own re-
spect, it also has a lot of applications. For example,
frequency domain identi7cation of linear systems is
based on existence and uniqueness of a limit solution
corresponding to a periodic excitation. If one wants
to extend this methodology to nonlinear systems, the
notion of convergent systems can be very helpful. An-
other possible application would be the output regula-
tion problem [9]. In that problem, one needs to design
a feedback such that the closed-loop system, being
excited by an external system generating disturbances
and/or reference signals, has an asymptotically stable
limit solution (‘steady-state response’) along which
the regulated output equals to zero.

4. Conclusions

Originally, Demidovich derived the above-men-
tioned conditions to check dissipativity and con-
vergence properties of a nonlinear system. Global
asymptotic stability of all solutions appears to be a
“side product”, which is as important as the main
result. Not being translated into English and thus not
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widely known in the international literature, the re-
sults of Demidovich were, nearly three decades after
their publication, partly reobtained by several sci-
entists. To the best of our knowledge, the notion of
convergent systems and the Demidovich’s suGcient
condition to check the convergence property are still
not widely known. Modern challenges in nonlinear
control and systems theory—synchronization, ob-
server design, output regulation and other problems—
make the results of Demidovich relevant and useful.

Boris Pavlovich Demidovich (1906–1977) gradu-
ated from Belorussian State University in 1927. He
received the Candidate of Science (Ph.D.) degree
in mathematics from Moscow State University in
1935 under the supervision of A.N. Kolmogorov,
V.V. Stepanov and V.V. Nemytskii. In 1963, he
defended his thesis “Bounded solutions of diHeren-
tial equations” and received the Doctor of Science
degree (second doctoral degree). Since 1936, B.P.
Demidovich had been working at the Mechanics and
Mathematics Department of Moscow State University
as an assistant professor and since 1965 as a full pro-
fessor. He was also a part-time professor in several
other higher educational institutions in Moscow. The
main research interests of B.P. Demidovich were in
the 7eld of ordinary diHerential equations: periodic
and almost periodic solutions, integral invariants and
stability theory including methods of Lyapunov ex-
ponents and Lyapunov functions, orbital stability and
boundedness of solutions. He is the author of sev-
eral textbooks on calculus and stability theory. His
“Collection of Problems and Exercises in Calculus”,
a standard textbook on calculus in Russian higher
educational institutions, has undergone 14 editions
with the total number of copies exceeding 1000 000.
His book “Lectures on Stability Theory” [4] is one of
the standard textbooks on stability theory in Russian
universities.

Note added in proof

After the paper had been accepted, the authors be-
came aware of the works by T. Yoshizawa [16,17]
who, independently of B.P. Demidovich, studied in-
cremental stability and convergence-like properties by
Lyapunov’s second method.

Appendix A. Proof of Theorem 1

Denote by |x|P the norm of the vector x∈Rn de7ned
by |x|2P := xTPx. First, we show that

(x1 − x2)TP(f(x1; t)− f(x2; t))
6− 
|x1 − x2|2P (A.1)

for some 
¿ 0 and all t ∈R and x1; x2 ∈Rn. Denote
�(�) := (x1 − x2)TPf(x2 + �(x1 − x2); t):
Then, the left-hand side of (A.1) equals to �(1) −
�(0). Applying the mean value theorem, we obtain
�(1)− �(0) = d�(�̃)=d� for some �̃∈ [0; 1]. Thus,

(x1 − x2)TP(f(x1; t)− f(x2; t)) = d�
d�

(�̃)

=(x1 − x2)TP 9f9x (�; t)(x1 − x2)

=(x1 − x2)TJ (�; t)(x1 − x2);
where � = x2 + �̃(x1 − x2). Since J (�; t) is uni-
formly negative de7nite, there exists 
¿ 0 such
that J (�; t)6 − 
P for all �∈Rn and t ∈R. This
implies (A.1). Consider the function V (x1; x2) :=
1
2 |x1−x2|2P . It follows from (A.1) that the derivative of
V (x1(t); x2(t)) along any two solutions of system (1)
satis7es d=dt[V (x1(t); x2(t))]6 − 2
V (x1(t); x2(t)).
This, in turn, implies that

|x1(t)− x2(t)|P6 e−
(t−t0)|x1(t0)− x2(t0)|P: (A.2)

Thus, any solution which is de7ned for all t¿ t0 is
globally uniformly exponentially stable.
Next, the existence and uniqueness of a solution Ux(t)

which is de7ned and bounded on the whole time axis
(−∞;+∞) will be proved. The existence of Ux(t) is
proved by the following argument: a closed bounded
set � ⊂ Rn that is positively invariant with respect
to system (1) contains at least one solution de)ned
for all t ∈ (−∞;+∞). This statement was proved by
Yakubovich in [15] based on ideas of Demidovich [3].
The existence of such set � is proved in the follow-
ing way. Consider the function W (x) := 1

2 |x|2P . Its
derivative along solutions of system (1) satis7es
d
dt
W (x(t)) = xTPf(x; t)

= (x − 0)TP(f(x; t)− f(0; t))
+xTPf(0; t): (A.3)
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Applying formula (A.1) and the Cauchy inequality,
we obtain
d
dt
W (x(t))6−
|x|2P + |x|P|f(0; t)|P

= |x|P(−
|x|P + |f(0; t)|P):
Since |f(0; t)|P is bounded from above by some con-
stant Uc¡+∞, we obtain that d

dt W (x(t))¡ 0 for any
x∈Rn satisfying |x|P ¿ Uc=
. Thus, for any R¿ Uc=

the set � := {x:W (x)6R2=2} is closed, bounded
and positively invariant with respect to system (1).
Thus, by the Yakubovich’s argument, there exists a
solution Ux(t) in � which is bounded on R. Moreover,
this implies that any solution of system (1) is de7ned
for all t¿ t0. Now, we only need to show the unique-
ness of the solution Ux(t). Suppose, Ux1(t) and Ux2(t) are
two solutions which are de7ned and bounded on R.
Since | Ux1(t0)− Ux2(t0)|P is bounded for all t0 ∈R, tak-
ing the limit for t0 → −∞ in (A.2), it should hold
that | Ux1(t)− Ux2(t)|P6 0: Since t ∈R is arbitrary, this
implies Ux1(t) ≡ Ux2(t).
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